This file is indexed.

/usr/lib/python3/dist-packages/sasmodels/resolution.py is in python3-sasmodels 0.97~git20171104-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
"""
Define the resolution functions for the data.

This defines classes for 1D and 2D resolution calculations.
"""
from __future__ import division

from scipy.special import erf  # type: ignore
from numpy import sqrt, log, log10, exp, pi  # type: ignore
import numpy as np  # type: ignore

__all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D",
           "apply_resolution_matrix", "pinhole_resolution", "slit_resolution",
           "pinhole_extend_q", "slit_extend_q", "bin_edges",
           "interpolate", "linear_extrapolation", "geometric_extrapolation",
          ]

MINIMUM_RESOLUTION = 1e-8
MINIMUM_ABSOLUTE_Q = 0.02  # relative to the minimum q in the data

class Resolution(object):
    """
    Abstract base class defining a 1D resolution function.

    *q* is the set of q values at which the data is measured.

    *q_calc* is the set of q values at which the theory needs to be evaluated.
    This may extend and interpolate the q values.

    *apply* is the method to call with I(q_calc) to compute the resolution
    smeared theory I(q).
    """
    q = None  # type: np.ndarray
    q_calc = None  # type: np.ndarray
    def apply(self, theory):
        """
        Smear *theory* by the resolution function, returning *Iq*.
        """
        raise NotImplementedError("Subclass does not define the apply function")


class Perfect1D(Resolution):
    """
    Resolution function to use when there is no actual resolution smearing
    to be applied.  It has the same interface as the other resolution
    functions, but returns the identity function.
    """
    def __init__(self, q):
        self.q_calc = self.q = q

    def apply(self, theory):
        return theory


class Pinhole1D(Resolution):
    r"""
    Pinhole aperture with q-dependent gaussian resolution.

    *q* points at which the data is measured.

    *q_width* gaussian 1-sigma resolution at each data point.

    *q_calc* is the list of points to calculate, or None if this should
    be estimated from the *q* and *q_width*.
    """
    def __init__(self, q, q_width, q_calc=None, nsigma=3):
        #*min_step* is the minimum point spacing to use when computing the
        #underlying model.  It should be on the order of
        #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes
        #are computed with sufficient density to avoid aliasing effects.

        # Protect against calls with q_width=0.  The extend_q function will
        # not extend the q if q_width is 0, but q_width must be non-zero when
        # constructing the weight matrix to avoid division by zero errors.
        # In practice this should never be needed, since resolution should
        # default to Perfect1D if the pinhole geometry is not defined.
        self.q, self.q_width = q, q_width
        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma)
                       if q_calc is None else np.sort(q_calc))

        # Protect against models which are not defined for very low q.  Limit
        # the smallest q value evaluated (in absolute) to 0.02*min
        cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
        self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff]

        # Build weight matrix from calculated q values
        self.weight_matrix = pinhole_resolution(self.q_calc, self.q,
                                np.maximum(q_width, MINIMUM_RESOLUTION))
        self.q_calc = abs(self.q_calc)

    def apply(self, theory):
        return apply_resolution_matrix(self.weight_matrix, theory)


class Slit1D(Resolution):
    """
    Slit aperture with resolution function.

    *q* points at which the data is measured.

    *dqx* slit width in qx

    *dqy* slit height in qy

    *q_calc* is the list of points to calculate, or None if this should
    be estimated from the *q* and *q_width*.

    The *weight_matrix* is computed by :func:`slit1d_resolution`
    """
    def __init__(self, q, qx_width, qy_width=0., q_calc=None):
        # Remember what width/dqy was used even though we won't need them
        # after the weight matrix is constructed
        self.qx_width, self.qy_width = qx_width, qy_width

        # Allow independent resolution on each point even though it is not
        # needed in practice.
        if np.isscalar(qx_width):
            qx_width = np.ones(len(q))*qx_width
        else:
            qx_width = np.asarray(qx_width)
        if np.isscalar(qy_width):
            qy_width = np.ones(len(q))*qy_width
        else:
            qy_width = np.asarray(qy_width)

        self.q = q.flatten()
        self.q_calc = slit_extend_q(q, qx_width, qy_width) \
            if q_calc is None else np.sort(q_calc)

        # Protect against models which are not defined for very low q.  Limit
        # the smallest q value evaluated (in absolute) to 0.02*min
        cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
        self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff]

        # Build weight matrix from calculated q values
        self.weight_matrix = \
            slit_resolution(self.q_calc, self.q, qx_width, qy_width)
        self.q_calc = abs(self.q_calc)

    def apply(self, theory):
        return apply_resolution_matrix(self.weight_matrix, theory)


def apply_resolution_matrix(weight_matrix, theory):
    """
    Apply the resolution weight matrix to the computed theory function.
    """
    #print("apply shapes", theory.shape, weight_matrix.shape)
    Iq = np.dot(theory[None, :], weight_matrix)
    #print("result shape",Iq.shape)
    return Iq.flatten()


def pinhole_resolution(q_calc, q, q_width):
    """
    Compute the convolution matrix *W* for pinhole resolution 1-D data.

    Each row *W[i]* determines the normalized weight that the corresponding
    points *q_calc* contribute to the resolution smeared point *q[i]*.  Given
    *W*, the resolution smearing can be computed using *dot(W,q)*.

    *q_calc* must be increasing.  *q_width* must be greater than zero.
    """
    # The current algorithm is a midpoint rectangle rule.  In the test case,
    # neither trapezoid nor Simpson's rule improved the accuracy.
    edges = bin_edges(q_calc)
    #edges[edges < 0.0] = 0.0 # clip edges below zero
    cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :])
    weights = cdf[1:] - cdf[:-1]
    weights /= np.sum(weights, axis=0)[None, :]
    return weights


def slit_resolution(q_calc, q, width, height, n_height=30):
    r"""
    Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given
    $q_\perp$ = *width* and $q_\parallel$ = *height*.  *n_height* is
    is the number of steps to use in the integration over $q_\parallel$
    when both $q_\perp$ and $q_\parallel$ are non-zero.

    Each $q$ can have an independent width and height value even though
    current instruments use the same slit setting for all measured points.

    If slit height is large relative to width, use:

    .. math::

        I_s(q_i) = \frac{1}{\Delta q_\perp}
            \int_0^{\Delta q_\perp}
                I\left(\sqrt{q_i^2 + q_\perp^2}\right) \,dq_\perp

    If slit width is large relative to height, use:

    .. math::

        I_s(q_i) = \frac{1}{2 \Delta q_\parallel}
            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
                I\left(|q_i + q_\parallel|\right) \,dq_\parallel

    For a mixture of slit width and height use:

    .. math::

        I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp}
            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
            \int_0^{\Delta q_\perp}
                I\left(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}\right)
                \,dq_\perp dq_\parallel

    **Definition**

    We are using the mid-point integration rule to assign weights to each
    element of a weight matrix $W$ so that

    .. math::

        I_s(q) = W\,I(q_\text{calc})

    If *q_calc* is at the mid-point, we can infer the bin edges from the
    pairwise averages of *q_calc*, adding the missing edges before
    *q_calc[0]* and after *q_calc[-1]*.

    For $q_\parallel = 0$, the smeared value can be computed numerically
    using the $u$ substitution

    .. math::

        u_j = \sqrt{q_j^2 - q^2}

    This gives

    .. math::

        I_s(q) \approx \sum_j I(u_j) \Delta u_j

    where $I(u_j)$ is the value at the mid-point, and $\Delta u_j$ is the
    difference between consecutive edges which have been first converted
    to $u$.  Only $u_j \in [0, \Delta q_\perp]$ are used, which corresponds
    to $q_j \in \left[q, \sqrt{q^2 + \Delta q_\perp}\right]$, so

    .. math::

        W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j
               = \frac{1}{\Delta q_\perp} \left(
                    \sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \right)
            \ \text{if}\  q_j \in \left[q_i, \sqrt{q_i^2 + q_\perp^2}\right]

    where $I_s(q_i)$ is the theory function being computed and $q_j$ are the
    mid-points between the calculated values in *q_calc*.  We tweak the
    edges of the initial and final intervals so that they lie on integration
    limits.

    (To be precise, the transformed midpoint $u(q_j)$ is not necessarily the
    midpoint of the edges $u((q_{j-1}+q_j)/2)$ and $u((q_j + q_{j+1})/2)$,
    but it is at least in the interval, so the approximation is going to be
    a little better than the left or right Riemann sum, and should be
    good enough for our purposes.)

    For $q_\perp = 0$, the $u$ substitution is simpler:

    .. math::

        u_j = \left|q_j - q\right|

    so

    .. math::

        W_{ij} = \frac{1}{2 \Delta q_\parallel} \Delta u_j
            = \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j)
            \ \text{if}\ q_j \in
                \left[q-\Delta q_\parallel, q+\Delta q_\parallel\right]

    However, we need to support cases were $u_j < 0$, which means using
    $2 (q_{j+1} - q_j)$ when $q_j \in \left[0, q_\parallel-q_i\right]$.
    This is not an issue for $q_i > q_\parallel$.

    For both $q_\perp > 0$ and $q_\parallel > 0$ we perform a 2 dimensional
    integration with

    .. math::

        u_{jk} = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2}
            \ \text{for}\ k = -L \ldots L

    for $L$ = *n_height*.  This gives

    .. math::

        W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel}
            \sum_{k=-L}^L \Delta u_{jk}
                \left(\frac{\Delta q_\parallel}{2 L + 1}\right)


    """
    #np.set_printoptions(precision=6, linewidth=10000)

    # The current algorithm is a midpoint rectangle rule.
    q_edges = bin_edges(q_calc) # Note: requires q > 0
    #q_edges[q_edges < 0.0] = 0.0 # clip edges below zero
    weights = np.zeros((len(q), len(q_calc)), 'd')

    #print(q_calc)
    for i, (qi, w, h) in enumerate(zip(q, width, height)):
        if w == 0. and h == 0.:
            # Perfect resolution, so return the theory value directly.
            # Note: assumes that q is a subset of q_calc.  If qi need not be
            # in q_calc, then we can do a weighted interpolation by looking
            # up qi in q_calc, then weighting the result by the relative
            # distance to the neighbouring points.
            weights[i, :] = (q_calc == qi)
        elif h == 0:
            weights[i, :] = _q_perp_weights(q_edges, qi, w)
        elif w == 0:
            in_x = 1.0 * ((q_calc >= qi-h) & (q_calc <= qi+h))
            abs_x = 1.0*(q_calc < abs(qi - h)) if qi < h else 0.
            #print(qi - h, qi + h)
            #print(in_x + abs_x)
            weights[i, :] = (in_x + abs_x) * np.diff(q_edges) / (2*h)
        else:
            for k in range(-n_height, n_height+1):
                weights[i, :] += _q_perp_weights(q_edges, qi+k*h/n_height, w)
            weights[i, :] /= 2*n_height + 1

    return weights.T


def _q_perp_weights(q_edges, qi, w):
    # Convert bin edges from q to u
    u_limit = np.sqrt(qi**2 + w**2)
    u_edges = q_edges**2 - qi**2
    u_edges[q_edges < abs(qi)] = 0.
    u_edges[q_edges > u_limit] = u_limit**2 - qi**2
    weights = np.diff(np.sqrt(u_edges))/w
    #print("i, qi",i,qi,qi+width)
    #print(q_calc)
    #print(weights)
    return weights


def pinhole_extend_q(q, q_width, nsigma=3):
    """
    Given *q* and *q_width*, find a set of sampling points *q_calc* so
    that each point $I(q)$ has sufficient support from the underlying
    function.
    """
    q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width)
    return linear_extrapolation(q, q_min, q_max)


def slit_extend_q(q, width, height):
    """
    Given *q*, *width* and *height*, find a set of sampling points *q_calc* so
    that each point I(q) has sufficient support from the underlying
    function.
    """
    q_min, q_max = np.min(q-height), np.max(np.sqrt((q+height)**2 + width**2))

    return geometric_extrapolation(q, q_min, q_max)


def bin_edges(x):
    """
    Determine bin edges from bin centers, assuming that edges are centered
    between the bins.

    Note: this uses the arithmetic mean, which may not be appropriate for
    log-scaled data.
    """
    if len(x) < 2 or (np.diff(x) < 0).any():
        raise ValueError("Expected bins to be an increasing set")
    edges = np.hstack([
        x[0]  - 0.5*(x[1]  - x[0]),  # first point minus half first interval
        0.5*(x[1:] + x[:-1]),        # mid points of all central intervals
        x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval
        ])
    return edges


def interpolate(q, max_step):
    """
    Returns *q_calc* with points spaced at most max_step apart.
    """
    step = np.diff(q)
    index = step > max_step
    if np.any(index):
        inserts = []
        for q_i, step_i in zip(q[:-1][index], step[index]):
            n = np.ceil(step_i/max_step)
            inserts.extend(q_i + np.arange(1, n)*(step_i/n))
        # Extend a couple of fringes beyond the end of the data
        inserts.extend(q[-1] + np.arange(1, 8)*max_step)
        q_calc = np.sort(np.hstack((q, inserts)))
    else:
        q_calc = q
    return q_calc


def linear_extrapolation(q, q_min, q_max):
    """
    Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as
    a guide.  Extrapolation below uses about the same size as the first
    interval.  Extrapolation above uses about the same size as the final
    interval.

    Note that extrapolated values may be negative.
    """
    q = np.sort(q)
    if q_min + 2*MINIMUM_RESOLUTION < q[0]:
        n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15
        q_low = np.linspace(q_min, q[0], n_low+1)[:-1]
    else:
        q_low = []
    if q_max - 2*MINIMUM_RESOLUTION > q[-1]:
        n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15
        q_high = np.linspace(q[-1], q_max, n_high+1)[1:]
    else:
        q_high = []
    return np.concatenate([q_low, q, q_high])


def geometric_extrapolation(q, q_min, q_max, points_per_decade=None):
    r"""
    Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the
    average geometric step size in *q* as the step size.

    if *q_min* is zero or less then *q[0]/10* is used instead.

    *points_per_decade* sets the ratio between consecutive steps such
    that there will be $n$ points used for every factor of 10 increase
    in *q*.

    If *points_per_decade* is not given, it will be estimated as follows.
    Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$
    in $n$ points gives a geometric average of:

    .. math::

         \log \Delta q = (\log q_n - \log q_1) / (n - 1)

    From this we can compute the number of steps required to extend $q$
    from $q_n$ to $q_\text{max}$ by $\Delta q$ as:

    .. math::

         n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q

    Substituting:

    .. math::

         n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n)
            / (\log q_n - \log q_1)
    """
    q = np.sort(q)
    if points_per_decade is None:
        log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0]))
    else:
        log_delta_q = log(10.) / points_per_decade
    if q_min < q[0]:
        if q_min < 0:
            q_min = q[0]*MINIMUM_ABSOLUTE_Q
        n_low = log_delta_q * (log(q[0])-log(q_min))
        q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1]
    else:
        q_low = []
    if q_max > q[-1]:
        n_high = log_delta_q * (log(q_max)-log(q[-1]))
        q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:]
    else:
        q_high = []
    return np.concatenate([q_low, q, q_high])


############################################################################
# unit tests
############################################################################
import unittest


def eval_form(q, form, pars):
    """
    Return the SAS model evaluated at *q*.

    *form* is the SAS model returned from :fun:`core.load_model`.

    *pars* are the parameter values to use when evaluating.
    """
    from sasmodels import direct_model
    kernel = form.make_kernel([q])
    theory = direct_model.call_kernel(kernel, pars)
    kernel.release()
    return theory


def gaussian(q, q0, dq):
    """
    Return the Gaussian resolution function.

    *q0* is the center, *dq* is the width and *q* are the points to evaluate.
    """
    return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq)


def romberg_slit_1d(q, width, height, form, pars):
    """
    Romberg integration for slit resolution.

    This is an adaptive integration technique.  It is called with settings
    that make it slow to evaluate but give it good accuracy.
    """
    from scipy.integrate import romberg  # type: ignore

    par_set = set([p.name for p in form.info.parameters.call_parameters])
    if any(k not in par_set for k in pars.keys()):
        extra = set(pars.keys()) - par_set
        raise ValueError("bad parameters: [%s] not in [%s]"
                         % (", ".join(sorted(extra)),
                            ", ".join(sorted(pars.keys()))))

    if np.isscalar(width):
        width = [width]*len(q)
    if np.isscalar(height):
        height = [height]*len(q)
    _int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars)
    _int_h = lambda h, qi: eval_form(abs(qi+h), form, pars)
    # If both width and height are defined, then it is too slow to use dblquad.
    # Instead use trapz on a fixed grid, interpolated into the I(Q) for
    # the extended Q range.
    #_int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars)
    q_calc = slit_extend_q(q, np.asarray(width), np.asarray(height))
    Iq = eval_form(q_calc, form, pars)
    result = np.empty(len(q))
    for i, (qi, w, h) in enumerate(zip(q, width, height)):
        if h == 0.:
            total = romberg(_int_w, 0, w, args=(qi,),
                            divmax=100, vec_func=True, tol=0, rtol=1e-8)
            result[i] = total/w
        elif w == 0.:
            total = romberg(_int_h, -h, h, args=(qi,),
                            divmax=100, vec_func=True, tol=0, rtol=1e-8)
            result[i] = total/(2*h)
        else:
            w_grid = np.linspace(0, w, 21)[None, :]
            h_grid = np.linspace(-h, h, 23)[:, None]
            u_sub = sqrt((qi+h_grid)**2 + w_grid**2)
            f_at_u = np.interp(u_sub, q_calc, Iq)
            #print(np.trapz(Iu, w_grid, axis=1))
            total  = np.trapz(np.trapz(f_at_u, w_grid, axis=1), h_grid[:, 0])
            result[i] = total / (2*h*w)
            # from scipy.integrate import dblquad
            # r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: w,
            #                  args=(qi,))
            # result[i] = r/(w*2*h)

    # r should be [float, ...], but it is [array([float]), array([float]),...]
    return result


def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5):
    """
    Romberg integration for pinhole resolution.

    This is an adaptive integration technique.  It is called with settings
    that make it slow to evaluate but give it good accuracy.
    """
    from scipy.integrate import romberg  # type: ignore

    par_set = set([p.name for p in form.info.parameters.call_parameters])
    if any(k not in par_set for k in pars.keys()):
        extra = set(pars.keys()) - par_set
        raise ValueError("bad parameters: [%s] not in [%s]"
                         % (", ".join(sorted(extra)),
                            ", ".join(sorted(pars.keys()))))

    func = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq)
    total = [romberg(func, max(qi-nsigma*dqi, 1e-10*q[0]), qi+nsigma*dqi,
                     args=(qi, dqi), divmax=100, vec_func=True,
                     tol=0, rtol=1e-8)
             for qi, dqi in zip(q, q_width)]
    return np.asarray(total).flatten()


class ResolutionTest(unittest.TestCase):
    """
    Test the resolution calculations.
    """

    def setUp(self):
        self.x = 0.001*np.arange(1, 11)
        self.y = self.Iq(self.x)

    def Iq(self, q):
        "Linear function for resolution unit test"
        return 12.0 - 1000.0*q

    def test_perfect(self):
        """
        Perfect resolution and no smearing.
        """
        resolution = Perfect1D(self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    def test_slit_zero(self):
        """
        Slit smearing with perfect resolution.
        """
        resolution = Slit1D(self.x, qx_width=0, qy_width=0, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    @unittest.skip("not yet supported")
    def test_slit_high(self):
        """
        Slit smearing with height 0.005
        """
        resolution = Slit1D(self.x, qx_width=0, qy_width=0.005, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            9.0618, 8.6402, 8.1187, 7.1392, 6.1528,
            5.5555, 4.5584, 3.5606, 2.5623, 2.0000,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_both_high(self):
        """
        Slit smearing with width < 100*height.
        """
        q = np.logspace(-4, -1, 10)
        resolution = Slit1D(q, qx_width=0.2, qy_width=np.inf)
        theory = 1000*self.Iq(resolution.q_calc**4)
        output = resolution.apply(theory)
        answer = [
            8.85785, 8.43012, 7.92687, 6.94566, 6.03660,
            5.40363, 4.40655, 3.40880, 2.41058, 2.00000,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_wide(self):
        """
        Slit smearing with width 0.0002
        """
        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_both_wide(self):
        """
        Slit smearing with width > 100*height.
        """
        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0.000001,
                            q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    def test_pinhole_zero(self):
        """
        Pinhole smearing with perfect resolution
        """
        resolution = Pinhole1D(self.x, 0.0*self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    def test_pinhole(self):
        """
        Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
        """
        resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x),
                               q_calc=self.x)
        theory = 12.0-1000.0*resolution.q_calc
        output = resolution.apply(theory)
        answer = [
            10.44785079, 9.84991299, 8.98101708,
            7.99906585, 6.99998311, 6.00001689,
            5.00093415, 4.01898292, 3.15008701, 2.55214921,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-8)


class IgorComparisonTest(unittest.TestCase):
    """
    Test resolution calculations against those returned by Igor.
    """

    def setUp(self):
        self.pars = TEST_PARS_PINHOLE_SPHERE
        from sasmodels import core
        self.model = core.load_model("sphere", dtype='double')

    def _eval_sphere(self, pars, resolution):
        from sasmodels import direct_model
        kernel = self.model.make_kernel([resolution.q_calc])
        theory = direct_model.call_kernel(kernel, pars)
        result = resolution.apply(theory)
        kernel.release()
        return result

    def _compare(self, q, output, answer, tolerance):
        #err = (output - answer)/answer
        #idx = abs(err) >= tolerance
        #problem = zip(q[idx], output[idx], answer[idx], err[idx])
        #print("\n".join(str(v) for v in problem))
        np.testing.assert_allclose(output, answer, rtol=tolerance)

    def test_perfect(self):
        """
        Compare sphere model with NIST Igor SANS, no resolution smearing.
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, _, answer, _ = data
        resolution = Perfect1D(q)
        output = self._eval_sphere(pars, resolution)
        self._compare(q, output, answer, 1e-6)

    def test_pinhole(self):
        """
        Compare pinhole resolution smearing with NIST Igor SANS
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data
        resolution = Pinhole1D(q, q_width)
        output = self._eval_sphere(pars, resolution)
        # TODO: relative error should be lower
        self._compare(q, output, answer, 3e-4)

    def test_pinhole_romberg(self):
        """
        Compare pinhole resolution smearing with romberg integration result.
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE
        pars['radius'] *= 5

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data
        answer = romberg_pinhole_1d(q, q_width, self.model, pars)
        ## Getting 0.1% requires 5 sigma and 200 points per fringe
        #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5),
        #                     2*np.pi/pars['radius']/200)
        #tol = 0.001
        ## The default 3 sigma and no extra points gets 1%
        q_calc = None  # type: np.ndarray
        tol = 0.01
        resolution = Pinhole1D(q, q_width, q_calc=q_calc)
        output = self._eval_sphere(pars, resolution)
        if 0: # debug plot
            import matplotlib.pyplot as plt  # type: ignore
            resolution = Perfect1D(q)
            source = self._eval_sphere(pars, resolution)
            plt.loglog(q, source, '.')
            plt.loglog(q, answer, '-', hold=True)
            plt.loglog(q, output, '-', hold=True)
            plt.show()
        self._compare(q, output, answer, tol)

    def test_slit(self):
        """
        Compare slit resolution smearing with NIST Igor SANS
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, delta_qv, _, answer = data
        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0)
        output = self._eval_sphere(pars, resolution)
        # TODO: eliminate Igor test since it is too inaccurate to be useful.
        # This means we can eliminate the test data as well, and instead
        # use a generated q vector.
        self._compare(q, output, answer, 0.5)

    def test_slit_romberg(self):
        """
        Compare slit resolution smearing with romberg integration result.
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, delta_qv, _, answer = data
        answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars)
        q_calc = slit_extend_q(interpolate(q, 2*np.pi/pars['radius']/20),
                               delta_qv[0], 0.)
        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0, q_calc=q_calc)
        output = self._eval_sphere(pars, resolution)
        # TODO: relative error should be lower
        self._compare(q, output, answer, 0.025)

    def test_ellipsoid(self):
        """
        Compare romberg integration for ellipsoid model.
        """
        from .core import load_model
        pars = {
            'scale':0.05,
            'radius_polar':500, 'radius_equatorial':15000,
            'sld':6, 'sld_solvent': 1,
            }
        form = load_model('ellipsoid', dtype='double')
        q = np.logspace(log10(4e-5), log10(2.5e-2), 68)
        width, height = 0.117, 0.
        resolution = Slit1D(q, qx_width=width, qy_width=height)
        answer = romberg_slit_1d(q, width, height, form, pars)
        output = resolution.apply(eval_form(resolution.q_calc, form, pars))
        # TODO: 10% is too much error; use better algorithm
        #print(np.max(abs(answer-output)/answer))
        self._compare(q, output, answer, 0.1)

    #TODO: can sas q spacing be too sparse for the resolution calculation?
    @unittest.skip("suppress sparse data test; not supported by current code")
    def test_pinhole_sparse(self):
        """
        Compare pinhole resolution smearing with NIST Igor SANS on sparse data
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data[:, ::20] # Take every nth point
        resolution = Pinhole1D(q, q_width)
        output = self._eval_sphere(pars, resolution)
        self._compare(q, output, answer, 1e-6)


# pinhole sphere parameters
TEST_PARS_PINHOLE_SPHERE = {
    'scale': 1.0, 'background': 0.01,
    'radius': 60.0, 'sld': 1, 'sld_solvent': 6.3,
    }
# Q, dQ, I(Q) calculated by NIST Igor SANS package
TEST_DATA_PINHOLE_SPHERE = """\
0.001278 0.0002847 2538.41176383
0.001562 0.0002905 2536.91820405
0.001846 0.0002956 2535.13182479
0.002130 0.0003017 2533.06217813
0.002414 0.0003087 2530.70378586
0.002698 0.0003165 2528.05024192
0.002982 0.0003249 2525.10408349
0.003266 0.0003340 2521.86667499
0.003550 0.0003437 2518.33907750
0.003834 0.0003539 2514.52246995
0.004118 0.0003646 2510.41798319
0.004402 0.0003757 2506.02690988
0.004686 0.0003872 2501.35067884
0.004970 0.0003990 2496.38678318
0.005253 0.0004112 2491.16237596
0.005537 0.0004237 2485.63911673
0.005821 0.0004365 2479.83657083
0.006105 0.0004495 2473.75676948
0.006389 0.0004628 2467.40145990
0.006673 0.0004762 2460.77293372
0.006957 0.0004899 2453.86724627
0.007241 0.0005037 2446.69623838
0.007525 0.0005177 2439.25775219
0.007809 0.0005318 2431.55421398
0.008093 0.0005461 2423.58785521
0.008377 0.0005605 2415.36158137
0.008661 0.0005750 2406.87009473
0.008945 0.0005896 2398.12841186
0.009229 0.0006044 2389.13360806
0.009513 0.0006192 2379.88958042
0.009797 0.0006341 2370.39776774
0.010080 0.0006491 2360.69528793
0.010360 0.0006641 2350.85169027
0.010650 0.0006793 2340.42023633
0.010930 0.0006945 2330.11206013
0.011220 0.0007097 2319.20109972
0.011500 0.0007251 2308.43503981
0.011780 0.0007404 2297.44820179
0.012070 0.0007558 2285.83853677
0.012350 0.0007713 2274.41290746
0.012640 0.0007868 2262.36219581
0.012920 0.0008024 2250.51169731
0.013200 0.0008180 2238.45596231
0.013490 0.0008336 2225.76495666
0.013770 0.0008493 2213.29618391
0.014060 0.0008650 2200.19110751
0.014340 0.0008807 2187.34050325
0.014620 0.0008965 2174.30529864
0.014910 0.0009123 2160.61632548
0.015190 0.0009281 2147.21038112
0.015470 0.0009440 2133.62023580
0.015760 0.0009598 2119.37907426
0.016040 0.0009757 2105.45234903
0.016330 0.0009916 2090.86319102
0.016610 0.0010080 2076.60576032
0.016890 0.0010240 2062.19214565
0.017180 0.0010390 2047.10550219
0.017460 0.0010550 2032.38715621
0.017740 0.0010710 2017.52560123
0.018030 0.0010880 2001.99124318
0.018310 0.0011040 1986.84662060
0.018600 0.0011200 1971.03389745
0.018880 0.0011360 1955.61395119
0.019160 0.0011520 1940.08291563
0.019450 0.0011680 1923.87672225
0.019730 0.0011840 1908.10656374
0.020020 0.0012000 1891.66297192
0.020300 0.0012160 1875.66789021
0.020580 0.0012320 1859.56357196
0.020870 0.0012490 1842.79468290
0.021150 0.0012650 1826.50064489
0.021430 0.0012810 1810.11533702
0.021720 0.0012970 1793.06840882
0.022000 0.0013130 1776.51153580
0.022280 0.0013290 1759.87201249
0.022570 0.0013460 1742.57354412
0.022850 0.0013620 1725.79397319
0.023140 0.0013780 1708.35831550
0.023420 0.0013940 1691.45256069
0.023700 0.0014110 1674.48561783
0.023990 0.0014270 1656.86525366
0.024270 0.0014430 1639.79847285
0.024550 0.0014590 1622.68887088
0.024840 0.0014760 1604.96421100
0.025120 0.0014920 1587.85768129
0.025410 0.0015080 1569.99297335
0.025690 0.0015240 1552.84580279
0.025970 0.0015410 1535.54074115
0.026260 0.0015570 1517.75249337
0.026540 0.0015730 1500.40115023
0.026820 0.0015900 1483.03632237
0.027110 0.0016060 1465.05942429
0.027390 0.0016220 1447.67682181
0.027670 0.0016390 1430.46495191
0.027960 0.0016550 1412.49232282
0.028240 0.0016710 1395.13182318
0.028520 0.0016880 1377.93439837
0.028810 0.0017040 1359.99528971
0.029090 0.0017200 1342.67274512
0.029370 0.0017370 1325.55375609
"""

# Slit sphere parameters
TEST_PARS_SLIT_SPHERE = {
    'scale': 0.01, 'background': 0.01,
    'radius': 60000, 'sld': 1, 'sld_solvent': 4,
    }
# Q dQ I(Q) I_smeared(Q)
TEST_DATA_SLIT_SPHERE = """\
2.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06
2.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06
2.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06
3.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06
3.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05
3.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05
4.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05
5.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05
5.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05
6.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04
6.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04
7.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04
7.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04
8.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04
8.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04
9.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04
1.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04
1.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04
1.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04
1.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03
1.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03
1.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03
1.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03
1.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03
1.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03
1.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03
2.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03
2.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03
2.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03
2.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03
2.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03
2.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03
2.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03
2.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02
3.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02
3.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02
3.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02
3.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02
4.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02
4.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02
4.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02
4.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02
5.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02
5.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01
6.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01
6.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01
7.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01
7.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01
8.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01
8.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01
9.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01
9.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01
1.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01
1.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01
1.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00
1.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00
1.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00
1.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00
1.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00
1.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00
1.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00
1.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00
2.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00
2.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00
2.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00
2.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00
2.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00
2.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00
"""

def main():
    """
    Run tests given is sys.argv.

    Returns 0 if success or 1 if any tests fail.
    """
    import sys
    import xmlrunner  # type: ignore

    suite = unittest.TestSuite()
    suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]))

    runner = xmlrunner.XMLTestRunner(output='logs')
    result = runner.run(suite)
    return 1 if result.failures or result.errors else 0


############################################################################
# usage demo
############################################################################

def _eval_demo_1d(resolution, title):
    import sys
    from sasmodels import core
    from sasmodels import direct_model
    name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder'

    if name == 'cylinder':
        pars = {'length':210, 'radius':500, 'background': 0}
    elif name == 'teubner_strey':
        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643}
    elif name == 'sphere' or name == 'spherepy':
        pars = TEST_PARS_SLIT_SPHERE
    elif name == 'ellipsoid':
        pars = {
            'scale':0.05, 'background': 0,
            'r_polar':500, 'r_equatorial':15000,
            'sld':6, 'sld_solvent': 1,
            }
    else:
        pars = {}
    model_info = core.load_model_info(name)
    model = core.build_model(model_info)

    kernel = model.make_kernel([resolution.q_calc])
    theory = direct_model.call_kernel(kernel, pars)
    Iq = resolution.apply(theory)

    if isinstance(resolution, Slit1D):
        width, height = resolution.dqx, resolution.dqy
        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars)
    else:
        dq = resolution.q_width
        Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars)

    import matplotlib.pyplot as plt  # type: ignore
    plt.loglog(resolution.q_calc, theory, label='unsmeared')
    plt.loglog(resolution.q, Iq, label='smeared', hold=True)
    plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True)
    plt.legend()
    plt.title(title)
    plt.xlabel("Q (1/Ang)")
    plt.ylabel("I(Q) (1/cm)")

def demo_pinhole_1d():
    """
    Show example of pinhole smearing.
    """
    q = np.logspace(-4, np.log10(0.2), 400)
    q_width = 0.1*q
    resolution = Pinhole1D(q, q_width)
    _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution")

def demo_slit_1d():
    """
    Show example of slit smearing.
    """
    q = np.logspace(-4, np.log10(0.2), 100)
    w = h = 0.
    #w = 0.000000277790
    w = 0.0277790
    #h = 0.00277790
    #h = 0.0277790
    resolution = Slit1D(q, w, h)
    _eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w, h))

def demo():
    """
    Run the resolution demos.
    """
    import matplotlib.pyplot as plt  # type: ignore
    plt.subplot(121)
    demo_pinhole_1d()
    #plt.yscale('linear')
    plt.subplot(122)
    demo_slit_1d()
    #plt.yscale('linear')
    plt.show()


if __name__ == "__main__":
    #demo()
    main()