/usr/lib/python3/dist-packages/schema-0.6.7.egg-info/PKG-INFO is in python3-schema 0.6.7-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | Metadata-Version: 1.1
Name: schema
Version: 0.6.7
Summary: Simple data validation library
Home-page: https://github.com/keleshev/schema
Author: Vladimir Keleshev
Author-email: vladimir@keleshev.com
License: MIT
Description-Content-Type: UNKNOWN
Description: Schema validation just got Pythonic
===============================================================================
**schema** is a library for validating Python data structures, such as those
obtained from config-files, forms, external services or command-line
parsing, converted from JSON/YAML (or something else) to Python data-types.
.. image:: https://secure.travis-ci.org/keleshev/schema.png?branch=master
:target: https://travis-ci.org/keleshev/schema
.. image:: https://img.shields.io/codecov/c/github/keleshev/schema.svg
:target: http://codecov.io/github/keleshev/schema
Example
----------------------------------------------------------------------------
Here is a quick example to get a feeling of **schema**, validating a list of
entries with personal information:
.. code:: python
>>> from schema import Schema, And, Use, Optional
>>> schema = Schema([{'name': And(str, len),
... 'age': And(Use(int), lambda n: 18 <= n <= 99),
... Optional('gender'): And(str, Use(str.lower),
... lambda s: s in ('squid', 'kid'))}])
>>> data = [{'name': 'Sue', 'age': '28', 'gender': 'Squid'},
... {'name': 'Sam', 'age': '42'},
... {'name': 'Sacha', 'age': '20', 'gender': 'KID'}]
>>> validated = schema.validate(data)
>>> assert validated == [{'name': 'Sue', 'age': 28, 'gender': 'squid'},
... {'name': 'Sam', 'age': 42},
... {'name': 'Sacha', 'age' : 20, 'gender': 'kid'}]
If data is valid, ``Schema.validate`` will return the validated data
(optionally converted with `Use` calls, see below).
If data is invalid, ``Schema`` will raise ``SchemaError`` exception.
Installation
-------------------------------------------------------------------------------
Use `pip <http://pip-installer.org>`_ or easy_install::
pip install schema
Alternatively, you can just drop ``schema.py`` file into your project—it is
self-contained.
- **schema** is tested with Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5 and PyPy.
- **schema** follows `semantic versioning <http://semver.org>`_.
How ``Schema`` validates data
-------------------------------------------------------------------------------
Types
~~~~~
If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``,
etc.), it will check if the corresponding piece of data is an instance of that type,
otherwise it will raise ``SchemaError``.
.. code:: python
>>> from schema import Schema
>>> Schema(int).validate(123)
123
>>> Schema(int).validate('123')
Traceback (most recent call last):
...
SchemaUnexpectedTypeError: '123' should be instance of 'int'
>>> Schema(object).validate('hai')
'hai'
Callables
~~~~~~~~~
If ``Schema(...)`` encounters a callable (function, class, or object with
``__call__`` method) it will call it, and if its return value evaluates to
``True`` it will continue validating, else—it will raise ``SchemaError``.
.. code:: python
>>> import os
>>> Schema(os.path.exists).validate('./')
'./'
>>> Schema(os.path.exists).validate('./non-existent/')
Traceback (most recent call last):
...
SchemaError: exists('./non-existent/') should evaluate to True
>>> Schema(lambda n: n > 0).validate(123)
123
>>> Schema(lambda n: n > 0).validate(-12)
Traceback (most recent call last):
...
SchemaError: <lambda>(-12) should evaluate to True
"Validatables"
~~~~~~~~~~~~~~
If ``Schema(...)`` encounters an object with method ``validate`` it will run
this method on corresponding data as ``data = obj.validate(data)``. This method
may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece
of data is invalid, otherwise—it will continue validating.
An example of "validatable" is ``Regex``, that tries to match a string or a
buffer with the given regular expression (itself as a string, buffer or
compiled regex ``SRE_Pattern``):
.. code:: python
>>> from schema import Regex
>>> import re
>>> Regex(r'^foo').validate('foobar')
'foobar'
>>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match')
Traceback (most recent call last):
...
SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match'
For a more general case, you can use ``Use`` for creating such objects.
``Use`` helps to use a function or type to convert a value while validating it:
.. code:: python
>>> from schema import Use
>>> Schema(Use(int)).validate('123')
123
>>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
<open file 'LICENSE-MIT', mode 'a' at 0x...>
Dropping the details, ``Use`` is basically:
.. code:: python
class Use(object):
def __init__(self, callable_):
self._callable = callable_
def validate(self, data):
try:
return self._callable(data)
except Exception as e:
raise SchemaError('%r raised %r' % (self._callable.__name__, e))
Sometimes you need to transform and validate part of data, but keep original data unchanged.
``Const`` helps to keep your data safe:
.. code:: python
>> from schema import Use, Const, And, Schema
>> from datetime import datetime
>> is_future = lambda date: datetime.now() > date
>> to_json = lambda v: {"timestamp": v}
>> Schema(And(Const(And(Use(datetime.fromtimestamp), is_future)), Use(to_json))).validate(1234567890)
{"timestamp": 1234567890}
Now you can write your own validation-aware classes and data types.
Lists, similar containers
~~~~~~~~~~~~~~~~~~~~~~~~~
If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or
``frozenset``, it will validate contents of corresponding data container
against schemas listed inside that container:
.. code:: python
>>> Schema([1, 0]).validate([1, 1, 0, 1])
[1, 1, 0, 1]
>>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
Traceback (most recent call last):
...
SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
'not int or float here' should be instance of 'float'
Dictionaries
~~~~~~~~~~~~
If ``Schema(...)`` encounters an instance of ``dict``, it will validate data
key-value pairs:
.. code:: python
>>> d = Schema({'name': str,
... 'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28})
>>> assert d == {'name': 'Sue', 'age': 28}
You can specify keys as schemas too:
.. code:: python
>>> schema = Schema({str: int, # string keys should have integer values
... int: None}) # int keys should be always None
>>> data = schema.validate({'key1': 1, 'key2': 2,
... 10: None, 20: None})
>>> schema.validate({'key1': 1,
... 10: 'not None here'})
Traceback (most recent call last):
...
SchemaError: Key '10' error:
None does not match 'not None here'
This is useful if you want to check certain key-values, but don't care
about other:
.. code:: python
>>> schema = Schema({'<id>': int,
... '<file>': Use(open),
... str: object}) # don't care about other str keys
>>> data = schema.validate({'<id>': 10,
... '<file>': 'README.rst',
... '--verbose': True})
You can mark a key as optional as follows:
.. code:: python
>>> from schema import Optional
>>> Schema({'name': str,
... Optional('occupation'): str}).validate({'name': 'Sam'})
{'name': 'Sam'}
``Optional`` keys can also carry a ``default``, to be used when no key in the
data matches:
.. code:: python
>>> from schema import Optional
>>> Schema({Optional('color', default='blue'): str,
... str: str}).validate({'texture': 'furry'}
... ) == {'color': 'blue', 'texture': 'furry'}
True
Defaults are used verbatim, not passed through any validators specified in the
value.
You can mark a key as forbidden as follows:
.. code:: python
>>> from schema import Forbidden
>>> Schema({Forbidden('age'): object}).validate({'age': 50})
Traceback (most recent call last):
...
SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
A few things are worth noting. First, the value paired with the forbidden
key determines whether it will be rejected:
.. code:: python
>>> Schema({Forbidden('age'): str, 'age': int}).validate({'age': 50})
{'age': 50}
Note: if we hadn't supplied the 'age' key here, the call would have failed too, but with
SchemaWrongKeyError, not SchemaForbiddenKeyError.
Second, Forbidden has a higher priority than standard keys, and consequently than Optional.
This means we can do that:
.. code:: python
>>> Schema({Forbidden('age'): object, Optional(str): object}).validate({'age': 50})
Traceback (most recent call last):
...
SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
**schema** has classes ``And`` and ``Or`` that help validating several schemas
for the same data:
.. code:: python
>>> from schema import And, Or
>>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
{'age': 7}
>>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
Traceback (most recent call last):
...
SchemaError: Key 'password' error:
<lambda>('hai') should evaluate to True
>>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
3.1415
Extra Keys
~~~~~~~~~~
The ``Schema(...)`` parameter ``ignore_extra_keys`` causes validation to ignore extra keys in a dictionary, and also to not return them after validating.
.. code:: python
>>> schema = Schema({'name': str}, ignore_extra_keys=True)
>>> schema.validate({'name': 'Sam', 'age': '42'})
{'name': 'Sam'}
If you would like any extra keys returned, use ``object: object`` as one of the key/value pairs, which will match any key and any value.
Otherwise, extra keys will raise a ``SchemaError``.
User-friendly error reporting
-------------------------------------------------------------------------------
You can pass a keyword argument ``error`` to any of validatable classes
(such as ``Schema``, ``And``, ``Or``, ``Regex``, ``Use``) to report this error
instead of a built-in one.
.. code:: python
>>> Schema(Use(int, error='Invalid year')).validate('XVII')
Traceback (most recent call last):
...
SchemaError: Invalid year
You can see all errors that occurred by accessing exception's ``exc.autos``
for auto-generated error messages, and ``exc.errors`` for errors
which had ``error`` text passed to them.
You can exit with ``sys.exit(exc.code)`` if you want to show the messages
to the user without traceback. ``error`` messages are given precedence in that
case.
A JSON API example
-------------------------------------------------------------------------------
Here is a quick example: validation of
`create a gist <http://developer.github.com/v3/gists/>`_
request from github API.
.. code:: python
>>> gist = '''{"description": "the description for this gist",
... "public": true,
... "files": {
... "file1.txt": {"content": "String file contents"},
... "other.txt": {"content": "Another file contents"}}}'''
>>> from schema import Schema, And, Use, Optional
>>> import json
>>> gist_schema = Schema(And(Use(json.loads), # first convert from JSON
... # use basestring since json returns unicode
... {Optional('description'): basestring,
... 'public': bool,
... 'files': {basestring: {'content': basestring}}}))
>>> gist = gist_schema.validate(gist)
# gist:
{u'description': u'the description for this gist',
u'files': {u'file1.txt': {u'content': u'String file contents'},
u'other.txt': {u'content': u'Another file contents'}},
u'public': True}
Using **schema** with `docopt <http://github.com/docopt/docopt>`_
-------------------------------------------------------------------------------
Assume you are using **docopt** with the following usage-pattern:
Usage: my_program.py [--count=N] <path> <files>...
and you would like to validate that ``<files>`` are readable, and that
``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or
``None``.
Assuming **docopt** returns the following dict:
.. code:: python
>>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
... '<path>': '../',
... '--count': '3'}
this is how you validate it using ``schema``:
.. code:: python
>>> from schema import Schema, And, Or, Use
>>> import os
>>> s = Schema({'<files>': [Use(open)],
... '<path>': os.path.exists,
... '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})
>>> args = s.validate(args)
>>> args['<files>']
[<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]
>>> args['<path>']
'../'
>>> args['--count']
3
As you can see, **schema** validated data successfully, opened files and
converted ``'3'`` to ``int``.
Keywords: schema json validation
Platform: UNKNOWN
Classifier: Development Status :: 3 - Alpha
Classifier: Topic :: Utilities
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: License :: OSI Approved :: MIT License
|