/usr/lib/python3/dist-packages/sparse/dok.py is in python3-sparse 0.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | import six
import numpy as np
# Zip with Python 2/3 compat
# Consumes less memory than Py2 zip
from six.moves import zip, range
from numbers import Integral
from collections import Iterable
from .slicing import normalize_index
from .utils import _zero_of_dtype
try: # Windows compatibility
int = long
except NameError:
pass
class DOK(object):
"""
A class for building sparse multidimensional arrays.
Parameters
----------
shape : tuple[int]
The shape of the array
data : dict, optional
The key-value pairs for the data in this array.
dtype : np.dtype, optional
The data type of this array. If left empty, it is inferred from
the first element.
Attributes
----------
dtype : numpy.dtype
The datatype of this array. Can be :code:`None` if no elements
have been set yet.
shape : tuple[int]
The shape of this array.
data : dict
The keys of this dictionary contain all the indices and the values
contain the nonzero entries.
See Also
--------
COO : A read-only sparse array.
Examples
--------
You can create :obj:`DOK` objects from Numpy arrays.
>>> x = np.eye(5, dtype=np.uint8)
>>> x[2, 3] = 5
>>> s = DOK.from_numpy(x)
>>> s
<DOK: shape=(5, 5), dtype=uint8, nnz=6>
You can also create them from just shapes, and use slicing assignment.
>>> s2 = DOK((5, 5), dtype=np.int64)
>>> s2[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s2
<DOK: shape=(5, 5), dtype=int64, nnz=4>
You can convert :obj:`DOK` arrays to :obj:`COO` arrays, or :obj:`numpy.ndarray`
objects.
>>> from sparse import COO
>>> s3 = COO(s2)
>>> s3
<COO: shape=(5, 5), dtype=int64, nnz=4, sorted=False, duplicates=False>
>>> s2.todense() # doctest: +NORMALIZE_WHITESPACE
array([[0, 0, 0, 0, 0],
[0, 4, 5, 0, 0],
[0, 6, 7, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> s4 = COO.from_numpy(np.eye(4, dtype=np.uint8))
>>> s4
<COO: shape=(4, 4), dtype=uint8, nnz=4, sorted=True, duplicates=False>
>>> s5 = DOK.from_coo(s4)
>>> s5
<DOK: shape=(4, 4), dtype=uint8, nnz=4>
You can also create :obj:`DOK` arrays from a shape and a dict of
values. Zeros are automatically ignored.
>>> values = {
... (1, 2, 3): 4,
... (3, 2, 1): 0,
... }
>>> s6 = DOK((5, 5, 5), values)
>>> s6
<DOK: shape=(5, 5, 5), dtype=int64, nnz=1>
"""
def __init__(self, shape, data=None, dtype=None):
from .coo import COO
self.data = {}
if isinstance(shape, COO):
ar = DOK.from_coo(shape)
self.shape = ar.shape
self.dtype = ar.dtype
self.data = ar.data
return
if isinstance(shape, np.ndarray):
ar = DOK.from_numpy(shape)
self.shape = ar.shape
self.dtype = ar.dtype
self.data = ar.data
return
self.dtype = np.dtype(dtype)
if isinstance(shape, Integral):
self.shape = (int(shape),)
elif isinstance(shape, Iterable):
if not all(isinstance(l, Integral) or int(l) < 0 for l in shape):
raise ValueError('shape must be an iterable of non-negative integers.')
self.shape = tuple(shape)
if not data:
data = {}
if isinstance(data, dict):
if not dtype:
if not len(data):
self.dtype = np.dtype('float64')
else:
self.dtype = np.result_type(*map(lambda x: np.asarray(x).dtype, six.itervalues(data)))
for c, d in six.iteritems(data):
self[c] = d
else:
raise ValueError('data must be a dict.')
@classmethod
def from_coo(cls, x):
"""
Get a :obj:`DOK` array from a :obj:`COO` array.
Parameters
----------
x : COO
The array to convert.
Returns
-------
DOK
The equivalent :obj:`DOK` array.
Examples
--------
>>> from sparse import COO
>>> s = COO.from_numpy(np.eye(4))
>>> s2 = DOK.from_coo(s)
>>> s2
<DOK: shape=(4, 4), dtype=float64, nnz=4>
"""
ar = cls(x.shape, dtype=x.dtype)
for c, d in zip(x.coords.T, x.data):
ar.data[tuple(c)] = d
return ar
def to_coo(self):
"""
Convert this :obj:`DOK` array to a :obj:`COO` array.
Returns
-------
COO
The equivalent :obj:`COO` array.
Examples
--------
>>> s = DOK((5, 5))
>>> s[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s
<DOK: shape=(5, 5), dtype=float64, nnz=4>
>>> s2 = s.to_coo()
>>> s2
<COO: shape=(5, 5), dtype=float64, nnz=4, sorted=False, duplicates=False>
"""
from .coo import COO
return COO(self)
@classmethod
def from_numpy(cls, x):
"""
Get a :obj:`DOK` array from a Numpy array.
Parameters
----------
x : np.ndarray
The array to convert.
Returns
-------
DOK
The equivalent :obj:`DOK` array.
Examples
--------
>>> s = DOK.from_numpy(np.eye(4))
>>> s
<DOK: shape=(4, 4), dtype=float64, nnz=4>
"""
ar = cls(x.shape, dtype=x.dtype)
coords = np.nonzero(x)
data = x[coords]
for c in zip(data, *coords):
d, c = c[0], c[1:]
ar.data[c] = d
return ar
@property
def ndim(self):
"""
The number of dimensions in this array.
Returns
-------
int
The number of dimensions.
See Also
--------
COO.ndim : Equivalent property for :obj:`COO` arrays.
numpy.ndarray.ndim : Numpy equivalent property.
Examples
--------
>>> s = DOK((1, 2, 3))
>>> s.ndim
3
"""
return len(self.shape)
@property
def nnz(self):
"""
The number of nonzero elements in this array.
Returns
-------
int
The number of nonzero elements.
See Also
--------
COO.nnz : Equivalent :obj:`COO` array property.
numpy.count_nonzero : A similar Numpy function.
scipy.sparse.dok_matrix.nnz : The Scipy equivalent property.
Examples
--------
>>> values = {
... (1, 2, 3): 4,
... (3, 2, 1): 0,
... }
>>> s = DOK((5, 5, 5), values)
>>> s.nnz
1
"""
return len(self.data)
def __getitem__(self, key):
key = normalize_index(key, self.shape)
if not all(isinstance(i, Integral) for i in key):
raise NotImplementedError('All indices must be integers'
' when getting an item.')
if len(key) != self.ndim:
raise NotImplementedError('Can only get single elements. '
'Expected key of length %d, got %s'
% (self.ndim, str(key)))
key = tuple(int(k) for k in key)
if key in self.data:
return self.data[key]
else:
return _zero_of_dtype(self.dtype)[()]
def __setitem__(self, key, value):
key = normalize_index(key, self.shape)
value = np.asanyarray(value)
value = value.astype(self.dtype)
key_list = [int(k) if isinstance(k, Integral) else k for k in key]
self._setitem(key_list, value)
def _setitem(self, key_list, value):
value_missing_dims = len([ind for ind in key_list if isinstance(ind, slice)]) - value.ndim
if value_missing_dims < 0:
raise ValueError('setting an array element with a sequence.')
for i, ind in enumerate(key_list):
if isinstance(ind, slice):
step = ind.step if ind.step is not None else 1
if step > 0:
start = ind.start if ind.start is not None else 0
start = max(start, 0)
stop = ind.stop if ind.stop is not None else self.shape[i]
stop = min(stop, self.shape[i])
if start > stop:
start = stop
else:
start = ind.start or self.shape[i] - 1
stop = ind.stop if ind.stop is not None else -1
start = min(start, self.shape[i] - 1)
stop = max(stop, -1)
if start < stop:
start = stop
key_list_temp = key_list[:]
for v_idx, ki in enumerate(range(start, stop, step)):
key_list_temp[i] = ki
vi = value if value_missing_dims > 0 else \
(value[0] if value.shape[0] == 1 else value[v_idx])
self._setitem(key_list_temp, vi)
return
elif not isinstance(ind, Integral):
raise IndexError('All indices must be slices or integers'
' when setting an item.')
if value != _zero_of_dtype(self.dtype):
self.data[tuple(key_list)] = value[()]
def __str__(self):
return "<DOK: shape=%s, dtype=%s, nnz=%d>" % (self.shape, self.dtype, self.nnz)
__repr__ = __str__
def todense(self):
"""
Convert this :obj:`DOK` array into a Numpy array.
Returns
-------
numpy.ndarray
The equivalent dense array.
See Also
--------
COO.todense : Equivalent :obj:`COO` array method.
scipy.sparse.dok_matrix.todense : Equivalent Scipy method.
Examples
--------
>>> s = DOK((5, 5))
>>> s[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s.todense() # doctest: +SKIP
array([[0., 0., 0., 0., 0.],
[0., 4., 5., 0., 0.],
[0., 6., 7., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
"""
result = np.zeros(self.shape, dtype=self.dtype)
for c, d in six.iteritems(self.data):
result[c] = d
return result
|