This file is indexed.

/usr/lib/python3/dist-packages/sparse/dok.py is in python3-sparse 0.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import six

import numpy as np

# Zip with Python 2/3 compat
# Consumes less memory than Py2 zip
from six.moves import zip, range

from numbers import Integral
from collections import Iterable

from .slicing import normalize_index
from .utils import _zero_of_dtype

try:  # Windows compatibility
    int = long
except NameError:
    pass


class DOK(object):
    """
    A class for building sparse multidimensional arrays.

    Parameters
    ----------
    shape : tuple[int]
        The shape of the array
    data : dict, optional
        The key-value pairs for the data in this array.
    dtype : np.dtype, optional
        The data type of this array. If left empty, it is inferred from
        the first element.

    Attributes
    ----------
    dtype : numpy.dtype
        The datatype of this array. Can be :code:`None` if no elements
        have been set yet.
    shape : tuple[int]
        The shape of this array.
    data : dict
        The keys of this dictionary contain all the indices and the values
        contain the nonzero entries.

    See Also
    --------
    COO : A read-only sparse array.

    Examples
    --------
    You can create :obj:`DOK` objects from Numpy arrays.

    >>> x = np.eye(5, dtype=np.uint8)
    >>> x[2, 3] = 5
    >>> s = DOK.from_numpy(x)
    >>> s
    <DOK: shape=(5, 5), dtype=uint8, nnz=6>

    You can also create them from just shapes, and use slicing assignment.

    >>> s2 = DOK((5, 5), dtype=np.int64)
    >>> s2[1:3, 1:3] = [[4, 5], [6, 7]]
    >>> s2
    <DOK: shape=(5, 5), dtype=int64, nnz=4>

    You can convert :obj:`DOK` arrays to :obj:`COO` arrays, or :obj:`numpy.ndarray`
    objects.

    >>> from sparse import COO
    >>> s3 = COO(s2)
    >>> s3
    <COO: shape=(5, 5), dtype=int64, nnz=4, sorted=False, duplicates=False>
    >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0, 0, 0],
           [0, 4, 5, 0, 0],
           [0, 6, 7, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])

    >>> s4 = COO.from_numpy(np.eye(4, dtype=np.uint8))
    >>> s4
    <COO: shape=(4, 4), dtype=uint8, nnz=4, sorted=True, duplicates=False>
    >>> s5 = DOK.from_coo(s4)
    >>> s5
    <DOK: shape=(4, 4), dtype=uint8, nnz=4>

    You can also create :obj:`DOK` arrays from a shape and a dict of
    values. Zeros are automatically ignored.

    >>> values = {
    ...     (1, 2, 3): 4,
    ...     (3, 2, 1): 0,
    ... }
    >>> s6 = DOK((5, 5, 5), values)
    >>> s6
    <DOK: shape=(5, 5, 5), dtype=int64, nnz=1>
    """

    def __init__(self, shape, data=None, dtype=None):
        from .coo import COO
        self.data = {}

        if isinstance(shape, COO):
            ar = DOK.from_coo(shape)
            self.shape = ar.shape
            self.dtype = ar.dtype
            self.data = ar.data
            return

        if isinstance(shape, np.ndarray):
            ar = DOK.from_numpy(shape)
            self.shape = ar.shape
            self.dtype = ar.dtype
            self.data = ar.data
            return

        self.dtype = np.dtype(dtype)
        if isinstance(shape, Integral):
            self.shape = (int(shape),)
        elif isinstance(shape, Iterable):
            if not all(isinstance(l, Integral) or int(l) < 0 for l in shape):
                raise ValueError('shape must be an iterable of non-negative integers.')

            self.shape = tuple(shape)

        if not data:
            data = {}

        if isinstance(data, dict):
            if not dtype:
                if not len(data):
                    self.dtype = np.dtype('float64')
                else:
                    self.dtype = np.result_type(*map(lambda x: np.asarray(x).dtype, six.itervalues(data)))

            for c, d in six.iteritems(data):
                self[c] = d
        else:
            raise ValueError('data must be a dict.')

    @classmethod
    def from_coo(cls, x):
        """
        Get a :obj:`DOK` array from a :obj:`COO` array.

        Parameters
        ----------
        x : COO
            The array to convert.

        Returns
        -------
        DOK
            The equivalent :obj:`DOK` array.

        Examples
        --------
        >>> from sparse import COO
        >>> s = COO.from_numpy(np.eye(4))
        >>> s2 = DOK.from_coo(s)
        >>> s2
        <DOK: shape=(4, 4), dtype=float64, nnz=4>
        """
        ar = cls(x.shape, dtype=x.dtype)

        for c, d in zip(x.coords.T, x.data):
            ar.data[tuple(c)] = d

        return ar

    def to_coo(self):
        """
        Convert this :obj:`DOK` array to a :obj:`COO` array.

        Returns
        -------
        COO
            The equivalent :obj:`COO` array.

        Examples
        --------
        >>> s = DOK((5, 5))
        >>> s[1:3, 1:3] = [[4, 5], [6, 7]]
        >>> s
        <DOK: shape=(5, 5), dtype=float64, nnz=4>
        >>> s2 = s.to_coo()
        >>> s2
        <COO: shape=(5, 5), dtype=float64, nnz=4, sorted=False, duplicates=False>
        """
        from .coo import COO
        return COO(self)

    @classmethod
    def from_numpy(cls, x):
        """
        Get a :obj:`DOK` array from a Numpy array.

        Parameters
        ----------
        x : np.ndarray
            The array to convert.

        Returns
        -------
        DOK
            The equivalent :obj:`DOK` array.

        Examples
        --------
        >>> s = DOK.from_numpy(np.eye(4))
        >>> s
        <DOK: shape=(4, 4), dtype=float64, nnz=4>
        """
        ar = cls(x.shape, dtype=x.dtype)

        coords = np.nonzero(x)
        data = x[coords]

        for c in zip(data, *coords):
            d, c = c[0], c[1:]
            ar.data[c] = d

        return ar

    @property
    def ndim(self):
        """
        The number of dimensions in this array.

        Returns
        -------
        int
            The number of dimensions.

        See Also
        --------
        COO.ndim : Equivalent property for :obj:`COO` arrays.
        numpy.ndarray.ndim : Numpy equivalent property.

        Examples
        --------
        >>> s = DOK((1, 2, 3))
        >>> s.ndim
        3
        """
        return len(self.shape)

    @property
    def nnz(self):
        """
        The number of nonzero elements in this array.

        Returns
        -------
        int
            The number of nonzero elements.

        See Also
        --------
        COO.nnz : Equivalent :obj:`COO` array property.
        numpy.count_nonzero : A similar Numpy function.
        scipy.sparse.dok_matrix.nnz : The Scipy equivalent property.

        Examples
        --------
        >>> values = {
        ...     (1, 2, 3): 4,
        ...     (3, 2, 1): 0,
        ... }
        >>> s = DOK((5, 5, 5), values)
        >>> s.nnz
        1
        """
        return len(self.data)

    def __getitem__(self, key):
        key = normalize_index(key, self.shape)

        if not all(isinstance(i, Integral) for i in key):
            raise NotImplementedError('All indices must be integers'
                                      ' when getting an item.')

        if len(key) != self.ndim:
            raise NotImplementedError('Can only get single elements. '
                                      'Expected key of length %d, got %s'
                                      % (self.ndim, str(key)))

        key = tuple(int(k) for k in key)

        if key in self.data:
            return self.data[key]
        else:
            return _zero_of_dtype(self.dtype)[()]

    def __setitem__(self, key, value):
        key = normalize_index(key, self.shape)
        value = np.asanyarray(value)

        value = value.astype(self.dtype)

        key_list = [int(k) if isinstance(k, Integral) else k for k in key]

        self._setitem(key_list, value)

    def _setitem(self, key_list, value):
        value_missing_dims = len([ind for ind in key_list if isinstance(ind, slice)]) - value.ndim

        if value_missing_dims < 0:
            raise ValueError('setting an array element with a sequence.')

        for i, ind in enumerate(key_list):
            if isinstance(ind, slice):
                step = ind.step if ind.step is not None else 1
                if step > 0:
                    start = ind.start if ind.start is not None else 0
                    start = max(start, 0)
                    stop = ind.stop if ind.stop is not None else self.shape[i]
                    stop = min(stop, self.shape[i])
                    if start > stop:
                        start = stop
                else:
                    start = ind.start or self.shape[i] - 1
                    stop = ind.stop if ind.stop is not None else -1
                    start = min(start, self.shape[i] - 1)
                    stop = max(stop, -1)
                    if start < stop:
                        start = stop

                key_list_temp = key_list[:]
                for v_idx, ki in enumerate(range(start, stop, step)):
                    key_list_temp[i] = ki
                    vi = value if value_missing_dims > 0 else \
                        (value[0] if value.shape[0] == 1 else value[v_idx])
                    self._setitem(key_list_temp, vi)

                return
            elif not isinstance(ind, Integral):
                raise IndexError('All indices must be slices or integers'
                                 ' when setting an item.')

        if value != _zero_of_dtype(self.dtype):
            self.data[tuple(key_list)] = value[()]

    def __str__(self):
        return "<DOK: shape=%s, dtype=%s, nnz=%d>" % (self.shape, self.dtype, self.nnz)

    __repr__ = __str__

    def todense(self):
        """
        Convert this :obj:`DOK` array into a Numpy array.

        Returns
        -------
        numpy.ndarray
            The equivalent dense array.

        See Also
        --------
        COO.todense : Equivalent :obj:`COO` array method.
        scipy.sparse.dok_matrix.todense : Equivalent Scipy method.

        Examples
        --------
        >>> s = DOK((5, 5))
        >>> s[1:3, 1:3] = [[4, 5], [6, 7]]
        >>> s.todense()  # doctest: +SKIP
        array([[0., 0., 0., 0., 0.],
               [0., 4., 5., 0., 0.],
               [0., 6., 7., 0., 0.],
               [0., 0., 0., 0., 0.],
               [0., 0., 0., 0., 0.]])
        """
        result = np.zeros(self.shape, dtype=self.dtype)

        for c, d in six.iteritems(self.data):
            result[c] = d

        return result