This file is indexed.

/usr/lib/python3/dist-packages/sparse/coo.py is in python3-sparse 0.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
from __future__ import absolute_import, division, print_function

from collections import Iterable, defaultdict, deque
from functools import reduce, partial
import numbers
import operator

import numpy as np
import scipy.sparse

from .slicing import normalize_index
from .utils import _zero_of_dtype

# zip_longest with Python 2/3 compat
from six.moves import range, zip_longest

try:  # Windows compatibility
    int = long
except NameError:
    pass


class COO(object):
    """
    A sparse multidimensional array.

    This is stored in COO format.  It depends on NumPy and Scipy.sparse for
    computation, but supports arrays of arbitrary dimension.

    Parameters
    ----------
    coords : numpy.ndarray (COO.ndim, COO.nnz)
        An array holding the index locations of every value
        Should have shape (number of dimensions, number of non-zeros)
    data : numpy.ndarray (COO.nnz,)
        An array of Values
    shape : tuple[int] (COO.ndim,), optional
        The shape of the array
    has_duplicates : bool, optional
        A value indicating whether the supplied value for :code:`coords` has
        duplicates. Note that setting this to `False` when :code:`coords` does have
        duplicates may result in undefined behaviour. See :obj:`COO.sum_duplicates`
    sorted : bool, optional
        A value indicating whether the values in `coords` are sorted. Note
        that setting this to `False` when :code:`coords` isn't sorted may
        result in undefined behaviour. See :obj:`COO.sort_indices`.
    cache : bool, optional
        Whether to enable cacheing for various operations. See
        :obj:`COO.enable_caching`

    Attributes
    ----------
    coords : numpy.ndarray (ndim, nnz)
        An array holding the coordinates of every nonzero element.
    data : numpy.ndarray (nnz,)
        An array holding the values corresponding to :obj:`COO.coords`.
    shape : tuple[int] (ndim,)
        The dimensions of this array.

    See Also
    --------
    DOK : A mostly write-only sparse array.

    Examples
    --------
    You can create :obj:`COO` objects from Numpy arrays.

    >>> x = np.eye(4, dtype=np.uint8)
    >>> x[2, 3] = 5
    >>> s = COO.from_numpy(x)
    >>> s
    <COO: shape=(4, 4), dtype=uint8, nnz=5, sorted=True, duplicates=False>
    >>> s.data  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 1, 5, 1], dtype=uint8)
    >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 1, 2, 2, 3],
           [0, 1, 2, 3, 3]], dtype=uint8)

    :obj:`COO` objects support basic arithmetic and binary operations.

    >>> x2 = np.eye(4, dtype=np.uint8)
    >>> x2[3, 2] = 5
    >>> s2 = COO.from_numpy(x2)
    >>> (s + s2).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[2, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 2, 5],
           [0, 0, 5, 2]], dtype=uint8)
    >>> (s * s2).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[1, 0, 0, 0],
           [0, 1, 0, 0],
           [0, 0, 1, 0],
           [0, 0, 0, 1]], dtype=uint8)

    Binary operations support broadcasting.

    >>> x3 = np.zeros((4, 1), dtype=np.uint8)
    >>> x3[2, 0] = 1
    >>> s3 = COO.from_numpy(x3)
    >>> (s * s3).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 1, 5],
           [0, 0, 0, 0]], dtype=uint8)

    :obj:`COO` objects also support dot products and reductions.

    >>> s.dot(s.T).sum(axis=0).todense()   # doctest: +NORMALIZE_WHITESPACE
    array([ 1,  1, 31,  6], dtype=uint64)

    You can use Numpy :code:`ufunc` operations on :obj:`COO` arrays as well.

    >>> np.sum(s, axis=1).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 6, 1], dtype=uint64)
    >>> np.round(np.sqrt(s, dtype=np.float64), decimals=1).todense()   # doctest: +SKIP
    array([[ 1. ,  0. ,  0. ,  0. ],
           [ 0. ,  1. ,  0. ,  0. ],
           [ 0. ,  0. ,  1. ,  2.2],
           [ 0. ,  0. ,  0. ,  1. ]])

    Operations that will result in a dense array will raise a :obj:`ValueError`,
    such as the following.

    >>> np.exp(s)
    Traceback (most recent call last):
        ...
    ValueError: Performing this operation would produce a dense result: <ufunc 'exp'>

    You can also create :obj:`COO` arrays from coordinates and data.

    >>> coords = [[0, 0, 0, 1, 1],
    ...           [0, 1, 2, 0, 3],
    ...           [0, 3, 2, 0, 1]]
    >>> data = [1, 2, 3, 4, 5]
    >>> s4 = COO(coords, data, shape=(3, 4, 5))
    >>> s4
    <COO: shape=(3, 4, 5), dtype=int64, nnz=5, sorted=False, duplicates=True>

    Following scipy.sparse conventions you can also pass these as a tuple with
    rows and columns

    >>> rows = [0, 1, 2, 3, 4]
    >>> cols = [0, 0, 0, 1, 1]
    >>> data = [10, 20, 30, 40, 50]
    >>> z = COO((data, (rows, cols)))
    >>> z.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[10,  0],
           [20,  0],
           [30,  0],
           [ 0, 40],
           [ 0, 50]])

    You can also pass a dictionary or iterable of index/value pairs. Repeated
    indices imply summation:

    >>> d = {(0, 0, 0): 1, (1, 2, 3): 2, (1, 1, 0): 3}
    >>> COO(d)
    <COO: shape=(2, 3, 4), dtype=int64, nnz=3, sorted=False, duplicates=False>
    >>> L = [((0, 0), 1),
    ...      ((1, 1), 2),
    ...      ((0, 0), 3)]
    >>> COO(L).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[4, 0],
           [0, 2]])

    You can convert :obj:`DOK` arrays to :obj:`COO` arrays.

    >>> from sparse import DOK
    >>> s5 = DOK((5, 5), dtype=np.int64)
    >>> s5[1:3, 1:3] = [[4, 5], [6, 7]]
    >>> s5
    <DOK: shape=(5, 5), dtype=int64, nnz=4>
    >>> s6 = COO(s5)
    >>> s6
    <COO: shape=(5, 5), dtype=int64, nnz=4, sorted=False, duplicates=False>
    >>> s6.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0, 0, 0],
           [0, 4, 5, 0, 0],
           [0, 6, 7, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    """
    __array_priority__ = 12

    def __init__(self, coords, data=None, shape=None, has_duplicates=True,
                 sorted=False, cache=False):
        self._cache = None
        if cache:
            self.enable_caching()
        if data is None:
            from .dok import DOK

            if isinstance(coords, COO):
                self.coords = coords.coords
                self.data = coords.data
                self.has_duplicates = coords.has_duplicates
                self.sorted = coords.sorted
                self.shape = coords.shape
                return

            if isinstance(coords, DOK):
                shape = coords.shape
                coords = coords.data

            # {(i, j, k): x, (i, j, k): y, ...}
            if isinstance(coords, dict):
                coords = list(coords.items())
                has_duplicates = False

            if isinstance(coords, np.ndarray):
                result = COO.from_numpy(coords)
                self.coords = result.coords
                self.data = result.data
                self.has_duplicates = result.has_duplicates
                self.sorted = result.sorted
                self.shape = result.shape
                return

            if isinstance(coords, scipy.sparse.spmatrix):
                result = COO.from_scipy_sparse(coords)
                self.coords = result.coords
                self.data = result.data
                self.has_duplicates = result.has_duplicates
                self.sorted = result.sorted
                self.shape = result.shape
                return

            # []
            if not coords:
                data = []
                coords = []

            # [((i, j, k), value), (i, j, k), value), ...]
            elif isinstance(coords[0][0], Iterable):
                if coords:
                    assert len(coords[0]) == 2
                data = [x[1] for x in coords]
                coords = [x[0] for x in coords]
                coords = np.asarray(coords).T

            # (data, (row, col, slab, ...))
            else:
                data = coords[0]
                coords = np.stack(coords[1], axis=0)

        self.data = np.asarray(data)
        self.coords = np.asarray(coords)
        if self.coords.ndim == 1:
            self.coords = self.coords[None, :]

        if shape and not self.coords.size:
            self.coords = np.zeros((len(shape), 0), dtype=np.uint64)

        if shape is None:
            if self.coords.nbytes:
                shape = tuple((self.coords.max(axis=1) + 1).tolist())
            else:
                shape = ()

        if isinstance(shape, numbers.Integral):
            shape = (int(shape),)

        self.shape = tuple(shape)
        if self.shape:
            dtype = np.min_scalar_type(max(self.shape))
        else:
            dtype = np.int_
        self.coords = self.coords.astype(dtype)
        assert not self.shape or len(data) == self.coords.shape[1]
        self.has_duplicates = has_duplicates
        self.sorted = sorted

    def enable_caching(self):
        """ Enable caching of reshape, transpose, and tocsr/csc operations

        This enables efficient iterative workflows that make heavy use of
        csr/csc operations, such as tensordot.  This maintains a cache of
        recent results of reshape and transpose so that operations like
        tensordot (which uses both internally) store efficiently stored
        representations for repeated use.  This can significantly cut down on
        computational costs in common numeric algorithms.

        However, this also assumes that neither this object, nor the downstream
        objects will have their data mutated.

        Examples
        --------
        >>> s.enable_caching()  # doctest: +SKIP
        >>> csr1 = s.transpose((2, 0, 1)).reshape((100, 120)).tocsr()  # doctest: +SKIP
        >>> csr2 = s.transpose((2, 0, 1)).reshape((100, 120)).tocsr()  # doctest: +SKIP
        >>> csr1 is csr2  # doctest: +SKIP
        True
        """
        self._cache = defaultdict(lambda: deque(maxlen=3))
        return self

    @classmethod
    def from_numpy(cls, x):
        """
        Convert the given :obj:`numpy.ndarray` to a :obj:`COO` object.

        Parameters
        ----------
        x : np.ndarray
            The dense array to convert.

        Returns
        -------
        COO
            The converted COO array.

        Examples
        --------
        >>> x = np.eye(5)
        >>> s = COO.from_numpy(x)
        >>> s
        <COO: shape=(5, 5), dtype=float64, nnz=5, sorted=True, duplicates=False>
        """
        x = np.asanyarray(x)
        if x.shape:
            coords = np.where(x)
            data = x[coords]
            coords = np.vstack(coords)
        else:
            coords = np.empty((0, 1), dtype=np.uint8)
            data = np.array(x, ndmin=1)
        return cls(coords, data, shape=x.shape, has_duplicates=False,
                   sorted=True)

    def todense(self):
        """
        Convert this :obj:`COO` array to a dense :obj:`numpy.ndarray`. Note that
        this may take a large amount of memory if the :obj:`COO` object's :code:`shape`
        is large.

        Returns
        -------
        numpy.ndarray
            The converted dense array.

        See Also
        --------
        DOK.todense : Equivalent :obj:`DOK` array method.
        scipy.sparse.coo_matrix.todense : Equivalent Scipy method.

        Examples
        --------
        >>> x = np.random.randint(100, size=(7, 3))
        >>> s = COO.from_numpy(x)
        >>> x2 = s.todense()
        >>> np.array_equal(x, x2)
        True
        """
        self.sum_duplicates()
        x = np.zeros(shape=self.shape, dtype=self.dtype)

        coords = tuple([self.coords[i, :] for i in range(self.ndim)])
        data = self.data

        if coords != ():
            x[coords] = data
        else:
            if len(data) != 0:
                x[coords] = data

        return x

    @classmethod
    def from_scipy_sparse(cls, x):
        """
        Construct a :obj:`COO` array from a :obj:`scipy.sparse.spmatrix`

        Parameters
        ----------
        x : scipy.sparse.spmatrix
            The sparse matrix to construct the array from.

        Returns
        -------
        COO
            The converted :obj:`COO` object.

        Examples
        --------
        >>> x = scipy.sparse.rand(6, 3, density=0.2)
        >>> s = COO.from_scipy_sparse(x)
        >>> np.array_equal(x.todense(), s.todense())
        True
        """
        x = scipy.sparse.coo_matrix(x)
        coords = np.empty((2, x.nnz), dtype=x.row.dtype)
        coords[0, :] = x.row
        coords[1, :] = x.col
        return COO(coords, x.data, shape=x.shape,
                   has_duplicates=not x.has_canonical_format,
                   sorted=x.has_canonical_format)

    @property
    def dtype(self):
        """
        The datatype of this array.

        Returns
        -------
        numpy.dtype
            The datatype of this array.

        See Also
        --------
        numpy.ndarray.dtype : Numpy equivalent property.
        scipy.sparse.coo_matrix.dtype : Scipy equivalent property.

        Examples
        --------
        >>> x = (200 * np.random.rand(5, 4)).astype(np.int32)
        >>> s = COO.from_numpy(x)
        >>> s.dtype
        dtype('int32')
        >>> x.dtype == s.dtype
        True
        """
        return self.data.dtype

    @property
    def ndim(self):
        """
        The number of dimensions of this array.

        Returns
        -------
        int
            The number of dimensions of this array.

        See Also
        --------
        DOK.ndim : Equivalent property for :obj:`DOK` arrays.
        numpy.ndarray.ndim : Numpy equivalent property.

        Examples
        --------
        >>> x = np.random.rand(1, 2, 3, 1, 2)
        >>> s = COO.from_numpy(x)
        >>> s.ndim
        5
        >>> s.ndim == x.ndim
        True
        """
        return len(self.shape)

    @property
    def nnz(self):
        """
        The number of nonzero elements in this array. Note that any duplicates in
        :code:`coords` are counted multiple times. To avoid this, call :obj:`COO.sum_duplicates`.

        Returns
        -------
        int
            The number of nonzero elements in this array.

        See Also
        --------
        DOK.nnz : Equivalent :obj:`DOK` array property.
        numpy.count_nonzero : A similar Numpy function.
        scipy.sparse.coo_matrix.nnz : The Scipy equivalent property.

        Examples
        --------
        >>> x = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0])
        >>> np.count_nonzero(x)
        6
        >>> s = COO.from_numpy(x)
        >>> s.nnz
        6
        >>> np.count_nonzero(x) == s.nnz
        True
        """
        return self.coords.shape[1]

    @property
    def nbytes(self):
        """
        The number of bytes taken up by this object. Note that for small arrays,
        this may undercount the number of bytes due to the large constant overhead.

        Returns
        -------
        int
            The approximate bytes of memory taken by this object.

        See Also
        --------
        numpy.ndarray.nbytes : The equivalent Numpy property.

        Examples
        --------
        >>> data = np.arange(6, dtype=np.uint8)
        >>> coords = np.random.randint(1000, size=(3, 6), dtype=np.uint16)
        >>> s = COO(coords, data, shape=(1000, 1000, 1000))
        >>> s.nbytes
        42
        """
        return self.data.nbytes + self.coords.nbytes

    def __len__(self):
        """
        Get "length" of array, which is by definition the size of the first
        dimension.

        Returns
        -------
        int
            The size of the first dimension.

        See Also
        --------
        numpy.ndarray.__len__ : Numpy equivalent property.

        Examples
        --------
        >>> x = np.zeros((10, 10))
        >>> s = COO.from_numpy(x)
        >>> len(s)
        10
        """
        return self.shape[0]

    @property
    def size(self):
        """
        The number of all elements (including zeros) in this array.

        Returns
        -------
        int
            The number of elements.

        See Also
        --------
        numpy.ndarray.size : Numpy equivalent property.

        Examples
        --------
        >>> x = np.zeros((10, 10))
        >>> s = COO.from_numpy(x)
        >>> s.size
        100
        """
        return np.prod(self.shape)

    @property
    def density(self):
        """
        The ratio of nonzero to all elements in this array.

        Returns
        -------
        float
            The ratio of nonzero to all elements.

        See Also
        --------
        COO.size : Number of elements.
        COO.nnz : Number of nonzero elements.

        Examples
        --------
        >>> x = np.zeros((8, 8))
        >>> x[0, :] = 1
        >>> s = COO.from_numpy(x)
        >>> s.density
        0.125
        """
        return self.nnz / self.size

    def __sizeof__(self):
        return self.nbytes

    def __getitem__(self, index):
        if not isinstance(index, tuple):
            if isinstance(index, str):
                data = self.data[index]
                idx = np.where(data)
                coords = list(self.coords[:, idx[0]])
                coords.extend(idx[1:])

                return COO(coords, data[idx].flatten(),
                           shape=self.shape + self.data.dtype[index].shape,
                           has_duplicates=self.has_duplicates,
                           sorted=self.sorted)
            else:
                index = (index,)

        last_ellipsis = len(index) > 0 and index[-1] is Ellipsis
        index = normalize_index(index, self.shape)
        if len(index) != 0 and all(not isinstance(ind, Iterable) and ind == slice(None) for ind in index):
            return self
        mask = np.ones(self.nnz, dtype=np.bool)
        for i, ind in enumerate([i for i in index if i is not None]):
            if not isinstance(ind, Iterable) and ind == slice(None):
                continue
            mask &= _mask(self.coords[i], ind, self.shape[i])

        n = mask.sum()
        coords = []
        shape = []
        i = 0
        for ind in index:
            if isinstance(ind, numbers.Integral):
                i += 1
                continue
            elif isinstance(ind, slice):
                step = ind.step if ind.step is not None else 1
                if step > 0:
                    start = ind.start if ind.start is not None else 0
                    start = max(start, 0)
                    stop = ind.stop if ind.stop is not None else self.shape[i]
                    stop = min(stop, self.shape[i])
                    if start > stop:
                        start = stop
                    shape.append((stop - start + step - 1) // step)
                else:
                    start = ind.start or self.shape[i] - 1
                    stop = ind.stop if ind.stop is not None else -1
                    start = min(start, self.shape[i] - 1)
                    stop = max(stop, -1)
                    if start < stop:
                        start = stop
                    shape.append((start - stop - step - 1) // (-step))

                dt = np.min_scalar_type(min(-(dim - 1) if dim != 0 else -1 for dim in shape))
                coords.append((self.coords[i, mask].astype(dt) - start) // step)
                i += 1
            elif isinstance(ind, Iterable):
                old = self.coords[i][mask]
                new = np.empty(shape=old.shape, dtype=old.dtype)
                for j, item in enumerate(ind):
                    new[old == item] = j
                coords.append(new)
                shape.append(len(ind))
                i += 1
            elif ind is None:
                coords.append(np.zeros(n))
                shape.append(1)

        for j in range(i, self.ndim):
            coords.append(self.coords[j][mask])
            shape.append(self.shape[j])

        if coords:
            coords = np.stack(coords, axis=0)
        else:
            if last_ellipsis:
                coords = np.empty((0, np.sum(mask)), dtype=np.uint8)
            else:
                if np.sum(mask) != 0:
                    return self.data[mask][0]
                else:
                    return _zero_of_dtype(self.dtype)[()]
        shape = tuple(shape)
        data = self.data[mask]

        return COO(coords, data, shape=shape,
                   has_duplicates=self.has_duplicates,
                   sorted=self.sorted)

    def __str__(self):
        return "<COO: shape=%s, dtype=%s, nnz=%d, sorted=%s, duplicates=%s>" % (
            self.shape, self.dtype, self.nnz, self.sorted,
            self.has_duplicates)

    __repr__ = __str__

    @staticmethod
    def _reduce(method, *args, **kwargs):
        assert len(args) == 1

        self = args[0]
        if isinstance(self, scipy.sparse.spmatrix):
            self = COO.from_scipy_sparse(self)

        return self.reduce(method, **kwargs)

    def reduce(self, method, axis=None, keepdims=False, **kwargs):
        """
        Performs a reduction operation on this array.

        Parameters
        ----------
        method : numpy.ufunc
            The method to use for performing the reduction.
        axis : Union[int, Iterable[int]], optional
            The axes along which to perform the reduction. Uses all axes by default.
        keepdims : bool, optional
            Whether or not to keep the dimensions of the original array.
        kwargs : dict
            Any extra arguments to pass to the reduction operation.

        Returns
        -------
        COO
            The result of the reduction operation.

        Raises
        ------
        ValueError
            If reducing an all-zero axis would produce a nonzero result.

        Notes
        -----
        This function internally calls :obj:`COO.sum_duplicates` to bring the array into
        canonical form.

        See Also
        --------
        numpy.ufunc.reduce : A similar Numpy method.

        Examples
        --------
        You can use the :obj:`COO.reduce` method to apply a reduction operation to
        any Numpy :code:`ufunc`.

        >>> x = np.ones((5, 5), dtype=np.int)
        >>> s = COO.from_numpy(x)
        >>> s2 = s.reduce(np.add, axis=1)
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([5, 5, 5, 5, 5])

        You can also use the :code:`keepdims` argument to keep the dimensions after the
        reduction.

        >>> s3 = s.reduce(np.add, axis=1, keepdims=True)
        >>> s3.shape
        (5, 1)

        You can also pass in any keyword argument that :obj:`numpy.ufunc.reduce` supports.
        For example, :code:`dtype`. Note that :code:`out` isn't supported.

        >>> s4 = s.reduce(np.add, axis=1, dtype=np.float16)
        >>> s4.dtype
        dtype('float16')

        By default, this reduces the array down to one number, reducing along all axes.

        >>> s.reduce(np.add)
        25
        """
        zero_reduce_result = method.reduce([_zero_of_dtype(self.dtype)], **kwargs)

        if zero_reduce_result != _zero_of_dtype(np.dtype(zero_reduce_result)):
            raise ValueError("Performing this reduction operation would produce "
                             "a dense result: %s" % str(method))

        # Needed for more esoteric reductions like product.
        self.sum_duplicates()

        if axis is None:
            axis = tuple(range(self.ndim))

        if not isinstance(axis, tuple):
            axis = (axis,)

        if set(axis) == set(range(self.ndim)):
            result = method.reduce(self.data, **kwargs)
            if self.nnz != self.size:
                result = method(result, _zero_of_dtype(self.dtype)[()], **kwargs)
        else:
            axis = tuple(axis)
            neg_axis = tuple(ax for ax in range(self.ndim) if ax not in axis)

            a = self.transpose(neg_axis + axis)
            a = a.reshape((np.prod([self.shape[d] for d in neg_axis]),
                           np.prod([self.shape[d] for d in axis])))
            a.sort_indices()

            result, inv_idx, counts = _grouped_reduce(a.data, a.coords[0], method, **kwargs)
            missing_counts = counts != a.shape[1]
            result[missing_counts] = method(result[missing_counts],
                                            _zero_of_dtype(self.dtype), **kwargs)
            coords = a.coords[0:1, inv_idx]
            a = COO(coords, result, shape=(a.shape[0],),
                    has_duplicates=False, sorted=True)

            a = a.reshape([self.shape[d] for d in neg_axis])
            result = a

        if keepdims:
            result = _keepdims(self, result, axis)
        return result

    def sum(self, axis=None, keepdims=False, dtype=None, out=None):
        """
        Performs a sum operation along the given axes. Uses all axes by default.

        Parameters
        ----------
        axis : Union[int, Iterable[int]], optional
            The axes along which to sum. Uses all axes by default.
        keepdims : bool, optional
            Whether or not to keep the dimensions of the original array.
        dtype: numpy.dtype
            The data type of the output array.

        Returns
        -------
        COO
            The reduced output sparse array.

        See Also
        --------
        :obj:`numpy.sum` : Equivalent numpy function.
        scipy.sparse.coo_matrix.sum : Equivalent Scipy function.

        Notes
        -----
        * This function internally calls :obj:`COO.sum_duplicates` to bring the array into
          canonical form.
        * The :code:`out` parameter is provided just for compatibility with Numpy and
          isn't actually supported.

        Examples
        --------
        You can use :obj:`COO.sum` to sum an array across any dimension.

        >>> x = np.ones((5, 5), dtype=np.int)
        >>> s = COO.from_numpy(x)
        >>> s2 = s.sum(axis=1)
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([5, 5, 5, 5, 5])

        You can also use the :code:`keepdims` argument to keep the dimensions after the
        sum.

        >>> s3 = s.sum(axis=1, keepdims=True)
        >>> s3.shape
        (5, 1)

        You can pass in an output datatype, if needed.

        >>> s4 = s.sum(axis=1, dtype=np.float16)
        >>> s4.dtype
        dtype('float16')

        By default, this reduces the array down to one number, summing along all axes.

        >>> s.sum()
        25
        """
        assert out is None
        return self.reduce(np.add, axis=axis, keepdims=keepdims, dtype=dtype)

    def max(self, axis=None, keepdims=False, out=None):
        """
        Maximize along the given axes. Uses all axes by default.

        Parameters
        ----------
        axis : Union[int, Iterable[int]], optional
            The axes along which to maximize. Uses all axes by default.
        keepdims : bool, optional
            Whether or not to keep the dimensions of the original array.
        dtype: numpy.dtype
            The data type of the output array.

        Returns
        -------
        COO
            The reduced output sparse array.

        See Also
        --------
        :obj:`numpy.max` : Equivalent numpy function.
        scipy.sparse.coo_matrix.max : Equivalent Scipy function.

        Notes
        -----
        * This function internally calls :obj:`COO.sum_duplicates` to bring the array into
          canonical form.
        * The :code:`out` parameter is provided just for compatibility with Numpy and
          isn't actually supported.

        Examples
        --------
        You can use :obj:`COO.max` to maximize an array across any dimension.

        >>> x = np.add.outer(np.arange(5), np.arange(5))
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2, 3, 4],
               [1, 2, 3, 4, 5],
               [2, 3, 4, 5, 6],
               [3, 4, 5, 6, 7],
               [4, 5, 6, 7, 8]])
        >>> s = COO.from_numpy(x)
        >>> s2 = s.max(axis=1)
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([4, 5, 6, 7, 8])

        You can also use the :code:`keepdims` argument to keep the dimensions after the
        maximization.

        >>> s3 = s.max(axis=1, keepdims=True)
        >>> s3.shape
        (5, 1)

        By default, this reduces the array down to one number, maximizing along all axes.

        >>> s.max()
        8
        """
        assert out is None
        return self.reduce(np.maximum, axis=axis, keepdims=keepdims)

    def min(self, axis=None, keepdims=False, out=None):
        """
        Minimize along the given axes. Uses all axes by default.

        Parameters
        ----------
        axis : Union[int, Iterable[int]], optional
            The axes along which to minimize. Uses all axes by default.
        keepdims : bool, optional
            Whether or not to keep the dimensions of the original array.
        dtype: numpy.dtype
            The data type of the output array.

        Returns
        -------
        COO
            The reduced output sparse array.

        See Also
        --------
        :obj:`numpy.min` : Equivalent numpy function.
        scipy.sparse.coo_matrix.min : Equivalent Scipy function.

        Notes
        -----
        * This function internally calls :obj:`COO.sum_duplicates` to bring the array into
          canonical form.
        * The :code:`out` parameter is provided just for compatibility with Numpy and
          isn't actually supported.

        Examples
        --------
        You can use :obj:`COO.min` to minimize an array across any dimension.

        >>> x = np.add.outer(np.arange(5), np.arange(5))
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2, 3, 4],
               [1, 2, 3, 4, 5],
               [2, 3, 4, 5, 6],
               [3, 4, 5, 6, 7],
               [4, 5, 6, 7, 8]])
        >>> s = COO.from_numpy(x)
        >>> s2 = s.min(axis=1)
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([0, 1, 2, 3, 4])

        You can also use the :code:`keepdims` argument to keep the dimensions after the
        minimization.

        >>> s3 = s.min(axis=1, keepdims=True)
        >>> s3.shape
        (5, 1)

        By default, this reduces the array down to one number, minimizing along all axes.

        >>> s.min()
        0
        """
        assert out is None
        return self.reduce(np.minimum, axis=axis, keepdims=keepdims)

    def prod(self, axis=None, keepdims=False, dtype=None, out=None):
        """
        Performs a product operation along the given axes. Uses all axes by default.

        Parameters
        ----------
        axis : Union[int, Iterable[int]], optional
            The axes along which to multiply. Uses all axes by default.
        keepdims : bool, optional
            Whether or not to keep the dimensions of the original array.
        dtype: numpy.dtype
            The data type of the output array.

        Returns
        -------
        COO
            The reduced output sparse array.

        See Also
        --------
        :obj:`numpy.prod` : Equivalent numpy function.

        Notes
        -----
        * This function internally calls :obj:`COO.sum_duplicates` to bring the array into
          canonical form.
        * The :code:`out` parameter is provided just for compatibility with Numpy and
          isn't actually supported.

        Examples
        --------
        You can use :obj:`COO.prod` to multiply an array across any dimension.

        >>> x = np.add.outer(np.arange(5), np.arange(5))
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2, 3, 4],
               [1, 2, 3, 4, 5],
               [2, 3, 4, 5, 6],
               [3, 4, 5, 6, 7],
               [4, 5, 6, 7, 8]])
        >>> s = COO.from_numpy(x)
        >>> s2 = s.prod(axis=1)
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([   0,  120,  720, 2520, 6720])

        You can also use the :code:`keepdims` argument to keep the dimensions after the
        reduction.

        >>> s3 = s.prod(axis=1, keepdims=True)
        >>> s3.shape
        (5, 1)

        You can pass in an output datatype, if needed.

        >>> s4 = s.prod(axis=1, dtype=np.float16)
        >>> s4.dtype
        dtype('float16')

        By default, this reduces the array down to one number, multiplying along all axes.

        >>> s.prod()
        0
        """
        assert out is None
        return self.reduce(np.multiply, axis=axis, keepdims=keepdims, dtype=dtype)

    def transpose(self, axes=None):
        """
        Returns a new array which has the order of the axes switched.

        Parameters
        ----------
        axes : Iterable[int], optional
            The new order of the axes compared to the previous one. Reverses the axes
            by default.

        Returns
        -------
        COO
            The new array with the axes in the desired order.

        See Also
        --------
        :obj:`COO.T` : A quick property to reverse the order of the axes.
        numpy.ndarray.transpose : Numpy equivalent function.

        Examples
        --------
        We can change the order of the dimensions of any :obj:`COO` array with this
        function.

        >>> x = np.add.outer(np.arange(5), np.arange(5)[::-1])
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 3, 2, 1, 0],
               [5, 4, 3, 2, 1],
               [6, 5, 4, 3, 2],
               [7, 6, 5, 4, 3],
               [8, 7, 6, 5, 4]])
        >>> s = COO.from_numpy(x)
        >>> s.transpose((1, 0)).todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 5, 6, 7, 8],
               [3, 4, 5, 6, 7],
               [2, 3, 4, 5, 6],
               [1, 2, 3, 4, 5],
               [0, 1, 2, 3, 4]])

        Note that by default, this reverses the order of the axes rather than switching
        the last and second-to-last axes as required by some linear algebra operations.

        >>> x = np.random.rand(2, 3, 4)
        >>> s = COO.from_numpy(x)
        >>> s.transpose().shape
        (4, 3, 2)
        """
        if axes is None:
            axes = list(reversed(range(self.ndim)))

        # Normalize all axe indices to posivite values
        axes = np.array(axes)
        axes[axes < 0] += self.ndim

        if np.any(axes >= self.ndim) or np.any(axes < 0):
            raise ValueError("invalid axis for this array")

        if len(np.unique(axes)) < len(axes):
            raise ValueError("repeated axis in transpose")

        if not len(axes) == self.ndim:
            raise ValueError("axes don't match array")

        # Normalize all axe indices to posivite values
        try:
            axes = np.arange(self.ndim)[list(axes)]
        except IndexError:
            raise ValueError("invalid axis for this array")

        if len(np.unique(axes)) < len(axes):
            raise ValueError("repeated axis in transpose")

        if not len(axes) == self.ndim:
            raise ValueError("axes don't match array")

        axes = tuple(axes)

        if axes == tuple(range(self.ndim)):
            return self

        if self._cache is not None:
            for ax, value in self._cache['transpose']:
                if ax == axes:
                    return value

        shape = tuple(self.shape[ax] for ax in axes)
        result = COO(self.coords[axes, :], self.data, shape,
                     has_duplicates=self.has_duplicates,
                     cache=self._cache is not None)

        if self._cache is not None:
            self._cache['transpose'].append((axes, result))
        return result

    @property
    def T(self):
        """
        Returns a new array which has the order of the axes reversed.

        Returns
        -------
        COO
            The new array with the axes in the desired order.

        See Also
        --------
        :obj:`COO.transpose` : A method where you can specify the order of the axes.
        numpy.ndarray.T : Numpy equivalent property.

        Examples
        --------
        We can change the order of the dimensions of any :obj:`COO` array with this
        function.

        >>> x = np.add.outer(np.arange(5), np.arange(5)[::-1])
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 3, 2, 1, 0],
               [5, 4, 3, 2, 1],
               [6, 5, 4, 3, 2],
               [7, 6, 5, 4, 3],
               [8, 7, 6, 5, 4]])
        >>> s = COO.from_numpy(x)
        >>> s.T.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 5, 6, 7, 8],
               [3, 4, 5, 6, 7],
               [2, 3, 4, 5, 6],
               [1, 2, 3, 4, 5],
               [0, 1, 2, 3, 4]])

        Note that by default, this reverses the order of the axes rather than switching
        the last and second-to-last axes as required by some linear algebra operations.

        >>> x = np.random.rand(2, 3, 4)
        >>> s = COO.from_numpy(x)
        >>> s.T.shape
        (4, 3, 2)
        """
        return self.transpose(tuple(range(self.ndim))[::-1])

    def dot(self, other):
        """
        Performs the equivalent of :code:`x.dot(y)` for :obj:`COO`.

        Parameters
        ----------
        other : Union[COO, numpy.ndarray, scipy.sparse.spmatrix]
            The second operand of the dot product operation.

        Returns
        -------
        {COO, numpy.ndarray}
            The result of the dot product. If the result turns out to be dense,
            then a dense array is returned, otherwise, a sparse array.

        See Also
        --------
        dot : Equivalent function for two arguments.
        :obj:`numpy.dot` : Numpy equivalent function.
        scipy.sparse.coo_matrix.dot : Scipy equivalent function.

        Examples
        --------
        >>> x = np.arange(4).reshape((2, 2))
        >>> s = COO.from_numpy(x)
        >>> s.dot(s) # doctest: +SKIP
        array([[ 2,  3],
               [ 6, 11]], dtype=int64)
        """
        return dot(self, other)

    def __matmul__(self, other):
        try:
            return dot(self, other)
        except NotImplementedError:
            return NotImplemented

    def __rmatmul__(self, other):
        try:
            return dot(other, self)
        except NotImplementedError:
            return NotImplemented

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        if method == '__call__':
            return COO._elemwise(ufunc, *inputs, **kwargs)
        elif method == 'reduce':
            return COO._reduce(ufunc, *inputs, **kwargs)
        else:
            return NotImplemented

    def __array__(self, dtype=None, **kwargs):
        x = self.todense()
        if dtype and x.dtype != dtype:
            x = x.astype(dtype)
        return x

    def linear_loc(self, signed=False):
        """
        The nonzero coordinates of a flattened version of this array. Note that
        the coordinates may be out of order.

        Parameters
        ----------
        signed : bool, optional
            Whether to use a signed datatype for the output array. :code:`False`
            by default.

        Returns
        -------
        numpy.ndarray
            The flattened coordinates.

        See Also
        --------
        :obj:`numpy.flatnonzero` : Equivalent Numpy function.

        Examples
        --------
        >>> x = np.eye(5)
        >>> s = COO.from_numpy(x)
        >>> s.linear_loc()  # doctest: +NORMALIZE_WHITESPACE
        array([ 0,  6, 12, 18, 24], dtype=uint8)
        >>> np.array_equal(np.flatnonzero(x), s.linear_loc())
        True
        """
        return _linear_loc(self.coords, self.shape, signed)

    def reshape(self, shape):
        """
        Returns a new :obj:`COO` array that is a reshaped version of this array.

        Parameters
        ----------
        shape : tuple[int]
            The desired shape of the output array.

        Returns
        -------
        COO
            The reshaped output array.

        See Also
        --------
        numpy.ndarray.reshape : The equivalent Numpy function.

        Examples
        --------
        >>> s = COO.from_numpy(np.arange(25))
        >>> s2 = s.reshape((5, 5))
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[ 0,  1,  2,  3,  4],
               [ 5,  6,  7,  8,  9],
               [10, 11, 12, 13, 14],
               [15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24]])
        """
        if self.shape == shape:
            return self
        if any(d == -1 for d in shape):
            extra = int(self.size /
                        np.prod([d for d in shape if d != -1]))
            shape = tuple([d if d != -1 else extra for d in shape])

        if self.shape == shape:
            return self

        if self._cache is not None:
            for sh, value in self._cache['reshape']:
                if sh == shape:
                    return value

        # TODO: this self.size enforces a 2**64 limit to array size
        linear_loc = self.linear_loc()

        max_shape = max(shape) if len(shape) != 0 else 1
        coords = np.empty((len(shape), self.nnz), dtype=np.min_scalar_type(max_shape - 1))
        strides = 1
        for i, d in enumerate(shape[::-1]):
            coords[-(i + 1), :] = (linear_loc // strides) % d
            strides *= d

        result = COO(coords, self.data, shape,
                     has_duplicates=self.has_duplicates,
                     sorted=self.sorted, cache=self._cache is not None)

        if self._cache is not None:
            self._cache['reshape'].append((shape, result))
        return result

    def to_scipy_sparse(self):
        """
        Converts this :obj:`COO` object into a :obj:`scipy.sparse.coo_matrix`.

        Returns
        -------
        :obj:`scipy.sparse.coo_matrix`
            The converted Scipy sparse matrix.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.

        See Also
        --------
        COO.tocsr : Convert to a :obj:`scipy.sparse.csr_matrix`.
        COO.tocsc : Convert to a :obj:`scipy.sparse.csc_matrix`.
        """
        if self.ndim != 2:
            raise ValueError("Can only convert a 2-dimensional array to a Scipy sparse matrix.")

        result = scipy.sparse.coo_matrix((self.data,
                                          (self.coords[0],
                                           self.coords[1])),
                                         shape=self.shape)
        result.has_canonical_format = (not self.has_duplicates and self.sorted)
        return result

    def _tocsr(self):
        if self.ndim != 2:
            raise ValueError('This array must be two-dimensional for this conversion '
                             'to work.')

        # Pass 1: sum duplicates
        self.sum_duplicates()

        # Pass 2: sort indices
        self.sort_indices()
        row, col = self.coords

        # Pass 3: count nonzeros in each row
        indptr = np.zeros(self.shape[0] + 1, dtype=np.int64)
        np.cumsum(np.bincount(row, minlength=self.shape[0]), out=indptr[1:])

        return scipy.sparse.csr_matrix((self.data, col, indptr), shape=self.shape)

    def tocsr(self):
        """
        Converts this array to a :obj:`scipy.sparse.csr_matrix`.

        Returns
        -------
        scipy.sparse.csr_matrix
            The result of the conversion.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.

        See Also
        --------
        COO.tocsc : Convert to a :obj:`scipy.sparse.csc_matrix`.
        COO.to_scipy_sparse : Convert to a :obj:`scipy.sparse.coo_matrix`.
        scipy.sparse.coo_matrix.tocsr : Equivalent Scipy function.
        """
        if self._cache is not None:
            try:
                return self._csr
            except AttributeError:
                pass
            try:
                self._csr = self._csc.tocsr()
                return self._csr
            except AttributeError:
                pass

            self._csr = csr = self._tocsr()
        else:
            csr = self._tocsr()
        return csr

    def tocsc(self):
        """
        Converts this array to a :obj:`scipy.sparse.csc_matrix`.

        Returns
        -------
        scipy.sparse.csc_matrix
            The result of the conversion.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.

        See Also
        --------
        COO.tocsr : Convert to a :obj:`scipy.sparse.csr_matrix`.
        COO.to_scipy_sparse : Convert to a :obj:`scipy.sparse.coo_matrix`.
        scipy.sparse.coo_matrix.tocsc : Equivalent Scipy function.
        """
        if self._cache is not None:
            try:
                return self._csc
            except AttributeError:
                pass
            try:
                self._csc = self._csr.tocsc()
                return self._csc
            except AttributeError:
                pass

            self._csc = csc = self.tocsr().tocsc()
        else:
            csc = self.tocsr().tocsc()

        return csc

    def sort_indices(self):
        """
        Sorts the :obj:`COO.coords` attribute. Also sorts the data in
        :obj:`COO.data` to match.

        Examples
        --------
        >>> coords = np.array([[1, 2, 0]], dtype=np.uint8)
        >>> data = np.array([4, 1, 3], dtype=np.uint8)
        >>> s = COO(coords, data)
        >>> s.sort_indices()
        >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2]], dtype=uint8)
        >>> s.data  # doctest: +NORMALIZE_WHITESPACE
        array([3, 4, 1], dtype=uint8)
        """
        if self.sorted:
            return

        linear = self.linear_loc(signed=True)

        if (np.diff(linear) > 0).all():  # already sorted
            self.sorted = True
            return

        order = np.argsort(linear)
        self.coords = self.coords[:, order]
        self.data = self.data[order]
        self.sorted = True

    def sum_duplicates(self):
        """
        Sums data corresponding to duplicates in :obj:`COO.coords`.

        See Also
        --------
        scipy.sparse.coo_matrix.sum_duplicates : Equivalent Scipy function.

        Examples
        --------
        >>> coords = np.array([[0, 1, 1, 2]], dtype=np.uint8)
        >>> data = np.array([6, 5, 2, 2], dtype=np.uint8)
        >>> s = COO(coords, data)
        >>> s.sum_duplicates()
        >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2]], dtype=uint8)
        >>> s.data  # doctest: +NORMALIZE_WHITESPACE
        array([6, 7, 2], dtype=uint8)
        """
        # Inspired by scipy/sparse/coo.py::sum_duplicates
        # See https://github.com/scipy/scipy/blob/master/LICENSE.txt
        if not self.has_duplicates and self.sorted:
            return
        if not self.coords.size:
            return

        self.sort_indices()

        linear = self.linear_loc()
        unique_mask = np.diff(linear) != 0

        if unique_mask.sum() == len(unique_mask):  # already unique
            self.has_duplicates = False
            return

        unique_mask = np.append(True, unique_mask)

        coords = self.coords[:, unique_mask]
        (unique_inds,) = np.nonzero(unique_mask)
        data = np.add.reduceat(self.data, unique_inds, dtype=self.data.dtype)

        self.data = data
        self.coords = coords
        self.has_duplicates = False

    def __add__(self, other):
        return self.elemwise(operator.add, other)

    def __radd__(self, other):
        return self.elemwise(_reverse_self_other(operator.add), other)

    def __neg__(self):
        return self.elemwise(operator.neg)

    def __sub__(self, other):
        return self.elemwise(operator.sub, other)

    def __rsub__(self, other):
        return self.elemwise(_reverse_self_other(operator.sub), other)

    def __mul__(self, other):
        return self.elemwise(operator.mul, other)

    def __rmul__(self, other):
        return self.elemwise(_reverse_self_other(operator.mul), other)

    def __truediv__(self, other):
        return self.elemwise(operator.truediv, other)

    def __rtruediv__(self, other):
        return self.elemwise(_reverse_self_other(operator.truediv), other)

    def __floordiv__(self, other):
        return self.elemwise(operator.floordiv, other)

    def __rfloordiv__(self, other):
        return self.elemwise(_reverse_self_other(operator.floordiv), other)

    __div__ = __truediv__
    __rdiv__ = __rtruediv__

    def __pow__(self, other):
        return self.elemwise(operator.pow, other)

    def __rpow__(self, other):
        return self.elemwise(_reverse_self_other(operator.pow), other)

    def __mod__(self, other):
        return self.elemwise(operator.mod, other)

    def __rmod__(self, other):
        return self.elemwise(_reverse_self_other(operator.mod), other)

    def __and__(self, other):
        return self.elemwise(operator.and_, other)

    def __rand__(self, other):
        return self.elemwise(_reverse_self_other(operator.and_), other)

    def __xor__(self, other):
        return self.elemwise(operator.xor, other)

    def __rxor__(self, other):
        return self.elemwise(_reverse_self_other(operator.xor), other)

    def __or__(self, other):
        return self.elemwise(operator.or_, other)

    def __ror__(self, other):
        return self.elemwise(_reverse_self_other(operator.or_), other)

    def __invert__(self):
        return self.elemwise(operator.invert)

    def __gt__(self, other):
        return self.elemwise(operator.gt, other)

    def __ge__(self, other):
        return self.elemwise(operator.ge, other)

    def __lt__(self, other):
        return self.elemwise(operator.lt, other)

    def __le__(self, other):
        return self.elemwise(operator.le, other)

    def __eq__(self, other):
        return self.elemwise(operator.eq, other)

    def __ne__(self, other):
        return self.elemwise(operator.ne, other)

    def __lshift__(self, other):
        return self.elemwise(operator.lshift, other)

    def __rlshift__(self, other):
        return self.elemwise(_reverse_self_other(operator.lshift), other)

    def __rshift__(self, other):
        return self.elemwise(operator.rshift, other)

    def __rrshift__(self, other):
        return self.elemwise(_reverse_self_other(operator.rshift), other)

    @staticmethod
    def _elemwise(func, *args, **kwargs):
        if len(args) == 0:
            return func()

        self = args[0]
        if isinstance(self, scipy.sparse.spmatrix):
            self = COO.from_numpy(self)
        elif np.isscalar(self) or (isinstance(self, np.ndarray)
                                   and self.ndim == 0):
            func = partial(func, self)
            other = args[1]
            if isinstance(other, scipy.sparse.spmatrix):
                other = COO.from_scipy_sparse(other)
            return _elemwise_unary(func, other, *args[2:], **kwargs)

        if len(args) == 1:
            return _elemwise_unary(func, self, *args[1:], **kwargs)
        else:
            other = args[1]
            if isinstance(other, scipy.sparse.spmatrix):
                other = COO.from_scipy_sparse(other)

            if isinstance(other, COO) or isinstance(other, np.ndarray):
                return _elemwise_binary(func, self, other, *args[2:], **kwargs)
            else:
                return _elemwise_unary(func, self, *args[1:], **kwargs)

    def elemwise(self, func, *args, **kwargs):
        """
        Apply a function to one or two arguments.

        Parameters
        ----------
        func : Callable
            The function to apply to one or two arguments.
        args : tuple, optional
            The extra arguments to pass to the function. If :code:`args[0]` is a COO object,
            a scipy.sparse.spmatrix or a scalar; the function will be treated as a binary
            function. Otherwise, it will be treated as a unary function.
        kwargs : dict, optional
            The kwargs to pass to the function.

        Returns
        -------
        COO
            The result of applying the function.

        Raises
        ------
        ValueError
            If the operation would result in a dense matrix.

        See Also
        --------
        :obj:`numpy.ufunc` : A similar Numpy construct. Note that any :code:`ufunc` can be used
            as the :code:`func` input to this function.
        """
        return COO._elemwise(func, self, *args, **kwargs)

    def broadcast_to(self, shape):
        """
        Performs the equivalent of :obj:`numpy.broadcast_to` for :obj:`COO`. Note that
        this function returns a new array instead of a view.

        Parameters
        ----------
        shape : tuple[int]
            The shape to broadcast the data to.

        Returns
        -------
        COO
            The broadcasted sparse array.

        Raises
        ------
        ValueError
            If the operand cannot be broadcast to the given shape.

        See also
        --------
        :obj:`numpy.broadcast_to` : NumPy equivalent function
        """
        result_shape = _get_broadcast_shape(self.shape, shape, is_result=True)
        params = _get_broadcast_parameters(self.shape, result_shape)
        coords, data = _get_expanded_coords_data(self.coords, self.data, params, result_shape)

        return COO(coords, data, shape=result_shape, has_duplicates=self.has_duplicates,
                   sorted=self.sorted)

    def __abs__(self):
        """
        Calculate the absolute value element-wise.

        See also
        --------
        :obj:`numpy.absolute` : NumPy equivalent ufunc.
        """
        return self.elemwise(abs)

    abs = __abs__

    def exp(self, out=None):
        """
        Calculate the exponential of all elements in the array.

        See also
        --------
        :obj:`numpy.exp` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.exp)

    def expm1(self, out=None):
        """
        Calculate :code:`exp(x) - 1` for all elements in the array.

        See also
        --------
        scipy.sparse.coo_matrix.expm1 : SciPy sparse equivalent function
        :obj:`numpy.expm1` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.expm1)

    def log1p(self, out=None):
        """
        Return the natural logarithm of one plus the input array, element-wise.

        Calculates :code:`log(1 + x)`.

        See also
        --------
        scipy.sparse.coo_matrix.log1p : SciPy sparse equivalent function
        :obj:`numpy.log1p` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.log1p)

    def sin(self, out=None):
        """
        Trigonometric sine, element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.sin : SciPy sparse equivalent function
        :obj:`numpy.sin` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.sin)

    def sinh(self, out=None):
        """
        Hyperbolic sine, element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.sinh : SciPy sparse equivalent function
        :obj:`numpy.sinh` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.sinh)

    def tan(self, out=None):
        """
        Compute tangent element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.tan : SciPy sparse equivalent function
        :obj:`numpy.tan` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.
        """
        assert out is None
        return self.elemwise(np.tan)

    def tanh(self, out=None):
        """
        Compute hyperbolic tangent element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.tanh : SciPy sparse equivalent function
        :obj:`numpy.tanh` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.tanh)

    def sqrt(self, out=None):
        """
        Return the positive square-root of an array, element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.sqrt : SciPy sparse equivalent function
        :obj:`numpy.sqrt` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.sqrt)

    def ceil(self, out=None):
        """
        Return the ceiling of the input, element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.ceil : SciPy sparse equivalent function
        :obj:`numpy.ceil` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.ceil)

    def floor(self, out=None):
        """
        Return the floor of the input, element-wise.

        See also
        --------
        scipy.sparse.coo_matrix.floor : SciPy sparse equivalent function
        :obj:`numpy.floor` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.floor)

    def round(self, decimals=0, out=None):
        """
        Evenly round to the given number of decimals.

        See also
        --------
        :obj:`numpy.round` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.round, decimals)

    def rint(self, out=None):
        """
        Round elements of the array to the nearest integer.

        See also
        --------
        scipy.sparse.coo_matrix.rint : SciPy sparse equivalent function
        :obj:`numpy.rint` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.rint)

    def conj(self, out=None):
        """
        Return the complex conjugate, element-wise.

        See also
        --------
        conjugate : Equivalent function
        scipy.sparse.coo_matrix.conj : SciPy sparse equivalent function
        :obj:`numpy.conj` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.conj)

    def conjugate(self, out=None):
        """
        Return the complex conjugate, element-wise.

        See also
        --------
        conj : Equivalent function
        scipy.sparse.coo_matrix.conjugate : SciPy sparse equivalent function
        :obj:`numpy.conj` : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.conjugate)

    def astype(self, dtype, out=None):
        """
        Copy of the array, cast to a specified type.

        See also
        --------
        scipy.sparse.coo_matrix.astype : SciPy sparse equivalent function
        numpy.ndarray.astype : NumPy equivalent ufunc.
        :obj:`COO.elemwise`: Apply an arbitrary element-wise function to one or two
            arguments.

        Notes
        -----
        The :code:`out` parameter is provided just for compatibility with Numpy and isn't
        actually supported.
        """
        assert out is None
        return self.elemwise(np.ndarray.astype, dtype)

    def maybe_densify(self, max_size=1000, min_density=0.25):
        """
        Converts this :obj:`COO` array to a :obj:`numpy.ndarray` if not too
        costly.

        Parameters
        ----------
        max_size : int
            Maximum number of elements in output
        min_density : float
            Minimum density of output

        Returns
        -------
        numpy.ndarray
            The dense array.

        Raises
        -------
        ValueError
            If the returned array would be too large.

        Examples
        --------
        Convert a small sparse array to a dense array.

        >>> s = COO.from_numpy(np.random.rand(2, 3, 4))
        >>> x = s.maybe_densify()
        >>> np.allclose(x, s.todense())
        True

        You can also specify the minimum allowed density or the maximum number
        of output elements. If both conditions are unmet, this method will throw
        an error.

        >>> x = np.zeros((5, 5), dtype=np.uint8)
        >>> x[2, 2] = 1
        >>> s = COO.from_numpy(x)
        >>> s.maybe_densify(max_size=5, min_density=0.25)
        Traceback (most recent call last):
            ...
        ValueError: Operation would require converting large sparse array to dense
        """
        if self.size <= max_size or self.density >= min_density:
            return self.todense()
        else:
            raise ValueError("Operation would require converting "
                             "large sparse array to dense")


def tensordot(a, b, axes=2):
    """
    Perform the equivalent of :obj:`numpy.tensordot`.

    Parameters
    ----------
    a, b : Union[COO, np.ndarray, scipy.sparse.spmatrix]
        The arrays to perform the :code:`tensordot` operation on.
    axes : tuple[Union[int, tuple[int], Union[int, tuple[int]], optional
        The axes to match when performing the sum.

    Returns
    -------
    Union[COO, numpy.ndarray]
        The result of the operation.

    See Also
    --------
    numpy.tensordot : NumPy equivalent function
    """
    # Much of this is stolen from numpy/core/numeric.py::tensordot
    # Please see license at https://github.com/numpy/numpy/blob/master/LICENSE.txt
    try:
        iter(axes)
    except TypeError:
        axes_a = list(range(-axes, 0))
        axes_b = list(range(0, axes))
    else:
        axes_a, axes_b = axes
    try:
        na = len(axes_a)
        axes_a = list(axes_a)
    except TypeError:
        axes_a = [axes_a]
        na = 1
    try:
        nb = len(axes_b)
        axes_b = list(axes_b)
    except TypeError:
        axes_b = [axes_b]
        nb = 1

    # a, b = asarray(a), asarray(b)  # <--- modified
    as_ = a.shape
    nda = a.ndim
    bs = b.shape
    ndb = b.ndim
    equal = True
    if na != nb:
        equal = False
    else:
        for k in range(na):
            if as_[axes_a[k]] != bs[axes_b[k]]:
                equal = False
                break
            if axes_a[k] < 0:
                axes_a[k] += nda
            if axes_b[k] < 0:
                axes_b[k] += ndb
    if not equal:
        raise ValueError("shape-mismatch for sum")

    # Move the axes to sum over to the end of "a"
    # and to the front of "b"
    notin = [k for k in range(nda) if k not in axes_a]
    newaxes_a = notin + axes_a
    N2 = 1
    for axis in axes_a:
        N2 *= as_[axis]
    newshape_a = (-1, N2)
    olda = [as_[axis] for axis in notin]

    notin = [k for k in range(ndb) if k not in axes_b]
    newaxes_b = axes_b + notin
    N2 = 1
    for axis in axes_b:
        N2 *= bs[axis]
    newshape_b = (N2, -1)
    oldb = [bs[axis] for axis in notin]

    at = a.transpose(newaxes_a).reshape(newshape_a)
    bt = b.transpose(newaxes_b).reshape(newshape_b)
    res = _dot(at, bt)
    if isinstance(res, scipy.sparse.spmatrix):
        if res.nnz > reduce(operator.mul, res.shape) / 2:
            res = res.todense()
        else:
            res = COO.from_scipy_sparse(res)  # <--- modified
            res.has_duplicates = False
    if isinstance(res, np.matrix):
        res = np.asarray(res)
    return res.reshape(olda + oldb)


def dot(a, b):
    """
    Perform the equivalent of :obj:`numpy.dot` on two arrays.

    Parameters
    ----------
    a, b : Union[COO, np.ndarray, scipy.sparse.spmatrix]
        The arrays to perform the :code:`dot` operation on.

    Returns
    -------
    Union[COO, numpy.ndarray]
        The result of the operation.

    See Also
    --------
    numpy.dot : NumPy equivalent function.
    COO.dot : Equivalent function for COO objects.
    """
    if not hasattr(a, 'ndim') or not hasattr(b, 'ndim'):
        raise NotImplementedError(
            "Cannot perform dot product on types %s, %s" %
            (type(a), type(b)))
    return tensordot(a, b, axes=((a.ndim - 1,), (b.ndim - 2,)))


def _dot(a, b):
    if isinstance(a, COO):
        a.sum_duplicates()
    if isinstance(b, COO):
        b.sum_duplicates()
    if isinstance(b, COO) and not isinstance(a, COO):
        return _dot(b.T, a.T).T
    aa = a.tocsr()

    if isinstance(b, (COO, scipy.sparse.spmatrix)):
        b = b.tocsc()
    return aa.dot(b)


def _keepdims(original, new, axis):
    shape = list(original.shape)
    for ax in axis:
        shape[ax] = 1
    return new.reshape(shape)


def _mask(coords, idx, shape):
    if isinstance(idx, numbers.Integral):
        return coords == idx
    elif isinstance(idx, slice):
        step = idx.step if idx.step is not None else 1
        if step > 0:
            start = idx.start if idx.start is not None else 0
            stop = idx.stop if idx.stop is not None else shape
            return (coords >= start) & (coords < stop) & \
                   (coords % step == start % step)
        else:
            start = idx.start if idx.start is not None else (shape - 1)
            stop = idx.stop if idx.stop is not None else -1
            return (coords <= start) & (coords > stop) & \
                   (coords % step == start % step)
    elif isinstance(idx, Iterable):
        mask = np.zeros(len(coords), dtype=np.bool)
        for item in idx:
            mask |= _mask(coords, item, shape)
        return mask


def concatenate(arrays, axis=0):
    """
    Concatenate the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[Union[COO, numpy.ndarray, scipy.sparse.spmatrix]]
        The input arrays to concatenate.
    axis : int, optional
        The axis along which to concatenate the input arrays. The default is zero.

    Returns
    -------
    COO
        The output concatenated array.

    See Also
    --------
    numpy.concatenate : NumPy equivalent function
    """
    arrays = [x if isinstance(x, COO) else COO(x) for x in arrays]
    if axis < 0:
        axis = axis + arrays[0].ndim
    assert all(x.shape[ax] == arrays[0].shape[ax]
               for x in arrays
               for ax in set(range(arrays[0].ndim)) - {axis})
    nnz = 0
    dim = sum(x.shape[axis] for x in arrays)
    shape = list(arrays[0].shape)
    shape[axis] = dim

    coords_dtype = np.min_scalar_type(max(shape) - 1) if len(shape) != 0 else np.uint8
    data = np.concatenate([x.data for x in arrays])
    coords = np.concatenate([x.coords for x in arrays], axis=1).astype(coords_dtype)

    dim = 0
    for x in arrays:
        if dim:
            coords[axis, nnz:x.nnz + nnz] += dim
        dim += x.shape[axis]
        nnz += x.nnz

    has_duplicates = any(x.has_duplicates for x in arrays)

    return COO(coords, data, shape=shape, has_duplicates=has_duplicates,
               sorted=(axis == 0) and all(a.sorted for a in arrays))


def stack(arrays, axis=0):
    """
    Stack the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[Union[COO, numpy.ndarray, scipy.sparse.spmatrix]]
        The input arrays to stack.
    axis : int, optional
        The axis along which to stack the input arrays.

    Returns
    -------
    COO
        The output stacked array.

    See Also
    --------
    numpy.stack : NumPy equivalent function
    """
    assert len(set(x.shape for x in arrays)) == 1
    arrays = [x if isinstance(x, COO) else COO(x) for x in arrays]
    if axis < 0:
        axis = axis + arrays[0].ndim + 1
    data = np.concatenate([x.data for x in arrays])
    coords = np.concatenate([x.coords for x in arrays], axis=1)
    shape = list(arrays[0].shape)
    shape.insert(axis, len(arrays))

    coords_dtype = np.min_scalar_type(max(shape) - 1) if len(shape) != 0 else np.uint8

    nnz = 0
    dim = 0
    new = np.empty(shape=(coords.shape[1],), dtype=coords_dtype)
    for x in arrays:
        new[nnz:x.nnz + nnz] = dim
        dim += 1
        nnz += x.nnz

    has_duplicates = any(x.has_duplicates for x in arrays)
    coords = [coords[i].astype(coords_dtype) for i in range(coords.shape[0])]
    coords.insert(axis, new)
    coords = np.stack(coords, axis=0)

    return COO(coords, data, shape=shape, has_duplicates=has_duplicates,
               sorted=(axis == 0) and all(a.sorted for a in arrays))


def triu(x, k=0):
    """
    Returns an array with all elements below the k-th diagonal set to zero.

    Parameters
    ----------
    x : COO
        The input array.
    k : int, optional
        The diagonal below which elements are set to zero. The default is
        zero, which corresponds to the main diagonal.

    Returns
    -------
    COO
        The output upper-triangular matrix.

    See Also
    --------
    numpy.triu : NumPy equivalent function
    """
    if not x.ndim >= 2:
        raise NotImplementedError('sparse.triu is not implemented for scalars or 1-D arrays.')

    mask = x.coords[-2] + k <= x.coords[-1]

    coords = x.coords[:, mask]
    data = x.data[mask]

    return COO(coords, data, x.shape, x.has_duplicates, x.sorted)


def tril(x, k=0):
    """
    Returns an array with all elements above the k-th diagonal set to zero.

    Parameters
    ----------
    x : COO
        The input array.
    k : int, optional
        The diagonal above which elements are set to zero. The default is
        zero, which corresponds to the main diagonal.

    Returns
    -------
    COO
        The output lower-triangular matrix.

    See Also
    --------
    numpy.tril : NumPy equivalent function
    """
    if not x.ndim >= 2:
        raise NotImplementedError('sparse.tril is not implemented for scalars or 1-D arrays.')

    mask = x.coords[-2] + k >= x.coords[-1]

    coords = x.coords[:, mask]
    data = x.data[mask]

    return COO(coords, data, x.shape, x.has_duplicates, x.sorted)


# (c) Paul Panzer
# Taken from https://stackoverflow.com/a/47833496/774273
# License: https://creativecommons.org/licenses/by-sa/3.0/
def _match_arrays(a, b):
    """
    Finds all indexes into a and b such that a[i] = b[j]. The outputs are sorted
    in lexographical order.

    Parameters
    ----------
    a, b : np.ndarray
        The input 1-D arrays to match. If matching of multiple fields is
        needed, use np.recarrays. These two arrays must be sorted.

    Returns
    -------
    a_idx, b_idx : np.ndarray
        The output indices of every possible pair of matching elements.
    """
    if len(a) == 0 or len(b) == 0:
        return np.array([], dtype=np.uint8), np.array([], dtype=np.uint8)
    asw = np.r_[0, 1 + np.flatnonzero(a[:-1] != a[1:]), len(a)]
    bsw = np.r_[0, 1 + np.flatnonzero(b[:-1] != b[1:]), len(b)]
    al, bl = np.diff(asw), np.diff(bsw)
    na = len(al)
    asw, bsw = asw, bsw
    abunq = np.r_[a[asw[:-1]], b[bsw[:-1]]]
    m = np.argsort(abunq, kind='mergesort')
    mv = abunq[m]
    midx = np.flatnonzero(mv[:-1] == mv[1:])
    ai, bi = m[midx], m[midx + 1] - na
    aic = np.r_[0, np.cumsum(al[ai])]
    a_idx = np.ones((aic[-1],), dtype=np.int_)
    a_idx[aic[:-1]] = asw[ai]
    a_idx[aic[1:-1]] -= asw[ai[:-1]] + al[ai[:-1]] - 1
    a_idx = np.repeat(np.cumsum(a_idx), np.repeat(bl[bi], al[ai]))
    bi = np.repeat(bi, al[ai])
    bic = np.r_[0, np.cumsum(bl[bi])]
    b_idx = np.ones((bic[-1],), dtype=np.int_)
    b_idx[bic[:-1]] = bsw[bi]
    b_idx[bic[1:-1]] -= bsw[bi[:-1]] + bl[bi[:-1]] - 1
    b_idx = np.cumsum(b_idx)
    return a_idx, b_idx


def _grouped_reduce(x, groups, method, **kwargs):
    """
    Performs a :code:`ufunc` grouped reduce.

    Parameters
    ----------
    x : np.ndarray
        The data to reduce.
    groups : np.ndarray
        The groups the data belongs to. The groups must be
        contiguous.
    method : np.ufunc
        The :code:`ufunc` to use to perform the reduction.
    kwargs : dict
        The kwargs to pass to the :code:`ufunc`'s :code:`reduceat`
        function.

    Returns
    -------
    result : np.ndarray
        The result of the grouped reduce operation.
    inv_idx : np.ndarray
        The index of the first element where each group is found.
    counts : np.ndarray
        The number of elements in each group.
    """
    # Partial credit to @shoyer
    # Ref: https://gist.github.com/shoyer/f538ac78ae904c936844
    flag = np.concatenate(([True] if len(x) != 0 else [], groups[1:] != groups[:-1]))
    inv_idx = np.flatnonzero(flag)
    result = method.reduceat(x, inv_idx, **kwargs)
    counts = np.diff(np.concatenate((inv_idx, [len(x)])))
    return result, inv_idx, counts


def _elemwise_binary(func, self, other, *args, **kwargs):
    check = kwargs.pop('check', True)
    self_zero = _zero_of_dtype(self.dtype)
    other_zero = _zero_of_dtype(other.dtype)

    func_zero = _zero_of_dtype(func(self_zero, other_zero, *args, **kwargs).dtype)
    if check and func(self_zero, other_zero, *args, **kwargs) != func_zero:
        raise ValueError("Performing this operation would produce "
                         "a dense result: %s" % str(func))

    if not isinstance(self, COO):
        if not check or np.array_equiv(func(self, other_zero, *args, **kwargs), func_zero):
            return _elemwise_binary_self_dense(func, self, other, *args, **kwargs)
        else:
            raise ValueError("Performing this operation would produce "
                             "a dense result: %s" % str(func))

    if not isinstance(other, COO):
        if not check or np.array_equiv(func(self_zero, other, *args, **kwargs), func_zero):
            temp_func = _reverse_self_other(func)
            return _elemwise_binary_self_dense(temp_func, other, self, *args, **kwargs)
        else:
            raise ValueError("Performing this operation would produce "
                             "a dense result: %s" % str(func))

    self_shape, other_shape = self.shape, other.shape

    result_shape = _get_broadcast_shape(self_shape, other_shape)
    self_params = _get_broadcast_parameters(self.shape, result_shape)
    other_params = _get_broadcast_parameters(other.shape, result_shape)
    combined_params = [p1 and p2 for p1, p2 in zip(self_params, other_params)]
    self_reduce_params = combined_params[-self.ndim:]
    other_reduce_params = combined_params[-other.ndim:]

    self.sum_duplicates()  # TODO: document side-effect or make copy
    other.sum_duplicates()  # TODO: document side-effect or make copy

    self_coords = self.coords
    self_data = self.data

    self_reduced_coords, self_reduced_shape = \
        _get_reduced_coords(self_coords, self_shape,
                            self_reduce_params)
    self_reduced_linear = _linear_loc(self_reduced_coords, self_reduced_shape)
    i = np.argsort(self_reduced_linear)
    self_reduced_linear = self_reduced_linear[i]
    self_coords = self_coords[:, i]
    self_data = self_data[i]

    # Store coords
    other_coords = other.coords
    other_data = other.data

    other_reduced_coords, other_reduced_shape = \
        _get_reduced_coords(other_coords, other_shape,
                            other_reduce_params)
    other_reduced_linear = _linear_loc(other_reduced_coords, other_reduced_shape)
    i = np.argsort(other_reduced_linear)
    other_reduced_linear = other_reduced_linear[i]
    other_coords = other_coords[:, i]
    other_data = other_data[i]

    # Find matches between self.coords and other.coords
    matched_self, matched_other = _match_arrays(self_reduced_linear,
                                                other_reduced_linear)

    # Start with an empty list. This may reduce computation in many cases.
    data_list = []
    coords_list = []

    # Add the matched part.
    matched_coords = _get_matching_coords(self_coords[:, matched_self],
                                          other_coords[:, matched_other],
                                          self_shape, other_shape)

    data_list.append(func(self_data[matched_self],
                          other_data[matched_other],
                          *args, **kwargs))
    coords_list.append(matched_coords)

    self_func = func(self_data, other_zero, *args, **kwargs)
    # Add unmatched parts as necessary.
    if (self_func != func_zero).any():
        self_unmatched_coords, self_unmatched_func = \
            _get_unmatched_coords_data(self_coords, self_func, self_shape,
                                       result_shape, matched_self,
                                       matched_coords)

        data_list.extend(self_unmatched_func)
        coords_list.extend(self_unmatched_coords)

    other_func = func(self_zero, other_data, *args, **kwargs)

    if (other_func != func_zero).any():
        other_unmatched_coords, other_unmatched_func = \
            _get_unmatched_coords_data(other_coords, other_func, other_shape,
                                       result_shape, matched_other,
                                       matched_coords)

        coords_list.extend(other_unmatched_coords)
        data_list.extend(other_unmatched_func)

    # Concatenate matches and mismatches
    data = np.concatenate(data_list) if len(data_list) else np.empty((0,), dtype=self.dtype)
    coords = np.concatenate(coords_list, axis=1) if len(coords_list) else \
        np.empty((0, len(result_shape)), dtype=self.coords.dtype)

    nonzero = data != func_zero
    data = data[nonzero]
    coords = coords[:, nonzero]

    return COO(coords, data, shape=result_shape, has_duplicates=False)


def _elemwise_binary_self_dense(func, self, other, *args, **kwargs):
    assert isinstance(self, np.ndarray)
    assert isinstance(other, COO)

    result_shape = _get_broadcast_shape(self.shape, other.shape)

    if result_shape != other.shape:
        other = other.broadcast_to(result_shape)

    self = np.broadcast_to(self, result_shape)

    self_coords = tuple([other.coords[i, :] for i in range(other.ndim)])

    self_data = self[self_coords]

    func_data = func(self_data, other.data, *args, **kwargs)
    mask = func_data != 0
    func_data = func_data[mask]
    func_coords = other.coords[:, mask]

    return COO(func_coords, func_data, shape=result_shape,
               has_duplicates=other.has_duplicates,
               sorted=other.sorted)


def _reverse_self_other(func):
    def wrapper(*args, **kwargs):
        return func(args[1], args[0], *args[2:], **kwargs)

    return wrapper


def _get_unmatched_coords_data(coords, data, shape, result_shape, matched_idx,
                               matched_coords):
    """
    Get the unmatched coordinates and data - both those that are unmatched with
    any point of the other data as well as those which are added because of
    broadcasting.

    Parameters
    ----------
    coords : np.ndarray
        The coordinates to get the unmatched coordinates from.
    data : np.ndarray
        The data corresponding to these coordinates.
    shape : tuple[int]
        The shape corresponding to these coordinates.
    result_shape : tuple[int]
        The result broadcasting shape.
    matched_idx : np.ndarray
        The indices into the coords array where it matches with the other array.
    matched_coords : np.ndarray
        The overall coordinates that match from both arrays.

    Returns
    -------
    coords_list : list[np.ndarray]
        The list of unmatched/broadcasting coordinates.
    data_list : list[np.ndarray]
        The data corresponding to the coordinates.
    """
    params = _get_broadcast_parameters(shape, result_shape)
    matched = np.zeros(len(data), dtype=np.bool)
    matched[matched_idx] = True
    unmatched = ~matched
    data_zero = _zero_of_dtype(data.dtype)
    nonzero = data != data_zero

    unmatched &= nonzero
    matched &= nonzero

    coords_list = []
    data_list = []

    unmatched_coords, unmatched_data = \
        _get_expanded_coords_data(coords[:, unmatched],
                                  data[unmatched],
                                  params,
                                  result_shape)

    coords_list.append(unmatched_coords)
    data_list.append(unmatched_data)

    if shape != result_shape:
        broadcast_coords, broadcast_data = \
            _get_broadcast_coords_data(coords[:, matched],
                                       matched_coords,
                                       data[matched],
                                       params,
                                       result_shape)

        coords_list.append(broadcast_coords)
        data_list.append(broadcast_data)

    return coords_list, data_list


def _get_broadcast_shape(shape1, shape2, is_result=False):
    """
    Get the overall broadcasted shape.

    Parameters
    ----------
    shape1, shape2 : tuple[int]
        The input shapes to broadcast together.
    is_result : bool
        Whether or not shape2 is also the result shape.

    Returns
    -------
    result_shape : tuple[int]
        The overall shape of the result.

    Raises
    ------
    ValueError
        If the two shapes cannot be broadcast together.
    """
    # https://stackoverflow.com/a/47244284/774273
    if not all((l1 == l2) or (l1 == 1) or ((l2 == 1) and not is_result) for l1, l2 in
               zip(shape1[::-1], shape2[::-1])):
        raise ValueError('operands could not be broadcast together with shapes %s, %s' %
                         (shape1, shape2))

    result_shape = tuple(max(l1, l2) for l1, l2 in
                         zip_longest(shape1[::-1], shape2[::-1], fillvalue=1))[::-1]

    return result_shape


def _get_broadcast_parameters(shape, broadcast_shape):
    """
    Get the broadcast parameters.

    Parameters
    ----------
    shape : tuple[int]
        The input shape.
    broadcast_shape
        The shape to broadcast to.

    Returns
    -------
    params : list
        A list containing None if the dimension isn't in the original array, False if
        it needs to be broadcast, and True if it doesn't.
    """
    params = [None if l1 is None else l1 == l2 for l1, l2
              in zip_longest(shape[::-1], broadcast_shape[::-1], fillvalue=None)][::-1]

    return params


def _get_reduced_coords(coords, shape, params):
    """
    Gets only those dimensions of the coordinates that don't need to be broadcast.

    Parameters
    ----------
    coords : np.ndarray
        The coordinates to reduce.
    params : list
        The params from which to check which dimensions to get.

    Returns
    -------
    reduced_coords : np.ndarray
        The reduced coordinates.
    """
    reduced_params = [bool(param) for param in params]
    reduced_shape = tuple(l for l, p in zip(shape, params) if p)

    return coords[reduced_params], reduced_shape


def _get_expanded_coords_data(coords, data, params, broadcast_shape):
    """
    Expand coordinates/data to broadcast_shape. Does most of the heavy lifting for broadcast_to.
    Produces sorted output for sorted inputs.

    Parameters
    ----------
    coords : np.ndarray
        The coordinates to expand.
    data : np.ndarray
        The data corresponding to the coordinates.
    params : list
        The broadcast parameters.
    broadcast_shape : tuple[int]
        The shape to broadcast to.

    Returns
    -------
    expanded_coords : np.ndarray
        List of 1-D arrays. Each item in the list has one dimension of coordinates.
    expanded_data : np.ndarray
        The data corresponding to expanded_coords.
    """
    first_dim = -1
    expand_shapes = []
    for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
        if p and first_dim == -1:
            expand_shapes.append(coords.shape[1])
            first_dim = d

        if not p:
            expand_shapes.append(l)

    all_idx = _cartesian_product(*(np.arange(d, dtype=np.min_scalar_type(d - 1)) for d in expand_shapes))
    dt = np.result_type(*(np.min_scalar_type(l - 1) for l in broadcast_shape))

    false_dim = 0
    dim = 0

    expanded_coords = np.empty((len(broadcast_shape), all_idx.shape[1]), dtype=dt)
    expanded_data = data[all_idx[first_dim]]

    for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
        if p:
            expanded_coords[d] = coords[dim, all_idx[first_dim]]
        else:
            expanded_coords[d] = all_idx[false_dim + (d > first_dim)]
            false_dim += 1

        if p is not None:
            dim += 1

    return np.asarray(expanded_coords), np.asarray(expanded_data)


# (c) senderle
# Taken from https://stackoverflow.com/a/11146645/774273
# License: https://creativecommons.org/licenses/by-sa/3.0/
def _cartesian_product(*arrays):
    """
    Get the cartesian product of a number of arrays.

    Parameters
    ----------
    arrays : Tuple[np.ndarray]
        The arrays to get a cartesian product of. Always sorted with respect
        to the original array.

    Returns
    -------
    out : np.ndarray
        The overall cartesian product of all the input arrays.
    """
    broadcastable = np.ix_(*arrays)
    broadcasted = np.broadcast_arrays(*broadcastable)
    rows, cols = np.prod(broadcasted[0].shape), len(broadcasted)
    dtype = np.result_type(*arrays)
    out = np.empty(rows * cols, dtype=dtype)
    start, end = 0, rows
    for a in broadcasted:
        out[start:end] = a.reshape(-1)
        start, end = end, end + rows
    return out.reshape(cols, rows)


def _elemwise_unary(func, self, *args, **kwargs):
    check = kwargs.pop('check', True)
    data_zero = _zero_of_dtype(self.dtype)
    func_zero = _zero_of_dtype(func(data_zero, *args, **kwargs).dtype)
    if check and func(data_zero, *args, **kwargs) != func_zero:
        raise ValueError("Performing this operation would produce "
                         "a dense result: %s" % str(func))

    data_func = func(self.data, *args, **kwargs)
    nonzero = data_func != func_zero

    return COO(self.coords[:, nonzero], data_func[nonzero],
               shape=self.shape,
               has_duplicates=self.has_duplicates,
               sorted=self.sorted)


def _get_matching_coords(coords1, coords2, shape1, shape2):
    """
    Takes in the matching coordinates in both dimensions (only those dimensions that
    don't need to be broadcast in both arrays and returns the coordinates that will
    overlap in the output array, i.e., the coordinates for which both broadcast arrays
    will be nonzero.

    Parameters
    ----------
    coords1, coords2 : np.ndarray
    shape1, shape2 : tuple[int]

    Returns
    -------
    matching_coords : np.ndarray
        The coordinates of the output array for which both inputs will be nonzero.
    """
    result_shape = _get_broadcast_shape(shape1, shape2)
    params1 = _get_broadcast_parameters(shape1, result_shape)
    params2 = _get_broadcast_parameters(shape2, result_shape)

    matching_coords = []
    dim1 = 0
    dim2 = 0

    for p1, p2 in zip(params1, params2):
        if p1:
            matching_coords.append(coords1[dim1])
        else:
            matching_coords.append(coords2[dim2])

        if p1 is not None:
            dim1 += 1

        if p2 is not None:
            dim2 += 1

    return np.asarray(matching_coords)


def _get_broadcast_coords_data(coords, matched_coords, data, params, broadcast_shape):
    """
    Get data that matched in the reduced coordinates but still had a partial overlap because of
    the broadcast, i.e., it didn't match in one of the other dimensions.

    Parameters
    ----------
    coords : np.ndarray
        The list of coordinates of the required array. Must be sorted.
    matched_coords : np.ndarray
        The list of coordinates that match. Must be sorted.
    data : np.ndarray
        The data corresponding to coords.
    params : list
        The broadcast parameters.
    broadcast_shape : tuple[int]
        The shape to get the broadcast coordinates.

    Returns
    -------
    broadcast_coords : np.ndarray
        The broadcasted coordinates. Is sorted.
    broadcasted_data : np.ndarray
        The data corresponding to those coordinates.
    """
    full_coords, full_data = _get_expanded_coords_data(coords, data, params, broadcast_shape)
    linear_full_coords = _linear_loc(full_coords, broadcast_shape)
    linear_matched_coords = _linear_loc(matched_coords, broadcast_shape)

    overlapping_coords, _ = _match_arrays(linear_full_coords, linear_matched_coords)
    mask = np.ones(full_coords.shape[1], dtype=np.bool)
    mask[overlapping_coords] = False

    return full_coords[:, mask], full_data[mask]


def _linear_loc(coords, shape, signed=False):
    n = reduce(operator.mul, shape, 1)
    if signed:
        n = -n
    dtype = np.min_scalar_type(n)
    out = np.zeros(coords.shape[1], dtype=dtype)
    tmp = np.zeros(coords.shape[1], dtype=dtype)
    strides = 1
    for i, d in enumerate(shape[::-1]):
        # out += self.coords[-(i + 1), :].astype(dtype) * strides
        np.multiply(coords[-(i + 1), :], strides, out=tmp, dtype=dtype)
        np.add(tmp, out, out=out)
        strides *= d
    return out