This file is indexed.

/usr/lib/python3/dist-packages/sklearn/isotonic.py is in python3-sklearn 0.19.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Authors: Fabian Pedregosa <fabian@fseoane.net>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause

import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import as_float_array, check_array, check_consistent_length
from .utils import deprecated
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
import warnings
import math


__all__ = ['check_increasing', 'isotonic_regression',
           'IsotonicRegression']


def check_increasing(x, y):
    """Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like, shape=(n_samples,)
            Training data.

    y : array-like, shape=(n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation
    """

    # Calculate Spearman rho estimate and set return accordingly.
    rho, _ = spearmanr(x, y)
    increasing_bool = rho >= 0

    # Run Fisher transform to get the rho CI, but handle rho=+/-1
    if rho not in [-1.0, 1.0] and len(x) > 3:
        F = 0.5 * math.log((1. + rho) / (1. - rho))
        F_se = 1 / math.sqrt(len(x) - 3)

        # Use a 95% CI, i.e., +/-1.96 S.E.
        # https://en.wikipedia.org/wiki/Fisher_transformation
        rho_0 = math.tanh(F - 1.96 * F_se)
        rho_1 = math.tanh(F + 1.96 * F_se)

        # Warn if the CI spans zero.
        if np.sign(rho_0) != np.sign(rho_1):
            warnings.warn("Confidence interval of the Spearman "
                          "correlation coefficient spans zero. "
                          "Determination of ``increasing`` may be "
                          "suspect.")

    return increasing_bool


def isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
                        increasing=True):
    """Solve the isotonic regression model::

        min sum w[i] (y[i] - y_[i]) ** 2

        subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max

    where:
        - y[i] are inputs (real numbers)
        - y_[i] are fitted
        - w[i] are optional strictly positive weights (default to 1.0)

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : iterable of floating-point values
        The data.

    sample_weight : iterable of floating-point values, optional, default: None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : optional, default: None
        If not None, set the lowest value of the fit to y_min.

    y_max : optional, default: None
        If not None, set the highest value of the fit to y_max.

    increasing : boolean, optional, default: True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False)

    Returns
    -------
    y_ : list of floating-point values
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.
    """
    order = np.s_[:] if increasing else np.s_[::-1]
    y = np.array(y[order], dtype=np.float64)
    if sample_weight is None:
        sample_weight = np.ones(len(y), dtype=np.float64)
    else:
        sample_weight = np.array(sample_weight[order], dtype=np.float64)

    _inplace_contiguous_isotonic_regression(y, sample_weight)
    if y_min is not None or y_max is not None:
        # Older versions of np.clip don't accept None as a bound, so use np.inf
        if y_min is None:
            y_min = -np.inf
        if y_max is None:
            y_max = np.inf
        np.clip(y, y_min, y_max, y)
    return y[order]


class IsotonicRegression(BaseEstimator, TransformerMixin, RegressorMixin):
    """Isotonic regression model.

    The isotonic regression optimization problem is defined by::

        min sum w_i (y[i] - y_[i]) ** 2

        subject to y_[i] <= y_[j] whenever X[i] <= X[j]
        and min(y_) = y_min, max(y_) = y_max

    where:
        - ``y[i]`` are inputs (real numbers)
        - ``y_[i]`` are fitted
        - ``X`` specifies the order.
          If ``X`` is non-decreasing then ``y_`` is non-decreasing.
        - ``w[i]`` are optional strictly positive weights (default to 1.0)

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y_min : optional, default: None
        If not None, set the lowest value of the fit to y_min.

    y_max : optional, default: None
        If not None, set the highest value of the fit to y_max.

    increasing : boolean or string, optional, default: True
        If boolean, whether or not to fit the isotonic regression with y
        increasing or decreasing.

        The string value "auto" determines whether y should
        increase or decrease based on the Spearman correlation estimate's
        sign.

    out_of_bounds : string, optional, default: "nan"
        The ``out_of_bounds`` parameter handles how x-values outside of the
        training domain are handled.  When set to "nan", predicted y-values
        will be NaN.  When set to "clip", predicted y-values will be
        set to the value corresponding to the nearest train interval endpoint.
        When set to "raise", allow ``interp1d`` to throw ValueError.


    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    f_ : function
        The stepwise interpolating function that covers the domain `X_`.

    Notes
    -----
    Ties are broken using the secondary method from Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    Leeuw, Psychometrica, 1977
    """
    def __init__(self, y_min=None, y_max=None, increasing=True,
                 out_of_bounds='nan'):
        self.y_min = y_min
        self.y_max = y_max
        self.increasing = increasing
        self.out_of_bounds = out_of_bounds

    @property
    @deprecated("Attribute ``X_`` is deprecated in version 0.18 and will be"
                " removed in version 0.20.")
    def X_(self):
        return self._X_

    @X_.setter
    def X_(self, value):
        self._X_ = value

    @X_.deleter
    def X_(self):
        del self._X_

    @property
    @deprecated("Attribute ``y_`` is deprecated in version 0.18 and will"
                " be removed in version 0.20.")
    def y_(self):
        return self._y_

    @y_.setter
    def y_(self, value):
        self._y_ = value

    @y_.deleter
    def y_(self):
        del self._y_

    def _check_fit_data(self, X, y, sample_weight=None):
        if len(X.shape) != 1:
            raise ValueError("X should be a 1d array")

    def _build_f(self, X, y):
        """Build the f_ interp1d function."""

        # Handle the out_of_bounds argument by setting bounds_error
        if self.out_of_bounds not in ["raise", "nan", "clip"]:
            raise ValueError("The argument ``out_of_bounds`` must be in "
                             "'nan', 'clip', 'raise'; got {0}"
                             .format(self.out_of_bounds))

        bounds_error = self.out_of_bounds == "raise"
        if len(y) == 1:
            # single y, constant prediction
            self.f_ = lambda x: y.repeat(x.shape)
        else:
            self.f_ = interpolate.interp1d(X, y, kind='linear',
                                           bounds_error=bounds_error)

    def _build_y(self, X, y, sample_weight, trim_duplicates=True):
        """Build the y_ IsotonicRegression."""
        check_consistent_length(X, y, sample_weight)
        X, y = [check_array(x, ensure_2d=False) for x in [X, y]]

        y = as_float_array(y)
        self._check_fit_data(X, y, sample_weight)

        # Determine increasing if auto-determination requested
        if self.increasing == 'auto':
            self.increasing_ = check_increasing(X, y)
        else:
            self.increasing_ = self.increasing

        # If sample_weights is passed, removed zero-weight values and clean
        # order
        if sample_weight is not None:
            sample_weight = check_array(sample_weight, ensure_2d=False)
            mask = sample_weight > 0
            X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
        else:
            sample_weight = np.ones(len(y))

        order = np.lexsort((y, X))
        X, y, sample_weight = [array[order].astype(np.float64, copy=False)
                               for array in [X, y, sample_weight]]
        unique_X, unique_y, unique_sample_weight = _make_unique(
            X, y, sample_weight)

        # Store _X_ and _y_ to maintain backward compat during the deprecation
        # period of X_ and y_
        self._X_ = X = unique_X
        self._y_ = y = isotonic_regression(unique_y, unique_sample_weight,
                                           self.y_min, self.y_max,
                                           increasing=self.increasing_)

        # Handle the left and right bounds on X
        self.X_min_, self.X_max_ = np.min(X), np.max(X)

        if trim_duplicates:
            # Remove unnecessary points for faster prediction
            keep_data = np.ones((len(y),), dtype=bool)
            # Aside from the 1st and last point, remove points whose y values
            # are equal to both the point before and the point after it.
            keep_data[1:-1] = np.logical_or(
                np.not_equal(y[1:-1], y[:-2]),
                np.not_equal(y[1:-1], y[2:])
            )
            return X[keep_data], y[keep_data]
        else:
            # The ability to turn off trim_duplicates is only used to it make
            # easier to unit test that removing duplicates in y does not have
            # any impact the resulting interpolation function (besides
            # prediction speed).
            return X, y

    def fit(self, X, y, sample_weight=None):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape=(n_samples,)
            Training data.

        y : array-like, shape=(n_samples,)
            Training target.

        sample_weight : array-like, shape=(n_samples,), optional, default: None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as `transform` needs X to interpolate
        new input data.
        """
        # Transform y by running the isotonic regression algorithm and
        # transform X accordingly.
        X, y = self._build_y(X, y, sample_weight)

        # It is necessary to store the non-redundant part of the training set
        # on the model to make it possible to support model persistence via
        # the pickle module as the object built by scipy.interp1d is not
        # picklable directly.
        self._necessary_X_, self._necessary_y_ = X, y

        # Build the interpolation function
        self._build_f(X, y)
        return self

    def transform(self, T):
        """Transform new data by linear interpolation

        Parameters
        ----------
        T : array-like, shape=(n_samples,)
            Data to transform.

        Returns
        -------
        T_ : array, shape=(n_samples,)
            The transformed data
        """
        T = as_float_array(T)
        if len(T.shape) != 1:
            raise ValueError("Isotonic regression input should be a 1d array")

        # Handle the out_of_bounds argument by clipping if needed
        if self.out_of_bounds not in ["raise", "nan", "clip"]:
            raise ValueError("The argument ``out_of_bounds`` must be in "
                             "'nan', 'clip', 'raise'; got {0}"
                             .format(self.out_of_bounds))

        if self.out_of_bounds == "clip":
            T = np.clip(T, self.X_min_, self.X_max_)
        return self.f_(T)

    def predict(self, T):
        """Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like, shape=(n_samples,)
            Data to transform.

        Returns
        -------
        T_ : array, shape=(n_samples,)
            Transformed data.
        """
        return self.transform(T)

    def __getstate__(self):
        """Pickle-protocol - return state of the estimator. """
        state = super(IsotonicRegression, self).__getstate__()
        # remove interpolation method
        state.pop('f_', None)
        return state

    def __setstate__(self, state):
        """Pickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        """
        super(IsotonicRegression, self).__setstate__(state)
        if hasattr(self, '_necessary_X_') and hasattr(self, '_necessary_y_'):
            self._build_f(self._necessary_X_, self._necessary_y_)