This file is indexed.

/usr/lib/python3/dist-packages/sparse/utils.py is in python3-sparse 0.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from numbers import Integral


def assert_eq(x, y, **kwargs):
    from .coo import COO
    assert x.shape == y.shape
    assert x.dtype == y.dtype

    if isinstance(x, COO):
        if x.sorted:
            assert is_lexsorted(x)
    if isinstance(y, COO):
        if y.sorted:
            assert is_lexsorted(y)

    if hasattr(x, 'todense'):
        xx = x.todense()
    else:
        xx = x
    if hasattr(y, 'todense'):
        yy = y.todense()
    else:
        yy = y
    assert np.allclose(xx, yy, **kwargs)


def is_lexsorted(x):
    return not x.shape or (np.diff(x.linear_loc()) > 0).all()


def _zero_of_dtype(dtype):
    """
    Creates a ()-shaped 0-dimensional zero array of a given dtype.

    Parameters
    ----------
    dtype : numpy.dtype
        The dtype for the array.

    Returns
    -------
    np.ndarray
        The zero array.
    """
    return np.zeros((), dtype=dtype)


def random(
        shape,
        density=0.01,
        canonical_order=False,
        random_state=None,
        data_rvs=None,
        format='coo'
):
    """ Generate a random sparse multidimensional array

    Parameters
    ----------
    shape: Tuple[int]
        Shape of the array
    density: float, optional
        Density of the generated array.
    canonical_order : bool, optional
        Whether or not to put the output :obj:`COO` object into canonical
        order. :code:`False` by default.
    random_state : Union[numpy.random.RandomState, int], optional
        Random number generator or random seed. If not given, the
        singleton numpy.random will be used. This random state will be used
        for sampling the sparsity structure, but not necessarily for sampling
        the values of the structurally nonzero entries of the matrix.
    data_rvs : Callable
        Data generation callback. Must accept one single parameter: number of
        :code:`nnz` elements, and return one single NumPy array of exactly
        that length.
    format: {'coo', 'dok'}
        The format to return the output array in.

    Returns
    -------
    {COO, DOK}
        The generated random matrix.

    See Also
    --------
    :obj:`scipy.sparse.rand`
        Equivalent Scipy function.
    :obj:`numpy.random.rand`
        Similar Numpy function.

    Examples
    --------

    >>> from sparse import random
    >>> from scipy import stats
    >>> rvs = lambda x: stats.poisson(25, loc=10).rvs(x, random_state=np.random.RandomState(1))
    >>> s = random((2, 3, 4), density=0.25, random_state=np.random.RandomState(1), data_rvs=rvs)
    >>> s.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 0,  0,  0,  0],
            [ 0, 34,  0,  0],
            [33, 34,  0, 29]],
    <BLANKLINE>
           [[30,  0,  0, 34],
            [ 0,  0,  0,  0],
            [ 0,  0,  0,  0]]])

    """
    # Copied, in large part, from scipy.sparse.random
    # See https://github.com/scipy/scipy/blob/master/LICENSE.txt
    from .coo import COO
    from .dok import DOK

    elements = np.prod(shape)

    nnz = int(elements * density)

    if random_state is None:
        random_state = np.random
    elif isinstance(random_state, Integral):
        random_state = np.random.RandomState(random_state)
    if data_rvs is None:
        data_rvs = random_state.rand

    # Use the algorithm from python's random.sample for k < mn/3.
    if elements < 3 * nnz:
        ind = random_state.choice(elements, size=nnz, replace=False)
    else:
        ind = np.empty(nnz, dtype=np.min_scalar_type(elements - 1))
        selected = set()
        for i in range(nnz):
            j = random_state.randint(elements)
            while j in selected:
                j = random_state.randint(elements)
            selected.add(j)
            ind[i] = j

    data = data_rvs(nnz)

    ar = COO(ind[None, :], data, shape=nnz).reshape(shape)

    if canonical_order:
        ar.sum_duplicates()

    if format == 'dok':
        ar = DOK(ar)

    return ar