/usr/lib/python3/dist-packages/sasmodels/resolution.py is in python3-sasmodels 0.97~git20171104-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 | """
Define the resolution functions for the data.
This defines classes for 1D and 2D resolution calculations.
"""
from __future__ import division
from scipy.special import erf # type: ignore
from numpy import sqrt, log, log10, exp, pi # type: ignore
import numpy as np # type: ignore
__all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D",
"apply_resolution_matrix", "pinhole_resolution", "slit_resolution",
"pinhole_extend_q", "slit_extend_q", "bin_edges",
"interpolate", "linear_extrapolation", "geometric_extrapolation",
]
MINIMUM_RESOLUTION = 1e-8
MINIMUM_ABSOLUTE_Q = 0.02 # relative to the minimum q in the data
class Resolution(object):
"""
Abstract base class defining a 1D resolution function.
*q* is the set of q values at which the data is measured.
*q_calc* is the set of q values at which the theory needs to be evaluated.
This may extend and interpolate the q values.
*apply* is the method to call with I(q_calc) to compute the resolution
smeared theory I(q).
"""
q = None # type: np.ndarray
q_calc = None # type: np.ndarray
def apply(self, theory):
"""
Smear *theory* by the resolution function, returning *Iq*.
"""
raise NotImplementedError("Subclass does not define the apply function")
class Perfect1D(Resolution):
"""
Resolution function to use when there is no actual resolution smearing
to be applied. It has the same interface as the other resolution
functions, but returns the identity function.
"""
def __init__(self, q):
self.q_calc = self.q = q
def apply(self, theory):
return theory
class Pinhole1D(Resolution):
r"""
Pinhole aperture with q-dependent gaussian resolution.
*q* points at which the data is measured.
*q_width* gaussian 1-sigma resolution at each data point.
*q_calc* is the list of points to calculate, or None if this should
be estimated from the *q* and *q_width*.
"""
def __init__(self, q, q_width, q_calc=None, nsigma=3):
#*min_step* is the minimum point spacing to use when computing the
#underlying model. It should be on the order of
#$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes
#are computed with sufficient density to avoid aliasing effects.
# Protect against calls with q_width=0. The extend_q function will
# not extend the q if q_width is 0, but q_width must be non-zero when
# constructing the weight matrix to avoid division by zero errors.
# In practice this should never be needed, since resolution should
# default to Perfect1D if the pinhole geometry is not defined.
self.q, self.q_width = q, q_width
self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma)
if q_calc is None else np.sort(q_calc))
# Protect against models which are not defined for very low q. Limit
# the smallest q value evaluated (in absolute) to 0.02*min
cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff]
# Build weight matrix from calculated q values
self.weight_matrix = pinhole_resolution(self.q_calc, self.q,
np.maximum(q_width, MINIMUM_RESOLUTION))
self.q_calc = abs(self.q_calc)
def apply(self, theory):
return apply_resolution_matrix(self.weight_matrix, theory)
class Slit1D(Resolution):
"""
Slit aperture with resolution function.
*q* points at which the data is measured.
*dqx* slit width in qx
*dqy* slit height in qy
*q_calc* is the list of points to calculate, or None if this should
be estimated from the *q* and *q_width*.
The *weight_matrix* is computed by :func:`slit1d_resolution`
"""
def __init__(self, q, qx_width, qy_width=0., q_calc=None):
# Remember what width/dqy was used even though we won't need them
# after the weight matrix is constructed
self.qx_width, self.qy_width = qx_width, qy_width
# Allow independent resolution on each point even though it is not
# needed in practice.
if np.isscalar(qx_width):
qx_width = np.ones(len(q))*qx_width
else:
qx_width = np.asarray(qx_width)
if np.isscalar(qy_width):
qy_width = np.ones(len(q))*qy_width
else:
qy_width = np.asarray(qy_width)
self.q = q.flatten()
self.q_calc = slit_extend_q(q, qx_width, qy_width) \
if q_calc is None else np.sort(q_calc)
# Protect against models which are not defined for very low q. Limit
# the smallest q value evaluated (in absolute) to 0.02*min
cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff]
# Build weight matrix from calculated q values
self.weight_matrix = \
slit_resolution(self.q_calc, self.q, qx_width, qy_width)
self.q_calc = abs(self.q_calc)
def apply(self, theory):
return apply_resolution_matrix(self.weight_matrix, theory)
def apply_resolution_matrix(weight_matrix, theory):
"""
Apply the resolution weight matrix to the computed theory function.
"""
#print("apply shapes", theory.shape, weight_matrix.shape)
Iq = np.dot(theory[None, :], weight_matrix)
#print("result shape",Iq.shape)
return Iq.flatten()
def pinhole_resolution(q_calc, q, q_width):
"""
Compute the convolution matrix *W* for pinhole resolution 1-D data.
Each row *W[i]* determines the normalized weight that the corresponding
points *q_calc* contribute to the resolution smeared point *q[i]*. Given
*W*, the resolution smearing can be computed using *dot(W,q)*.
*q_calc* must be increasing. *q_width* must be greater than zero.
"""
# The current algorithm is a midpoint rectangle rule. In the test case,
# neither trapezoid nor Simpson's rule improved the accuracy.
edges = bin_edges(q_calc)
#edges[edges < 0.0] = 0.0 # clip edges below zero
cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :])
weights = cdf[1:] - cdf[:-1]
weights /= np.sum(weights, axis=0)[None, :]
return weights
def slit_resolution(q_calc, q, width, height, n_height=30):
r"""
Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given
$q_\perp$ = *width* and $q_\parallel$ = *height*. *n_height* is
is the number of steps to use in the integration over $q_\parallel$
when both $q_\perp$ and $q_\parallel$ are non-zero.
Each $q$ can have an independent width and height value even though
current instruments use the same slit setting for all measured points.
If slit height is large relative to width, use:
.. math::
I_s(q_i) = \frac{1}{\Delta q_\perp}
\int_0^{\Delta q_\perp}
I\left(\sqrt{q_i^2 + q_\perp^2}\right) \,dq_\perp
If slit width is large relative to height, use:
.. math::
I_s(q_i) = \frac{1}{2 \Delta q_\parallel}
\int_{-\Delta q_\parallel}^{\Delta q_\parallel}
I\left(|q_i + q_\parallel|\right) \,dq_\parallel
For a mixture of slit width and height use:
.. math::
I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp}
\int_{-\Delta q_\parallel}^{\Delta q_\parallel}
\int_0^{\Delta q_\perp}
I\left(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}\right)
\,dq_\perp dq_\parallel
**Definition**
We are using the mid-point integration rule to assign weights to each
element of a weight matrix $W$ so that
.. math::
I_s(q) = W\,I(q_\text{calc})
If *q_calc* is at the mid-point, we can infer the bin edges from the
pairwise averages of *q_calc*, adding the missing edges before
*q_calc[0]* and after *q_calc[-1]*.
For $q_\parallel = 0$, the smeared value can be computed numerically
using the $u$ substitution
.. math::
u_j = \sqrt{q_j^2 - q^2}
This gives
.. math::
I_s(q) \approx \sum_j I(u_j) \Delta u_j
where $I(u_j)$ is the value at the mid-point, and $\Delta u_j$ is the
difference between consecutive edges which have been first converted
to $u$. Only $u_j \in [0, \Delta q_\perp]$ are used, which corresponds
to $q_j \in \left[q, \sqrt{q^2 + \Delta q_\perp}\right]$, so
.. math::
W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j
= \frac{1}{\Delta q_\perp} \left(
\sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \right)
\ \text{if}\ q_j \in \left[q_i, \sqrt{q_i^2 + q_\perp^2}\right]
where $I_s(q_i)$ is the theory function being computed and $q_j$ are the
mid-points between the calculated values in *q_calc*. We tweak the
edges of the initial and final intervals so that they lie on integration
limits.
(To be precise, the transformed midpoint $u(q_j)$ is not necessarily the
midpoint of the edges $u((q_{j-1}+q_j)/2)$ and $u((q_j + q_{j+1})/2)$,
but it is at least in the interval, so the approximation is going to be
a little better than the left or right Riemann sum, and should be
good enough for our purposes.)
For $q_\perp = 0$, the $u$ substitution is simpler:
.. math::
u_j = \left|q_j - q\right|
so
.. math::
W_{ij} = \frac{1}{2 \Delta q_\parallel} \Delta u_j
= \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j)
\ \text{if}\ q_j \in
\left[q-\Delta q_\parallel, q+\Delta q_\parallel\right]
However, we need to support cases were $u_j < 0$, which means using
$2 (q_{j+1} - q_j)$ when $q_j \in \left[0, q_\parallel-q_i\right]$.
This is not an issue for $q_i > q_\parallel$.
For both $q_\perp > 0$ and $q_\parallel > 0$ we perform a 2 dimensional
integration with
.. math::
u_{jk} = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2}
\ \text{for}\ k = -L \ldots L
for $L$ = *n_height*. This gives
.. math::
W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel}
\sum_{k=-L}^L \Delta u_{jk}
\left(\frac{\Delta q_\parallel}{2 L + 1}\right)
"""
#np.set_printoptions(precision=6, linewidth=10000)
# The current algorithm is a midpoint rectangle rule.
q_edges = bin_edges(q_calc) # Note: requires q > 0
#q_edges[q_edges < 0.0] = 0.0 # clip edges below zero
weights = np.zeros((len(q), len(q_calc)), 'd')
#print(q_calc)
for i, (qi, w, h) in enumerate(zip(q, width, height)):
if w == 0. and h == 0.:
# Perfect resolution, so return the theory value directly.
# Note: assumes that q is a subset of q_calc. If qi need not be
# in q_calc, then we can do a weighted interpolation by looking
# up qi in q_calc, then weighting the result by the relative
# distance to the neighbouring points.
weights[i, :] = (q_calc == qi)
elif h == 0:
weights[i, :] = _q_perp_weights(q_edges, qi, w)
elif w == 0:
in_x = 1.0 * ((q_calc >= qi-h) & (q_calc <= qi+h))
abs_x = 1.0*(q_calc < abs(qi - h)) if qi < h else 0.
#print(qi - h, qi + h)
#print(in_x + abs_x)
weights[i, :] = (in_x + abs_x) * np.diff(q_edges) / (2*h)
else:
for k in range(-n_height, n_height+1):
weights[i, :] += _q_perp_weights(q_edges, qi+k*h/n_height, w)
weights[i, :] /= 2*n_height + 1
return weights.T
def _q_perp_weights(q_edges, qi, w):
# Convert bin edges from q to u
u_limit = np.sqrt(qi**2 + w**2)
u_edges = q_edges**2 - qi**2
u_edges[q_edges < abs(qi)] = 0.
u_edges[q_edges > u_limit] = u_limit**2 - qi**2
weights = np.diff(np.sqrt(u_edges))/w
#print("i, qi",i,qi,qi+width)
#print(q_calc)
#print(weights)
return weights
def pinhole_extend_q(q, q_width, nsigma=3):
"""
Given *q* and *q_width*, find a set of sampling points *q_calc* so
that each point $I(q)$ has sufficient support from the underlying
function.
"""
q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width)
return linear_extrapolation(q, q_min, q_max)
def slit_extend_q(q, width, height):
"""
Given *q*, *width* and *height*, find a set of sampling points *q_calc* so
that each point I(q) has sufficient support from the underlying
function.
"""
q_min, q_max = np.min(q-height), np.max(np.sqrt((q+height)**2 + width**2))
return geometric_extrapolation(q, q_min, q_max)
def bin_edges(x):
"""
Determine bin edges from bin centers, assuming that edges are centered
between the bins.
Note: this uses the arithmetic mean, which may not be appropriate for
log-scaled data.
"""
if len(x) < 2 or (np.diff(x) < 0).any():
raise ValueError("Expected bins to be an increasing set")
edges = np.hstack([
x[0] - 0.5*(x[1] - x[0]), # first point minus half first interval
0.5*(x[1:] + x[:-1]), # mid points of all central intervals
x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval
])
return edges
def interpolate(q, max_step):
"""
Returns *q_calc* with points spaced at most max_step apart.
"""
step = np.diff(q)
index = step > max_step
if np.any(index):
inserts = []
for q_i, step_i in zip(q[:-1][index], step[index]):
n = np.ceil(step_i/max_step)
inserts.extend(q_i + np.arange(1, n)*(step_i/n))
# Extend a couple of fringes beyond the end of the data
inserts.extend(q[-1] + np.arange(1, 8)*max_step)
q_calc = np.sort(np.hstack((q, inserts)))
else:
q_calc = q
return q_calc
def linear_extrapolation(q, q_min, q_max):
"""
Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as
a guide. Extrapolation below uses about the same size as the first
interval. Extrapolation above uses about the same size as the final
interval.
Note that extrapolated values may be negative.
"""
q = np.sort(q)
if q_min + 2*MINIMUM_RESOLUTION < q[0]:
n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15
q_low = np.linspace(q_min, q[0], n_low+1)[:-1]
else:
q_low = []
if q_max - 2*MINIMUM_RESOLUTION > q[-1]:
n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15
q_high = np.linspace(q[-1], q_max, n_high+1)[1:]
else:
q_high = []
return np.concatenate([q_low, q, q_high])
def geometric_extrapolation(q, q_min, q_max, points_per_decade=None):
r"""
Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the
average geometric step size in *q* as the step size.
if *q_min* is zero or less then *q[0]/10* is used instead.
*points_per_decade* sets the ratio between consecutive steps such
that there will be $n$ points used for every factor of 10 increase
in *q*.
If *points_per_decade* is not given, it will be estimated as follows.
Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$
in $n$ points gives a geometric average of:
.. math::
\log \Delta q = (\log q_n - \log q_1) / (n - 1)
From this we can compute the number of steps required to extend $q$
from $q_n$ to $q_\text{max}$ by $\Delta q$ as:
.. math::
n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q
Substituting:
.. math::
n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n)
/ (\log q_n - \log q_1)
"""
q = np.sort(q)
if points_per_decade is None:
log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0]))
else:
log_delta_q = log(10.) / points_per_decade
if q_min < q[0]:
if q_min < 0:
q_min = q[0]*MINIMUM_ABSOLUTE_Q
n_low = log_delta_q * (log(q[0])-log(q_min))
q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1]
else:
q_low = []
if q_max > q[-1]:
n_high = log_delta_q * (log(q_max)-log(q[-1]))
q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:]
else:
q_high = []
return np.concatenate([q_low, q, q_high])
############################################################################
# unit tests
############################################################################
import unittest
def eval_form(q, form, pars):
"""
Return the SAS model evaluated at *q*.
*form* is the SAS model returned from :fun:`core.load_model`.
*pars* are the parameter values to use when evaluating.
"""
from sasmodels import direct_model
kernel = form.make_kernel([q])
theory = direct_model.call_kernel(kernel, pars)
kernel.release()
return theory
def gaussian(q, q0, dq):
"""
Return the Gaussian resolution function.
*q0* is the center, *dq* is the width and *q* are the points to evaluate.
"""
return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq)
def romberg_slit_1d(q, width, height, form, pars):
"""
Romberg integration for slit resolution.
This is an adaptive integration technique. It is called with settings
that make it slow to evaluate but give it good accuracy.
"""
from scipy.integrate import romberg # type: ignore
par_set = set([p.name for p in form.info.parameters.call_parameters])
if any(k not in par_set for k in pars.keys()):
extra = set(pars.keys()) - par_set
raise ValueError("bad parameters: [%s] not in [%s]"
% (", ".join(sorted(extra)),
", ".join(sorted(pars.keys()))))
if np.isscalar(width):
width = [width]*len(q)
if np.isscalar(height):
height = [height]*len(q)
_int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars)
_int_h = lambda h, qi: eval_form(abs(qi+h), form, pars)
# If both width and height are defined, then it is too slow to use dblquad.
# Instead use trapz on a fixed grid, interpolated into the I(Q) for
# the extended Q range.
#_int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars)
q_calc = slit_extend_q(q, np.asarray(width), np.asarray(height))
Iq = eval_form(q_calc, form, pars)
result = np.empty(len(q))
for i, (qi, w, h) in enumerate(zip(q, width, height)):
if h == 0.:
total = romberg(_int_w, 0, w, args=(qi,),
divmax=100, vec_func=True, tol=0, rtol=1e-8)
result[i] = total/w
elif w == 0.:
total = romberg(_int_h, -h, h, args=(qi,),
divmax=100, vec_func=True, tol=0, rtol=1e-8)
result[i] = total/(2*h)
else:
w_grid = np.linspace(0, w, 21)[None, :]
h_grid = np.linspace(-h, h, 23)[:, None]
u_sub = sqrt((qi+h_grid)**2 + w_grid**2)
f_at_u = np.interp(u_sub, q_calc, Iq)
#print(np.trapz(Iu, w_grid, axis=1))
total = np.trapz(np.trapz(f_at_u, w_grid, axis=1), h_grid[:, 0])
result[i] = total / (2*h*w)
# from scipy.integrate import dblquad
# r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: w,
# args=(qi,))
# result[i] = r/(w*2*h)
# r should be [float, ...], but it is [array([float]), array([float]),...]
return result
def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5):
"""
Romberg integration for pinhole resolution.
This is an adaptive integration technique. It is called with settings
that make it slow to evaluate but give it good accuracy.
"""
from scipy.integrate import romberg # type: ignore
par_set = set([p.name for p in form.info.parameters.call_parameters])
if any(k not in par_set for k in pars.keys()):
extra = set(pars.keys()) - par_set
raise ValueError("bad parameters: [%s] not in [%s]"
% (", ".join(sorted(extra)),
", ".join(sorted(pars.keys()))))
func = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq)
total = [romberg(func, max(qi-nsigma*dqi, 1e-10*q[0]), qi+nsigma*dqi,
args=(qi, dqi), divmax=100, vec_func=True,
tol=0, rtol=1e-8)
for qi, dqi in zip(q, q_width)]
return np.asarray(total).flatten()
class ResolutionTest(unittest.TestCase):
"""
Test the resolution calculations.
"""
def setUp(self):
self.x = 0.001*np.arange(1, 11)
self.y = self.Iq(self.x)
def Iq(self, q):
"Linear function for resolution unit test"
return 12.0 - 1000.0*q
def test_perfect(self):
"""
Perfect resolution and no smearing.
"""
resolution = Perfect1D(self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
np.testing.assert_equal(output, self.y)
def test_slit_zero(self):
"""
Slit smearing with perfect resolution.
"""
resolution = Slit1D(self.x, qx_width=0, qy_width=0, q_calc=self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
np.testing.assert_equal(output, self.y)
@unittest.skip("not yet supported")
def test_slit_high(self):
"""
Slit smearing with height 0.005
"""
resolution = Slit1D(self.x, qx_width=0, qy_width=0.005, q_calc=self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
answer = [
9.0618, 8.6402, 8.1187, 7.1392, 6.1528,
5.5555, 4.5584, 3.5606, 2.5623, 2.0000,
]
np.testing.assert_allclose(output, answer, atol=1e-4)
@unittest.skip("not yet supported")
def test_slit_both_high(self):
"""
Slit smearing with width < 100*height.
"""
q = np.logspace(-4, -1, 10)
resolution = Slit1D(q, qx_width=0.2, qy_width=np.inf)
theory = 1000*self.Iq(resolution.q_calc**4)
output = resolution.apply(theory)
answer = [
8.85785, 8.43012, 7.92687, 6.94566, 6.03660,
5.40363, 4.40655, 3.40880, 2.41058, 2.00000,
]
np.testing.assert_allclose(output, answer, atol=1e-4)
@unittest.skip("not yet supported")
def test_slit_wide(self):
"""
Slit smearing with width 0.0002
"""
resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0, q_calc=self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
answer = [
11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
]
np.testing.assert_allclose(output, answer, atol=1e-4)
@unittest.skip("not yet supported")
def test_slit_both_wide(self):
"""
Slit smearing with width > 100*height.
"""
resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0.000001,
q_calc=self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
answer = [
11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
]
np.testing.assert_allclose(output, answer, atol=1e-4)
def test_pinhole_zero(self):
"""
Pinhole smearing with perfect resolution
"""
resolution = Pinhole1D(self.x, 0.0*self.x)
theory = self.Iq(resolution.q_calc)
output = resolution.apply(theory)
np.testing.assert_equal(output, self.y)
def test_pinhole(self):
"""
Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
"""
resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x),
q_calc=self.x)
theory = 12.0-1000.0*resolution.q_calc
output = resolution.apply(theory)
answer = [
10.44785079, 9.84991299, 8.98101708,
7.99906585, 6.99998311, 6.00001689,
5.00093415, 4.01898292, 3.15008701, 2.55214921,
]
np.testing.assert_allclose(output, answer, atol=1e-8)
class IgorComparisonTest(unittest.TestCase):
"""
Test resolution calculations against those returned by Igor.
"""
def setUp(self):
self.pars = TEST_PARS_PINHOLE_SPHERE
from sasmodels import core
self.model = core.load_model("sphere", dtype='double')
def _eval_sphere(self, pars, resolution):
from sasmodels import direct_model
kernel = self.model.make_kernel([resolution.q_calc])
theory = direct_model.call_kernel(kernel, pars)
result = resolution.apply(theory)
kernel.release()
return result
def _compare(self, q, output, answer, tolerance):
#err = (output - answer)/answer
#idx = abs(err) >= tolerance
#problem = zip(q[idx], output[idx], answer[idx], err[idx])
#print("\n".join(str(v) for v in problem))
np.testing.assert_allclose(output, answer, rtol=tolerance)
def test_perfect(self):
"""
Compare sphere model with NIST Igor SANS, no resolution smearing.
"""
pars = TEST_PARS_SLIT_SPHERE
data_string = TEST_DATA_SLIT_SPHERE
data = np.loadtxt(data_string.split('\n')).T
q, _, answer, _ = data
resolution = Perfect1D(q)
output = self._eval_sphere(pars, resolution)
self._compare(q, output, answer, 1e-6)
def test_pinhole(self):
"""
Compare pinhole resolution smearing with NIST Igor SANS
"""
pars = TEST_PARS_PINHOLE_SPHERE
data_string = TEST_DATA_PINHOLE_SPHERE
data = np.loadtxt(data_string.split('\n')).T
q, q_width, answer = data
resolution = Pinhole1D(q, q_width)
output = self._eval_sphere(pars, resolution)
# TODO: relative error should be lower
self._compare(q, output, answer, 3e-4)
def test_pinhole_romberg(self):
"""
Compare pinhole resolution smearing with romberg integration result.
"""
pars = TEST_PARS_PINHOLE_SPHERE
data_string = TEST_DATA_PINHOLE_SPHERE
pars['radius'] *= 5
data = np.loadtxt(data_string.split('\n')).T
q, q_width, answer = data
answer = romberg_pinhole_1d(q, q_width, self.model, pars)
## Getting 0.1% requires 5 sigma and 200 points per fringe
#q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5),
# 2*np.pi/pars['radius']/200)
#tol = 0.001
## The default 3 sigma and no extra points gets 1%
q_calc = None # type: np.ndarray
tol = 0.01
resolution = Pinhole1D(q, q_width, q_calc=q_calc)
output = self._eval_sphere(pars, resolution)
if 0: # debug plot
import matplotlib.pyplot as plt # type: ignore
resolution = Perfect1D(q)
source = self._eval_sphere(pars, resolution)
plt.loglog(q, source, '.')
plt.loglog(q, answer, '-', hold=True)
plt.loglog(q, output, '-', hold=True)
plt.show()
self._compare(q, output, answer, tol)
def test_slit(self):
"""
Compare slit resolution smearing with NIST Igor SANS
"""
pars = TEST_PARS_SLIT_SPHERE
data_string = TEST_DATA_SLIT_SPHERE
data = np.loadtxt(data_string.split('\n')).T
q, delta_qv, _, answer = data
resolution = Slit1D(q, qx_width=delta_qv, qy_width=0)
output = self._eval_sphere(pars, resolution)
# TODO: eliminate Igor test since it is too inaccurate to be useful.
# This means we can eliminate the test data as well, and instead
# use a generated q vector.
self._compare(q, output, answer, 0.5)
def test_slit_romberg(self):
"""
Compare slit resolution smearing with romberg integration result.
"""
pars = TEST_PARS_SLIT_SPHERE
data_string = TEST_DATA_SLIT_SPHERE
data = np.loadtxt(data_string.split('\n')).T
q, delta_qv, _, answer = data
answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars)
q_calc = slit_extend_q(interpolate(q, 2*np.pi/pars['radius']/20),
delta_qv[0], 0.)
resolution = Slit1D(q, qx_width=delta_qv, qy_width=0, q_calc=q_calc)
output = self._eval_sphere(pars, resolution)
# TODO: relative error should be lower
self._compare(q, output, answer, 0.025)
def test_ellipsoid(self):
"""
Compare romberg integration for ellipsoid model.
"""
from .core import load_model
pars = {
'scale':0.05,
'radius_polar':500, 'radius_equatorial':15000,
'sld':6, 'sld_solvent': 1,
}
form = load_model('ellipsoid', dtype='double')
q = np.logspace(log10(4e-5), log10(2.5e-2), 68)
width, height = 0.117, 0.
resolution = Slit1D(q, qx_width=width, qy_width=height)
answer = romberg_slit_1d(q, width, height, form, pars)
output = resolution.apply(eval_form(resolution.q_calc, form, pars))
# TODO: 10% is too much error; use better algorithm
#print(np.max(abs(answer-output)/answer))
self._compare(q, output, answer, 0.1)
#TODO: can sas q spacing be too sparse for the resolution calculation?
@unittest.skip("suppress sparse data test; not supported by current code")
def test_pinhole_sparse(self):
"""
Compare pinhole resolution smearing with NIST Igor SANS on sparse data
"""
pars = TEST_PARS_PINHOLE_SPHERE
data_string = TEST_DATA_PINHOLE_SPHERE
data = np.loadtxt(data_string.split('\n')).T
q, q_width, answer = data[:, ::20] # Take every nth point
resolution = Pinhole1D(q, q_width)
output = self._eval_sphere(pars, resolution)
self._compare(q, output, answer, 1e-6)
# pinhole sphere parameters
TEST_PARS_PINHOLE_SPHERE = {
'scale': 1.0, 'background': 0.01,
'radius': 60.0, 'sld': 1, 'sld_solvent': 6.3,
}
# Q, dQ, I(Q) calculated by NIST Igor SANS package
TEST_DATA_PINHOLE_SPHERE = """\
0.001278 0.0002847 2538.41176383
0.001562 0.0002905 2536.91820405
0.001846 0.0002956 2535.13182479
0.002130 0.0003017 2533.06217813
0.002414 0.0003087 2530.70378586
0.002698 0.0003165 2528.05024192
0.002982 0.0003249 2525.10408349
0.003266 0.0003340 2521.86667499
0.003550 0.0003437 2518.33907750
0.003834 0.0003539 2514.52246995
0.004118 0.0003646 2510.41798319
0.004402 0.0003757 2506.02690988
0.004686 0.0003872 2501.35067884
0.004970 0.0003990 2496.38678318
0.005253 0.0004112 2491.16237596
0.005537 0.0004237 2485.63911673
0.005821 0.0004365 2479.83657083
0.006105 0.0004495 2473.75676948
0.006389 0.0004628 2467.40145990
0.006673 0.0004762 2460.77293372
0.006957 0.0004899 2453.86724627
0.007241 0.0005037 2446.69623838
0.007525 0.0005177 2439.25775219
0.007809 0.0005318 2431.55421398
0.008093 0.0005461 2423.58785521
0.008377 0.0005605 2415.36158137
0.008661 0.0005750 2406.87009473
0.008945 0.0005896 2398.12841186
0.009229 0.0006044 2389.13360806
0.009513 0.0006192 2379.88958042
0.009797 0.0006341 2370.39776774
0.010080 0.0006491 2360.69528793
0.010360 0.0006641 2350.85169027
0.010650 0.0006793 2340.42023633
0.010930 0.0006945 2330.11206013
0.011220 0.0007097 2319.20109972
0.011500 0.0007251 2308.43503981
0.011780 0.0007404 2297.44820179
0.012070 0.0007558 2285.83853677
0.012350 0.0007713 2274.41290746
0.012640 0.0007868 2262.36219581
0.012920 0.0008024 2250.51169731
0.013200 0.0008180 2238.45596231
0.013490 0.0008336 2225.76495666
0.013770 0.0008493 2213.29618391
0.014060 0.0008650 2200.19110751
0.014340 0.0008807 2187.34050325
0.014620 0.0008965 2174.30529864
0.014910 0.0009123 2160.61632548
0.015190 0.0009281 2147.21038112
0.015470 0.0009440 2133.62023580
0.015760 0.0009598 2119.37907426
0.016040 0.0009757 2105.45234903
0.016330 0.0009916 2090.86319102
0.016610 0.0010080 2076.60576032
0.016890 0.0010240 2062.19214565
0.017180 0.0010390 2047.10550219
0.017460 0.0010550 2032.38715621
0.017740 0.0010710 2017.52560123
0.018030 0.0010880 2001.99124318
0.018310 0.0011040 1986.84662060
0.018600 0.0011200 1971.03389745
0.018880 0.0011360 1955.61395119
0.019160 0.0011520 1940.08291563
0.019450 0.0011680 1923.87672225
0.019730 0.0011840 1908.10656374
0.020020 0.0012000 1891.66297192
0.020300 0.0012160 1875.66789021
0.020580 0.0012320 1859.56357196
0.020870 0.0012490 1842.79468290
0.021150 0.0012650 1826.50064489
0.021430 0.0012810 1810.11533702
0.021720 0.0012970 1793.06840882
0.022000 0.0013130 1776.51153580
0.022280 0.0013290 1759.87201249
0.022570 0.0013460 1742.57354412
0.022850 0.0013620 1725.79397319
0.023140 0.0013780 1708.35831550
0.023420 0.0013940 1691.45256069
0.023700 0.0014110 1674.48561783
0.023990 0.0014270 1656.86525366
0.024270 0.0014430 1639.79847285
0.024550 0.0014590 1622.68887088
0.024840 0.0014760 1604.96421100
0.025120 0.0014920 1587.85768129
0.025410 0.0015080 1569.99297335
0.025690 0.0015240 1552.84580279
0.025970 0.0015410 1535.54074115
0.026260 0.0015570 1517.75249337
0.026540 0.0015730 1500.40115023
0.026820 0.0015900 1483.03632237
0.027110 0.0016060 1465.05942429
0.027390 0.0016220 1447.67682181
0.027670 0.0016390 1430.46495191
0.027960 0.0016550 1412.49232282
0.028240 0.0016710 1395.13182318
0.028520 0.0016880 1377.93439837
0.028810 0.0017040 1359.99528971
0.029090 0.0017200 1342.67274512
0.029370 0.0017370 1325.55375609
"""
# Slit sphere parameters
TEST_PARS_SLIT_SPHERE = {
'scale': 0.01, 'background': 0.01,
'radius': 60000, 'sld': 1, 'sld_solvent': 4,
}
# Q dQ I(Q) I_smeared(Q)
TEST_DATA_SLIT_SPHERE = """\
2.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06
2.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06
2.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06
3.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06
3.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05
3.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05
4.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05
5.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05
5.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05
6.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04
6.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04
7.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04
7.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04
8.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04
8.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04
9.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04
1.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04
1.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04
1.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04
1.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03
1.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03
1.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03
1.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03
1.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03
1.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03
1.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03
2.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03
2.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03
2.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03
2.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03
2.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03
2.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03
2.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03
2.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02
3.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02
3.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02
3.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02
3.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02
4.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02
4.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02
4.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02
4.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02
5.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02
5.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01
6.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01
6.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01
7.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01
7.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01
8.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01
8.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01
9.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01
9.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01
1.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01
1.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01
1.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00
1.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00
1.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00
1.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00
1.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00
1.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00
1.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00
1.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00
2.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00
2.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00
2.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00
2.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00
2.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00
2.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00
"""
def main():
"""
Run tests given is sys.argv.
Returns 0 if success or 1 if any tests fail.
"""
import sys
import xmlrunner # type: ignore
suite = unittest.TestSuite()
suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]))
runner = xmlrunner.XMLTestRunner(output='logs')
result = runner.run(suite)
return 1 if result.failures or result.errors else 0
############################################################################
# usage demo
############################################################################
def _eval_demo_1d(resolution, title):
import sys
from sasmodels import core
from sasmodels import direct_model
name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder'
if name == 'cylinder':
pars = {'length':210, 'radius':500, 'background': 0}
elif name == 'teubner_strey':
pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643}
elif name == 'sphere' or name == 'spherepy':
pars = TEST_PARS_SLIT_SPHERE
elif name == 'ellipsoid':
pars = {
'scale':0.05, 'background': 0,
'r_polar':500, 'r_equatorial':15000,
'sld':6, 'sld_solvent': 1,
}
else:
pars = {}
model_info = core.load_model_info(name)
model = core.build_model(model_info)
kernel = model.make_kernel([resolution.q_calc])
theory = direct_model.call_kernel(kernel, pars)
Iq = resolution.apply(theory)
if isinstance(resolution, Slit1D):
width, height = resolution.dqx, resolution.dqy
Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars)
else:
dq = resolution.q_width
Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars)
import matplotlib.pyplot as plt # type: ignore
plt.loglog(resolution.q_calc, theory, label='unsmeared')
plt.loglog(resolution.q, Iq, label='smeared', hold=True)
plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True)
plt.legend()
plt.title(title)
plt.xlabel("Q (1/Ang)")
plt.ylabel("I(Q) (1/cm)")
def demo_pinhole_1d():
"""
Show example of pinhole smearing.
"""
q = np.logspace(-4, np.log10(0.2), 400)
q_width = 0.1*q
resolution = Pinhole1D(q, q_width)
_eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution")
def demo_slit_1d():
"""
Show example of slit smearing.
"""
q = np.logspace(-4, np.log10(0.2), 100)
w = h = 0.
#w = 0.000000277790
w = 0.0277790
#h = 0.00277790
#h = 0.0277790
resolution = Slit1D(q, w, h)
_eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w, h))
def demo():
"""
Run the resolution demos.
"""
import matplotlib.pyplot as plt # type: ignore
plt.subplot(121)
demo_pinhole_1d()
#plt.yscale('linear')
plt.subplot(122)
demo_slit_1d()
#plt.yscale('linear')
plt.show()
if __name__ == "__main__":
#demo()
main()
|