This file is indexed.

/usr/lib/python3/dist-packages/sasmodels/weights.py is in python3-sasmodels 0.97~git20171104-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
SAS distributions for polydispersity.
"""
# TODO: include dispersion docs with the disperser models
from __future__ import division, print_function

from math import sqrt  # type: ignore
from collections import OrderedDict

import numpy as np  # type: ignore
from scipy.special import gammaln  # type: ignore

# TODO: include dispersion docs with the disperser models

class Dispersion(object):
    """
    Base dispersion object.

    Subclasses should define *_weights(center, sigma, lb, ub)*
    which returns the x points and their corresponding weights.
    """
    type = "base disperser"
    default = dict(npts=35, width=0, nsigmas=3)
    def __init__(self, npts=None, width=None, nsigmas=None):
        self.npts = self.default['npts'] if npts is None else npts
        self.width = self.default['width'] if width is None else width
        self.nsigmas = self.default['nsigmas'] if nsigmas is None else nsigmas

    def get_pars(self):
        """
        Return the parameters to the disperser as a dictionary.
        """
        pars = {'type': self.type}
        pars.update(self.__dict__)
        return pars

    # pylint: disable=no-self-use
    def set_weights(self, values, weights):
        """
        Set the weights on the disperser if it is :class:`ArrayDispersion`.
        """
        raise RuntimeError("set_weights is only available for ArrayDispersion")

    def get_weights(self, center, lb, ub, relative):
        """
        Return the weights for the distribution.

        *center* is the center of the distribution

        *lb*, *ub* are the min and max allowed values

        *relative* is True if the distribution width is proportional to the
        center value instead of absolute.  For polydispersity use relative.
        For orientation parameters use absolute.
        """
        sigma = self.width * center if relative else self.width
        if sigma == 0 or self.npts < 2:
            if lb <= center <= ub:
                return np.array([center], 'd'), np.array([1.], 'd')
            else:
                return np.array([], 'd'), np.array([], 'd')
        x, px = self._weights(center, sigma, lb, ub)
        return x, px

    def _weights(self, center, sigma, lb, ub):
        """actual work of computing the weights"""
        raise NotImplementedError

    def _linspace(self, center, sigma, lb, ub):
        """helper function to provide linear spaced weight points within range"""
        npts, nsigmas = self.npts, self.nsigmas
        x = center + np.linspace(-nsigmas*sigma, +nsigmas*sigma, npts)
        x = x[(x >= lb) & (x <= ub)]
        return x


class GaussianDispersion(Dispersion):
    r"""
    Gaussian dispersion, with 1-\ $\sigma$ width.

    .. math::

        w = \exp\left(-\tfrac12 (x - c)^2/\sigma^2\right)
    """
    type = "gaussian"
    default = dict(npts=35, width=0, nsigmas=3)
    def _weights(self, center, sigma, lb, ub):
        # TODO: sample high probability regions more densely
        # i.e., step uniformly in cumulative density rather than x value
        # so weight = 1/Npts for all weights, but values are unevenly spaced
        x = self._linspace(center, sigma, lb, ub)
        px = np.exp((x-center)**2 / (-2.0 * sigma * sigma))
        return x, px


class RectangleDispersion(Dispersion):
    r"""
    Uniform dispersion, with width $\sqrt{3}\sigma$.

    .. math::

        w = 1
    """
    type = "rectangle"
    default = dict(npts=35, width=0, nsigmas=1.70325)
    def _weights(self, center, sigma, lb, ub):
        x = self._linspace(center, sigma, lb, ub)
        x = x[np.fabs(x-center) <= np.fabs(sigma)*sqrt(3.0)]
        return x, np.ones_like(x)


class LogNormalDispersion(Dispersion):
    r"""
    log Gaussian dispersion, with 1-\ $\sigma$ width.

    .. math::

        w = \frac{\exp\left(-\tfrac12 (\ln x - c)^2/\sigma^2\right)}{x\sigma}
    """
    type = "lognormal"
    default = dict(npts=80, width=0, nsigmas=8)
    def _weights(self, center, sigma, lb, ub):
        x = self._linspace(center, sigma, max(lb, 1e-8), max(ub, 1e-8))
        # sigma in the lognormal function is in ln(R) space, thus needs converting
        sig = np.fabs(sigma/center)
        px = np.exp(-0.5*((np.log(x)-np.log(center))/sig)**2)/(x*sig)
        return x, px


class SchulzDispersion(Dispersion):
    r"""
    Schultz dispersion, with 1-\ $\sigma$ width.

    .. math::

        w = \frac{z^z\,R^{z-1}}{e^{Rz}\,c \Gamma(z)}

    where $c$ is the center of the distribution, $R = x/c$ and $z=(c/\sigma)^2$.

    This is evaluated using logarithms as

    .. math::

        w = \exp\left(z \ln z + (z-1)\ln R - Rz - \ln c - \ln \Gamma(z) \right)
    """
    type = "schulz"
    default = dict(npts=80, width=0, nsigmas=8)
    def _weights(self, center, sigma, lb, ub):
        x = self._linspace(center, sigma, max(lb, 1e-8), max(ub, 1e-8))
        R = x/center
        z = (center/sigma)**2
        arg = z*np.log(z) + (z-1)*np.log(R) - R*z - np.log(center) - gammaln(z)
        px = np.exp(arg)
        return x, px


class ArrayDispersion(Dispersion):
    r"""
    Empirical dispersion curve.

    Use :meth:`set_weights` to set $w = f(x)$.
    """
    type = "array"
    default = dict(npts=35, width=0, nsigmas=1)
    def __init__(self, npts=None, width=None, nsigmas=None):
        Dispersion.__init__(self, npts, width, nsigmas)
        self.values = np.array([0.], 'd')
        self.weights = np.array([1.], 'd')

    def set_weights(self, values, weights):
        """
        Set the weights for the given x values.
        """
        self.values = np.ascontiguousarray(values, 'd')
        self.weights = np.ascontiguousarray(weights, 'd')
        self.npts = len(values)

    def _weights(self, center, sigma, lb, ub):
        # TODO: rebin the array dispersion using npts
        # TODO: use a distribution that can be recentered and scaled
        x = self.values
        #x = center + self.values*sigma
        idx = (x >= lb) & (x <= ub)
        x = x[idx]
        px = self.weights[idx]
        return x, px


# dispersion name -> disperser lookup table.
# Maintain order since this is used by sasview GUI to order the options in
# the dispersion type combobox.
MODELS = OrderedDict((d.type, d) for d in (
    RectangleDispersion,
    ArrayDispersion,
    LogNormalDispersion,
    GaussianDispersion,
    SchulzDispersion,
))


def get_weights(disperser, n, width, nsigmas, value, limits, relative):
    """
    Return the set of values and weights for a polydisperse parameter.

    *disperser* is the name of the disperser.

    *n* is the number of points in the weight vector.

    *width* is the width of the disperser distribution.

    *nsigmas* is the number of sigmas to span for the dispersion convolution.

    *value* is the value of the parameter in the model.

    *limits* is [lb, ub], the lower and upper bound on the possible values.

    *relative* is true if *width* is defined in proportion to the value
    of the parameter, and false if it is an absolute width.

    Returns *(value, weight)*, where *value* and *weight* are vectors.
    """
    if disperser == "array":
        raise NotImplementedError("Don't handle arrays through get_weights; use values and weights directly")
    cls = MODELS[disperser]
    obj = cls(n, width, nsigmas)
    v, w = obj.get_weights(value, limits[0], limits[1], relative)
    return v, w


def plot_weights(model_info, pairs):
    # type: (ModelInfo, List[Tuple[np.ndarray, np.ndarray]]) -> None
    """
    Plot the weights returned by :func:`get_weights`.

    *model_info* is
    :param model_info:
    :param pairs:
    :return:
    """
    import pylab

    if any(len(values)>1 for values, weights in pairs):
        labels = [p.name for p in model_info.parameters.call_parameters]
        pylab.interactive(True)
        pylab.figure()
        for (v,w), s in zip(pairs, labels):
            if len(v) > 1:
                #print("weights for", s, v, w)
                pylab.plot(v, w, '-o', label=s)
        pylab.grid(True)
        pylab.legend()
        #pylab.show()