/usr/lib/python3/dist-packages/tables/indexes.py is in python3-tables 3.4.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: June 02, 2004
# Author: Francesc Alted - faltet@pytables.com
#
# $Source: /cvsroot/pytables/pytables/tables/indexes.py $
# $Id$
#
########################################################################
"""Here is defined the IndexArray class."""
from __future__ import absolute_import
from bisect import bisect_left, bisect_right
from .node import NotLoggedMixin
from .carray import CArray
from .earray import EArray
from . import indexesextension
import six
# Declarations for inheriting
class CacheArray(indexesextension.CacheArray, NotLoggedMixin, EArray):
"""Container for keeping index caches of 1st and 2nd level."""
# Class identifier.
_c_classid = 'CACHEARRAY'
class LastRowArray(indexesextension.LastRowArray, NotLoggedMixin, CArray):
"""Container for keeping sorted and indices values of last row of an
index."""
# Class identifier.
_c_classid = 'LASTROWARRAY'
@six.python_2_unicode_compatible
class IndexArray(indexesextension.IndexArray, NotLoggedMixin, EArray):
"""Represent the index (sorted or reverse index) dataset in HDF5 file.
All NumPy typecodes are supported except for complex datatypes.
Parameters
----------
parentnode
The Index class from which this object will hang off.
.. versionchanged:: 3.0
Renamed from *parentNode* to *parentnode*.
name : str
The name of this node in its parent group.
atom
An Atom object representing the shape and type of the atomic objects to
be saved. Only scalar atoms are supported.
title
Sets a TITLE attribute on the array entity.
filters : Filters
An instance of the Filters class that provides information about the
desired I/O filters to be applied during the life of this object.
byteorder
The byteroder of the data on-disk.
"""
# Class identifier.
_c_classid = 'INDEXARRAY'
# Properties
# ~~~~~~~~~~
@property
def chunksize(self):
"""The chunksize for this object."""
return self.chunkshape[1]
@property
def slicesize(self):
"""The slicesize for this object."""
return self.shape[1]
# Other methods
# ~~~~~~~~~~~~~
def __init__(self, parentnode, name,
atom=None, title="",
filters=None, byteorder=None):
"""Create an IndexArray instance."""
self._v_pathname = parentnode._g_join(name)
if atom is not None:
# The shape and chunkshape needs to be fixed here
if name == "sorted":
reduction = parentnode.reduction
shape = (0, parentnode.slicesize // reduction)
chunkshape = (1, parentnode.chunksize // reduction)
else:
shape = (0, parentnode.slicesize)
chunkshape = (1, parentnode.chunksize)
else:
# The shape and chunkshape will be read from disk later on
shape = None
chunkshape = None
super(IndexArray, self).__init__(
parentnode, name, atom, shape, title, filters,
chunkshape=chunkshape, byteorder=byteorder)
# This version of searchBin uses both ranges (1st level) and
# bounds (2nd level) caches. It uses a cache for boundary rows,
# but not for 'sorted' rows (this is only supported for the
# 'optimized' types).
def _search_bin(self, nrow, item):
item1, item2 = item
result1 = -1
result2 = -1
hi = self.shape[1]
ranges = self._v_parent.rvcache
boundscache = self.boundscache
# First, look at the beginning of the slice
begin = ranges[nrow, 0]
# Look for items at the beginning of sorted slices
if item1 <= begin:
result1 = 0
if item2 < begin:
result2 = 0
if result1 >= 0 and result2 >= 0:
return (result1, result2)
# Then, look for items at the end of the sorted slice
end = ranges[nrow, 1]
if result1 < 0:
if item1 > end:
result1 = hi
if result2 < 0:
if item2 >= end:
result2 = hi
if result1 >= 0 and result2 >= 0:
return (result1, result2)
# Finally, do a lookup for item1 and item2 if they were not found
# Lookup in the middle of slice for item1
chunksize = self.chunksize # Number of elements/chunksize
nchunk = -1
# Try to get the bounds row from the LRU cache
nslot = boundscache.getslot(nrow)
if nslot >= 0:
# Cache hit. Use the row kept there.
bounds = boundscache.getitem(nslot)
else:
# No luck with cached data. Read the row and put it in the cache.
bounds = self._v_parent.bounds[nrow]
size = bounds.size * bounds.itemsize
boundscache.setitem(nrow, bounds, size)
if result1 < 0:
# Search the appropriate chunk in bounds cache
nchunk = bisect_left(bounds, item1)
chunk = self._read_sorted_slice(nrow, chunksize * nchunk,
chunksize * (nchunk + 1))
result1 = indexesextension._bisect_left(chunk, item1, chunksize)
result1 += chunksize * nchunk
# Lookup in the middle of slice for item2
if result2 < 0:
# Search the appropriate chunk in bounds cache
nchunk2 = bisect_right(bounds, item2)
if nchunk2 != nchunk:
chunk = self._read_sorted_slice(nrow, chunksize * nchunk2,
chunksize * (nchunk2 + 1))
result2 = indexesextension._bisect_right(chunk, item2, chunksize)
result2 += chunksize * nchunk2
return (result1, result2)
def __str__(self):
"A compact representation of this class"
return "IndexArray(path=%s)" % self._v_pathname
def __repr__(self):
"""A verbose representation of this class."""
return """%s
atom = %r
shape = %s
nrows = %s
chunksize = %s
slicesize = %s
byteorder = %r""" % (self, self.atom, self.shape, self.nrows,
self.chunksize, self.slicesize, self.byteorder)
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|