This file is indexed.

/usr/lib/python3/dist-packages/toolz/itertoolz.py is in python3-toolz 0.8.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
import itertools
import heapq
import collections
import operator
from functools import partial
from random import Random
from toolz.compatibility import (map, filterfalse, zip, zip_longest, iteritems,
                                 filter)
from toolz.utils import no_default


__all__ = ('remove', 'accumulate', 'groupby', 'merge_sorted', 'interleave',
           'unique', 'isiterable', 'isdistinct', 'take', 'drop', 'take_nth',
           'first', 'second', 'nth', 'last', 'get', 'concat', 'concatv',
           'mapcat', 'cons', 'interpose', 'frequencies', 'reduceby', 'iterate',
           'sliding_window', 'partition', 'partition_all', 'count', 'pluck',
           'join', 'tail', 'diff', 'topk', 'peek', 'random_sample')


def remove(predicate, seq):
    """ Return those items of sequence for which predicate(item) is False

    >>> def iseven(x):
    ...     return x % 2 == 0
    >>> list(remove(iseven, [1, 2, 3, 4]))
    [1, 3]
    """
    return filterfalse(predicate, seq)


def accumulate(binop, seq, initial=no_default):
    """ Repeatedly apply binary function to a sequence, accumulating results

    >>> from operator import add, mul
    >>> list(accumulate(add, [1, 2, 3, 4, 5]))
    [1, 3, 6, 10, 15]
    >>> list(accumulate(mul, [1, 2, 3, 4, 5]))
    [1, 2, 6, 24, 120]

    Accumulate is similar to ``reduce`` and is good for making functions like
    cumulative sum:

    >>> from functools import partial, reduce
    >>> sum    = partial(reduce, add)
    >>> cumsum = partial(accumulate, add)

    Accumulate also takes an optional argument that will be used as the first
    value. This is similar to reduce.

    >>> list(accumulate(add, [1, 2, 3], -1))
    [-1, 0, 2, 5]
    >>> list(accumulate(add, [], 1))
    [1]

    See Also:
        itertools.accumulate :  In standard itertools for Python 3.2+
    """
    seq = iter(seq)
    result = next(seq) if initial == no_default else initial
    yield result
    for elem in seq:
        result = binop(result, elem)
        yield result


def groupby(key, seq):
    """ Group a collection by a key function

    >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
    >>> groupby(len, names)  # doctest: +SKIP
    {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}

    >>> iseven = lambda x: x % 2 == 0
    >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8])  # doctest: +SKIP
    {False: [1, 3, 5, 7], True: [2, 4, 6, 8]}

    Non-callable keys imply grouping on a member.

    >>> groupby('gender', [{'name': 'Alice', 'gender': 'F'},
    ...                    {'name': 'Bob', 'gender': 'M'},
    ...                    {'name': 'Charlie', 'gender': 'M'}]) # doctest:+SKIP
    {'F': [{'gender': 'F', 'name': 'Alice'}],
     'M': [{'gender': 'M', 'name': 'Bob'},
           {'gender': 'M', 'name': 'Charlie'}]}

    See Also:
        countby
    """
    if not callable(key):
        key = getter(key)
    d = collections.defaultdict(lambda: [].append)
    for item in seq:
        d[key(item)](item)
    rv = {}
    for k, v in iteritems(d):
        rv[k] = v.__self__
    return rv


def merge_sorted(*seqs, **kwargs):
    """ Merge and sort a collection of sorted collections

    This works lazily and only keeps one value from each iterable in memory.

    >>> list(merge_sorted([1, 3, 5], [2, 4, 6]))
    [1, 2, 3, 4, 5, 6]

    >>> ''.join(merge_sorted('abc', 'abc', 'abc'))
    'aaabbbccc'

    The "key" function used to sort the input may be passed as a keyword.

    >>> list(merge_sorted([2, 3], [1, 3], key=lambda x: x // 3))
    [2, 1, 3, 3]
    """
    if len(seqs) == 0:
        return iter([])
    elif len(seqs) == 1:
        return iter(seqs[0])

    key = kwargs.get('key', None)
    if key is None:
        return _merge_sorted_binary(seqs)
    else:
        return _merge_sorted_binary_key(seqs, key)


def _merge_sorted_binary(seqs):
    mid = len(seqs) // 2
    L1 = seqs[:mid]
    if len(L1) == 1:
        seq1 = iter(L1[0])
    else:
        seq1 = _merge_sorted_binary(L1)
    L2 = seqs[mid:]
    if len(L2) == 1:
        seq2 = iter(L2[0])
    else:
        seq2 = _merge_sorted_binary(L2)

    try:
        val2 = next(seq2)
    except StopIteration:
        for val1 in seq1:
            yield val1
        return

    for val1 in seq1:
        if val2 < val1:
            yield val2
            for val2 in seq2:
                if val2 < val1:
                    yield val2
                else:
                    yield val1
                    break
            else:
                break
        else:
            yield val1
    else:
        yield val2
        for val2 in seq2:
            yield val2
        return
    yield val1
    for val1 in seq1:
        yield val1


def _merge_sorted_binary_key(seqs, key):
    mid = len(seqs) // 2
    L1 = seqs[:mid]
    if len(L1) == 1:
        seq1 = iter(L1[0])
    else:
        seq1 = _merge_sorted_binary_key(L1, key)
    L2 = seqs[mid:]
    if len(L2) == 1:
        seq2 = iter(L2[0])
    else:
        seq2 = _merge_sorted_binary_key(L2, key)

    try:
        val2 = next(seq2)
    except StopIteration:
        for val1 in seq1:
            yield val1
        return
    key2 = key(val2)

    for val1 in seq1:
        key1 = key(val1)
        if key2 < key1:
            yield val2
            for val2 in seq2:
                key2 = key(val2)
                if key2 < key1:
                    yield val2
                else:
                    yield val1
                    break
            else:
                break
        else:
            yield val1
    else:
        yield val2
        for val2 in seq2:
            yield val2
        return
    yield val1
    for val1 in seq1:
        yield val1


def interleave(seqs):
    """ Interleave a sequence of sequences

    >>> list(interleave([[1, 2], [3, 4]]))
    [1, 3, 2, 4]

    >>> ''.join(interleave(('ABC', 'XY')))
    'AXBYC'

    Both the individual sequences and the sequence of sequences may be infinite

    Returns a lazy iterator
    """
    iters = itertools.cycle(map(iter, seqs))
    while True:
        try:
            for itr in iters:
                yield next(itr)
            return
        except StopIteration:
            predicate = partial(operator.is_not, itr)
            iters = itertools.cycle(itertools.takewhile(predicate, iters))


def unique(seq, key=None):
    """ Return only unique elements of a sequence

    >>> tuple(unique((1, 2, 3)))
    (1, 2, 3)
    >>> tuple(unique((1, 2, 1, 3)))
    (1, 2, 3)

    Uniqueness can be defined by key keyword

    >>> tuple(unique(['cat', 'mouse', 'dog', 'hen'], key=len))
    ('cat', 'mouse')
    """
    seen = set()
    seen_add = seen.add
    if key is None:
        for item in seq:
            if item not in seen:
                seen_add(item)
                yield item
    else:  # calculate key
        for item in seq:
            val = key(item)
            if val not in seen:
                seen_add(val)
                yield item


def isiterable(x):
    """ Is x iterable?

    >>> isiterable([1, 2, 3])
    True
    >>> isiterable('abc')
    True
    >>> isiterable(5)
    False
    """
    try:
        iter(x)
        return True
    except TypeError:
        return False


def isdistinct(seq):
    """ All values in sequence are distinct

    >>> isdistinct([1, 2, 3])
    True
    >>> isdistinct([1, 2, 1])
    False

    >>> isdistinct("Hello")
    False
    >>> isdistinct("World")
    True
    """
    if iter(seq) is seq:
        seen = set()
        seen_add = seen.add
        for item in seq:
            if item in seen:
                return False
            seen_add(item)
        return True
    else:
        return len(seq) == len(set(seq))


def take(n, seq):
    """ The first n elements of a sequence

    >>> list(take(2, [10, 20, 30, 40, 50]))
    [10, 20]

    See Also:
        drop
        tail
    """
    return itertools.islice(seq, n)


def tail(n, seq):
    """ The last n elements of a sequence

    >>> tail(2, [10, 20, 30, 40, 50])
    [40, 50]

    See Also:
        drop
        take
    """
    try:
        return seq[-n:]
    except (TypeError, KeyError):
        return tuple(collections.deque(seq, n))


def drop(n, seq):
    """ The sequence following the first n elements

    >>> list(drop(2, [10, 20, 30, 40, 50]))
    [30, 40, 50]

    See Also:
        take
        tail
    """
    return itertools.islice(seq, n, None)


def take_nth(n, seq):
    """ Every nth item in seq

    >>> list(take_nth(2, [10, 20, 30, 40, 50]))
    [10, 30, 50]
    """
    return itertools.islice(seq, 0, None, n)


def first(seq):
    """ The first element in a sequence

    >>> first('ABC')
    'A'
    """
    return next(iter(seq))


def second(seq):
    """ The second element in a sequence

    >>> second('ABC')
    'B'
    """
    return next(itertools.islice(seq, 1, None))


def nth(n, seq):
    """ The nth element in a sequence

    >>> nth(1, 'ABC')
    'B'
    """
    if isinstance(seq, (tuple, list, collections.Sequence)):
        return seq[n]
    else:
        return next(itertools.islice(seq, n, None))


def last(seq):
    """ The last element in a sequence

    >>> last('ABC')
    'C'
    """
    return tail(1, seq)[0]


rest = partial(drop, 1)


def _get(ind, seq, default):
    try:
        return seq[ind]
    except (KeyError, IndexError):
        return default


def get(ind, seq, default=no_default):
    """ Get element in a sequence or dict

    Provides standard indexing

    >>> get(1, 'ABC')       # Same as 'ABC'[1]
    'B'

    Pass a list to get multiple values

    >>> get([1, 2], 'ABC')  # ('ABC'[1], 'ABC'[2])
    ('B', 'C')

    Works on any value that supports indexing/getitem
    For example here we see that it works with dictionaries

    >>> phonebook = {'Alice':  '555-1234',
    ...              'Bob':    '555-5678',
    ...              'Charlie':'555-9999'}
    >>> get('Alice', phonebook)
    '555-1234'

    >>> get(['Alice', 'Bob'], phonebook)
    ('555-1234', '555-5678')

    Provide a default for missing values

    >>> get(['Alice', 'Dennis'], phonebook, None)
    ('555-1234', None)

    See Also:
        pluck
    """
    try:
        return seq[ind]
    except TypeError:  # `ind` may be a list
        if isinstance(ind, list):
            if default == no_default:
                if len(ind) > 1:
                    return operator.itemgetter(*ind)(seq)
                elif ind:
                    return (seq[ind[0]],)
                else:
                    return ()
            else:
                return tuple(_get(i, seq, default) for i in ind)
        elif default != no_default:
            return default
        else:
            raise
    except (KeyError, IndexError):  # we know `ind` is not a list
        if default == no_default:
            raise
        else:
            return default


def concat(seqs):
    """ Concatenate zero or more iterables, any of which may be infinite.

    An infinite sequence will prevent the rest of the arguments from
    being included.

    We use chain.from_iterable rather than ``chain(*seqs)`` so that seqs
    can be a generator.

    >>> list(concat([[], [1], [2, 3]]))
    [1, 2, 3]

    See also:
        itertools.chain.from_iterable  equivalent
    """
    return itertools.chain.from_iterable(seqs)


def concatv(*seqs):
    """ Variadic version of concat

    >>> list(concatv([], ["a"], ["b", "c"]))
    ['a', 'b', 'c']

    See also:
        itertools.chain
    """
    return concat(seqs)


def mapcat(func, seqs):
    """ Apply func to each sequence in seqs, concatenating results.

    >>> list(mapcat(lambda s: [c.upper() for c in s],
    ...             [["a", "b"], ["c", "d", "e"]]))
    ['A', 'B', 'C', 'D', 'E']
    """
    return concat(map(func, seqs))


def cons(el, seq):
    """ Add el to beginning of (possibly infinite) sequence seq.

    >>> list(cons(1, [2, 3]))
    [1, 2, 3]
    """
    return itertools.chain([el], seq)


def interpose(el, seq):
    """ Introduce element between each pair of elements in seq

    >>> list(interpose("a", [1, 2, 3]))
    [1, 'a', 2, 'a', 3]
    """
    combined = zip(itertools.repeat(el), seq)
    return drop(1, concat(combined))


def frequencies(seq):
    """ Find number of occurrences of each value in seq

    >>> frequencies(['cat', 'cat', 'ox', 'pig', 'pig', 'cat'])  #doctest: +SKIP
    {'cat': 3, 'ox': 1, 'pig': 2}

    See Also:
        countby
        groupby
    """
    d = collections.defaultdict(int)
    for item in seq:
        d[item] += 1
    return dict(d)


def reduceby(key, binop, seq, init=no_default):
    """ Perform a simultaneous groupby and reduction

    The computation:

    >>> result = reduceby(key, binop, seq, init)      # doctest: +SKIP

    is equivalent to the following:

    >>> def reduction(group):                           # doctest: +SKIP
    ...     return reduce(binop, group, init)           # doctest: +SKIP

    >>> groups = groupby(key, seq)                    # doctest: +SKIP
    >>> result = valmap(reduction, groups)              # doctest: +SKIP

    But the former does not build the intermediate groups, allowing it to
    operate in much less space.  This makes it suitable for larger datasets
    that do not fit comfortably in memory

    The ``init`` keyword argument is the default initialization of the
    reduction.  This can be either a constant value like ``0`` or a callable
    like ``lambda : 0`` as might be used in ``defaultdict``.

    Simple Examples
    ---------------

    >>> from operator import add, mul
    >>> iseven = lambda x: x % 2 == 0

    >>> data = [1, 2, 3, 4, 5]

    >>> reduceby(iseven, add, data)  # doctest: +SKIP
    {False: 9, True: 6}

    >>> reduceby(iseven, mul, data)  # doctest: +SKIP
    {False: 15, True: 8}

    Complex Example
    ---------------

    >>> projects = [{'name': 'build roads', 'state': 'CA', 'cost': 1000000},
    ...             {'name': 'fight crime', 'state': 'IL', 'cost': 100000},
    ...             {'name': 'help farmers', 'state': 'IL', 'cost': 2000000},
    ...             {'name': 'help farmers', 'state': 'CA', 'cost': 200000}]

    >>> reduceby('state',                        # doctest: +SKIP
    ...          lambda acc, x: acc + x['cost'],
    ...          projects, 0)
    {'CA': 1200000, 'IL': 2100000}

    Example Using ``init``
    ----------------------

    >>> def set_add(s, i):
    ...     s.add(i)
    ...     return s

    >>> reduceby(iseven, set_add, [1, 2, 3, 4, 1, 2, 3], set)  # doctest: +SKIP
    {True:  set([2, 4]),
     False: set([1, 3])}
    """
    is_no_default = init == no_default
    if not is_no_default and not callable(init):
        _init = init
        init = lambda: _init
    if not callable(key):
        key = getter(key)
    d = {}
    for item in seq:
        k = key(item)
        if k not in d:
            if is_no_default:
                d[k] = item
                continue
            else:
                d[k] = init()
        d[k] = binop(d[k], item)
    return d


def iterate(func, x):
    """ Repeatedly apply a function func onto an original input

    Yields x, then func(x), then func(func(x)), then func(func(func(x))), etc..

    >>> def inc(x):  return x + 1
    >>> counter = iterate(inc, 0)
    >>> next(counter)
    0
    >>> next(counter)
    1
    >>> next(counter)
    2

    >>> double = lambda x: x * 2
    >>> powers_of_two = iterate(double, 1)
    >>> next(powers_of_two)
    1
    >>> next(powers_of_two)
    2
    >>> next(powers_of_two)
    4
    >>> next(powers_of_two)
    8
    """
    while True:
        yield x
        x = func(x)


def sliding_window(n, seq):
    """ A sequence of overlapping subsequences

    >>> list(sliding_window(2, [1, 2, 3, 4]))
    [(1, 2), (2, 3), (3, 4)]

    This function creates a sliding window suitable for transformations like
    sliding means / smoothing

    >>> mean = lambda seq: float(sum(seq)) / len(seq)
    >>> list(map(mean, sliding_window(2, [1, 2, 3, 4])))
    [1.5, 2.5, 3.5]
    """
    return zip(*(collections.deque(itertools.islice(it, i), 0) or it
               for i, it in enumerate(itertools.tee(seq, n))))


no_pad = '__no__pad__'


def partition(n, seq, pad=no_pad):
    """ Partition sequence into tuples of length n

    >>> list(partition(2, [1, 2, 3, 4]))
    [(1, 2), (3, 4)]

    If the length of ``seq`` is not evenly divisible by ``n``, the final tuple
    is dropped if ``pad`` is not specified, or filled to length ``n`` by pad:

    >>> list(partition(2, [1, 2, 3, 4, 5]))
    [(1, 2), (3, 4)]

    >>> list(partition(2, [1, 2, 3, 4, 5], pad=None))
    [(1, 2), (3, 4), (5, None)]

    See Also:
        partition_all
    """
    args = [iter(seq)] * n
    if pad is no_pad:
        return zip(*args)
    else:
        return zip_longest(*args, fillvalue=pad)


def partition_all(n, seq):
    """ Partition all elements of sequence into tuples of length at most n

    The final tuple may be shorter to accommodate extra elements.

    >>> list(partition_all(2, [1, 2, 3, 4]))
    [(1, 2), (3, 4)]

    >>> list(partition_all(2, [1, 2, 3, 4, 5]))
    [(1, 2), (3, 4), (5,)]

    See Also:
        partition
    """
    args = [iter(seq)] * n
    it = zip_longest(*args, fillvalue=no_pad)
    try:
        prev = next(it)
    except StopIteration:
        return
    for item in it:
        yield prev
        prev = item
    if prev[-1] is no_pad:
        yield prev[:prev.index(no_pad)]
    else:
        yield prev


def count(seq):
    """ Count the number of items in seq

    Like the builtin ``len`` but works on lazy sequencies.

    Not to be confused with ``itertools.count``

    See also:
        len
    """
    if hasattr(seq, '__len__'):
        return len(seq)
    return sum(1 for i in seq)


def pluck(ind, seqs, default=no_default):
    """ plucks an element or several elements from each item in a sequence.

    ``pluck`` maps ``itertoolz.get`` over a sequence and returns one or more
    elements of each item in the sequence.

    This is equivalent to running `map(curried.get(ind), seqs)`

    ``ind`` can be either a single string/index or a list of strings/indices.
    ``seqs`` should be sequence containing sequences or dicts.

    e.g.

    >>> data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}]
    >>> list(pluck('name', data))
    ['Cheese', 'Pies']
    >>> list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]]))
    [(1, 2), (4, 5)]

    See Also:
        get
        map
    """
    if default == no_default:
        get = getter(ind)
        return map(get, seqs)
    elif isinstance(ind, list):
        return (tuple(_get(item, seq, default) for item in ind)
                for seq in seqs)
    return (_get(ind, seq, default) for seq in seqs)


def getter(index):
    if isinstance(index, list):
        if len(index) == 1:
            index = index[0]
            return lambda x: (x[index],)
        elif index:
            return operator.itemgetter(*index)
        else:
            return lambda x: ()
    else:
        return operator.itemgetter(index)


def join(leftkey, leftseq, rightkey, rightseq,
         left_default=no_default, right_default=no_default):
    """ Join two sequences on common attributes

    This is a semi-streaming operation.  The LEFT sequence is fully evaluated
    and placed into memory.  The RIGHT sequence is evaluated lazily and so can
    be arbitrarily large.

    >>> friends = [('Alice', 'Edith'),
    ...            ('Alice', 'Zhao'),
    ...            ('Edith', 'Alice'),
    ...            ('Zhao', 'Alice'),
    ...            ('Zhao', 'Edith')]

    >>> cities = [('Alice', 'NYC'),
    ...           ('Alice', 'Chicago'),
    ...           ('Dan', 'Syndey'),
    ...           ('Edith', 'Paris'),
    ...           ('Edith', 'Berlin'),
    ...           ('Zhao', 'Shanghai')]

    >>> # Vacation opportunities
    >>> # In what cities do people have friends?
    >>> result = join(second, friends,
    ...               first, cities)
    >>> for ((a, b), (c, d)) in sorted(unique(result)):
    ...     print((a, d))
    ('Alice', 'Berlin')
    ('Alice', 'Paris')
    ('Alice', 'Shanghai')
    ('Edith', 'Chicago')
    ('Edith', 'NYC')
    ('Zhao', 'Chicago')
    ('Zhao', 'NYC')
    ('Zhao', 'Berlin')
    ('Zhao', 'Paris')

    Specify outer joins with keyword arguments ``left_default`` and/or
    ``right_default``.  Here is a full outer join in which unmatched elements
    are paired with None.

    >>> identity = lambda x: x
    >>> list(join(identity, [1, 2, 3],
    ...           identity, [2, 3, 4],
    ...           left_default=None, right_default=None))
    [(2, 2), (3, 3), (None, 4), (1, None)]

    Usually the key arguments are callables to be applied to the sequences.  If
    the keys are not obviously callable then it is assumed that indexing was
    intended, e.g. the following is a legal change

    >>> # result = join(second, friends, first, cities)
    >>> result = join(1, friends, 0, cities)  # doctest: +SKIP
    """
    if not callable(leftkey):
        leftkey = getter(leftkey)
    if not callable(rightkey):
        rightkey = getter(rightkey)

    d = groupby(leftkey, leftseq)
    seen_keys = set()

    left_default_is_no_default = (left_default == no_default)
    for item in rightseq:
        key = rightkey(item)
        seen_keys.add(key)
        try:
            left_matches = d[key]
            for match in left_matches:
                yield (match, item)
        except KeyError:
            if not left_default_is_no_default:
                yield (left_default, item)

    if right_default != no_default:
        for key, matches in d.items():
            if key not in seen_keys:
                for match in matches:
                    yield (match, right_default)


def diff(*seqs, **kwargs):
    """ Return those items that differ between sequences

    >>> list(diff([1, 2, 3], [1, 2, 10, 100]))
    [(3, 10)]

    Shorter sequences may be padded with a ``default`` value:

    >>> list(diff([1, 2, 3], [1, 2, 10, 100], default=None))
    [(3, 10), (None, 100)]

    A ``key`` function may also be applied to each item to use during
    comparisons:

    >>> list(diff(['apples', 'bananas'], ['Apples', 'Oranges'], key=str.lower))
    [('bananas', 'Oranges')]
    """
    N = len(seqs)
    if N == 1 and isinstance(seqs[0], list):
        seqs = seqs[0]
        N = len(seqs)
    if N < 2:
        raise TypeError('Too few sequences given (min 2 required)')
    default = kwargs.get('default', no_default)
    if default == no_default:
        iters = zip(*seqs)
    else:
        iters = zip_longest(*seqs, fillvalue=default)
    key = kwargs.get('key', None)
    if key is None:
        for items in iters:
            if items.count(items[0]) != N:
                yield items
    else:
        for items in iters:
            vals = tuple(map(key, items))
            if vals.count(vals[0]) != N:
                yield items


def topk(k, seq, key=None):
    """ Find the k largest elements of a sequence

    Operates lazily in ``n*log(k)`` time

    >>> topk(2, [1, 100, 10, 1000])
    (1000, 100)

    Use a key function to change sorted order

    >>> topk(2, ['Alice', 'Bob', 'Charlie', 'Dan'], key=len)
    ('Charlie', 'Alice')

    See also:
        heapq.nlargest
    """
    if key is not None and not callable(key):
        key = getter(key)
    return tuple(heapq.nlargest(k, seq, key=key))


def peek(seq):
    """ Retrieve the next element of a sequence

    Returns the first element and an iterable equivalent to the original
    sequence, still having the element retrieved.

    >>> seq = [0, 1, 2, 3, 4]
    >>> first, seq = peek(seq)
    >>> first
    0
    >>> list(seq)
    [0, 1, 2, 3, 4]
    """
    iterator = iter(seq)
    item = next(iterator)
    return item, itertools.chain([item], iterator)


def random_sample(prob, seq, random_state=None):
    """ Return elements from a sequence with probability of prob

    Returns a lazy iterator of random items from seq.

    ``random_sample`` considers each item independently and without
    replacement. See below how the first time it returned 13 items and the
    next time it returned 6 items.

    >>> seq = list(range(100))
    >>> list(random_sample(0.1, seq)) # doctest: +SKIP
    [6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95]
    >>> list(random_sample(0.1, seq)) # doctest: +SKIP
    [6, 44, 54, 61, 69, 94]

    Providing an integer seed for ``random_state`` will result in
    deterministic sampling. Given the same seed it will return the same sample
    every time.

    >>> list(random_sample(0.1, seq, random_state=2016))
    [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
    >>> list(random_sample(0.1, seq, random_state=2016))
    [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]

    ``random_state`` can also be any object with a method ``random`` that
    returns floats between 0.0 and 1.0 (exclusive).

    >>> from random import Random
    >>> randobj = Random(2016)
    >>> list(random_sample(0.1, seq, random_state=randobj))
    [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
    """
    if not hasattr(random_state, 'random'):
        random_state = Random(random_state)
    return filter(lambda _: random_state.random() < prob, seq)