/usr/lib/python3/dist-packages/sasmodels/modelinfo.py is in python3-sasmodels 0.97~git20171104-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 | """
Model Info and Parameter Tables
===============================
Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
manipulating them. In particular, :func:`make_model_info` converts a kernel
module into the model info block as seen by the rest of the sasmodels library.
"""
from __future__ import print_function
from copy import copy
from os.path import abspath, basename, splitext
import inspect
import numpy as np # type: ignore
# Optional typing
try:
from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
except ImportError:
pass
else:
Limits = Tuple[float, float]
#LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
ParameterDef = Tuple[str, str, float, Limits, str, str]
ParameterSetUser = Dict[str, Union[float, List[float]]]
ParameterSet = Dict[str, float]
TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
TestValue = Union[float, List[float]]
TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
MAX_PD = 4 #: Maximum number of simultaneously polydisperse parameters
# assumptions about common parameters exist throughout the code, such as:
# (1) kernel functions Iq, Iqxy, form_volume, ... don't see them
# (2) kernel drivers assume scale is par[0] and background is par[1]
# (3) mixture models drop the background on components and replace the scale
# with a scale that varies from [-inf, inf]
# (4) product models drop the background and reassign scale
# and maybe other places.
# Note that scale and background cannot be coordinated parameters whose value
# depends on the some polydisperse parameter with the current implementation
COMMON_PARAMETERS = [
("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
]
assert (len(COMMON_PARAMETERS) == 2
and COMMON_PARAMETERS[0][0] == "scale"
and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
def make_parameter_table(pars):
# type: (List[ParameterDef]) -> ParameterTable
"""
Construct a parameter table from a list of parameter definitions.
This is used by the module processor to convert the parameter block into
the parameter table seen in the :class:`ModelInfo` for the module.
"""
processed = []
for p in pars:
if not isinstance(p, (list, tuple)) or len(p) != 6:
raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
%str(p))
processed.append(parse_parameter(*p))
partable = ParameterTable(processed)
return partable
def parse_parameter(name, units='', default=np.NaN,
user_limits=None, ptype='', description=''):
# type: (str, str, float, Sequence[Any], str, str) -> Parameter
"""
Parse an individual parameter from the parameter definition block.
This does type and value checking on the definition, leading
to early failure in the model loading process and easier debugging.
"""
# Parameter is a user facing class. Do robust type checking.
if not isstr(name):
raise ValueError("expected string for parameter name %r"%name)
if not isstr(units):
raise ValueError("expected units to be a string for %s"%name)
# Process limits as [float, float] or [[str, str, ...]]
choices = [] # type: List[str]
if user_limits is None:
limits = (-np.inf, np.inf)
elif not isinstance(user_limits, (tuple, list)):
raise ValueError("invalid limits for %s"%name)
else:
# if limits is [[str,...]], then this is a choice list field,
# and limits are 1 to length of string list
if isinstance(user_limits[0], (tuple, list)):
choices = user_limits[0]
limits = (0., len(choices)-1.)
if not all(isstr(k) for k in choices):
raise ValueError("choices must be strings for %s"%name)
else:
try:
low, high = user_limits
limits = (float(low), float(high))
except Exception:
raise ValueError("invalid limits for %s: %r"%(name, user_limits))
if low >= high:
raise ValueError("require lower limit < upper limit")
# Process default value as float, making sure it is in range
if not isinstance(default, (int, float)):
raise ValueError("expected default %r to be a number for %s"
% (default, name))
if default < limits[0] or default > limits[1]:
raise ValueError("default value %r not in range for %s"
% (default, name))
# Check for valid parameter type
if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
raise ValueError("unexpected type %r for %s" % (ptype, name))
# Check for valid parameter description
if not isstr(description):
raise ValueError("expected description to be a string")
# Parameter id for name[n] does not include [n]
if "[" in name:
if not name.endswith(']'):
raise ValueError("Expected name[len] for vector parameter %s"%name)
pid, ref = name[:-1].split('[', 1)
ref = ref.strip()
else:
pid, ref = name, None
# automatically identify sld types
if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
ptype = 'sld'
# Check if using a vector definition, name[k], as the parameter name
if ref:
if ref == '':
raise ValueError("Need to specify vector length for %s"%name)
try:
length = int(ref)
control = None
except ValueError:
length = None
control = ref
else:
length = 1
control = None
# Build the parameter
parameter = Parameter(name=name, units=units, default=default,
limits=limits, ptype=ptype, description=description)
# TODO: need better control over whether a parameter is polydisperse
parameter.polydisperse = ptype in ('orientation', 'volume')
parameter.relative_pd = ptype == 'volume'
parameter.choices = choices
parameter.length = length
parameter.length_control = control
return parameter
def expand_pars(partable, pars):
# type: (ParameterTable, ParameterSetUser) -> ParameterSet
"""
Create demo parameter set from key-value pairs.
*pars* are the key-value pairs to use for the parameters. Any
parameters not specified in *pars* are set from the *partable* defaults.
If *pars* references vector fields, such as thickness[n], then support
different ways of assigning the demo values, including assigning a
specific value (e.g., thickness3=50.0), assigning a new value to all
(e.g., thickness=50.0) or assigning values using list notation.
"""
if pars is None:
result = partable.defaults
else:
lookup = dict((p.id, p) for p in partable.kernel_parameters)
result = partable.defaults.copy()
scalars = dict((name, value) for name, value in pars.items()
if name not in lookup or lookup[name].length == 1)
vectors = dict((name, value) for name, value in pars.items()
if name in lookup and lookup[name].length > 1)
#print("lookup", lookup)
#print("scalars", scalars)
#print("vectors", vectors)
if vectors:
for name, value in vectors.items():
if np.isscalar(value):
# support for the form
# dict(thickness=0, thickness2=50)
for k in range(1, lookup[name].length+1):
key = name+str(k)
if key not in scalars:
scalars[key] = value
else:
# supoprt for the form
# dict(thickness=[20,10,3])
for (k, v) in enumerate(value):
scalars[name+str(k+1)] = v
result.update(scalars)
#print("expanded", result)
return result
def prefix_parameter(par, prefix):
# type: (Parameter, str) -> Parameter
"""
Return a copy of the parameter with its name prefixed.
"""
new_par = copy(par)
new_par.name = prefix + par.name
new_par.id = prefix + par.id
def suffix_parameter(par, suffix):
# type: (Parameter, str) -> Parameter
"""
Return a copy of the parameter with its name prefixed.
"""
new_par = copy(par)
# If name has the form x[n], replace with x_suffix[n]
new_par.name = par.id + suffix + par.name[len(par.id):]
new_par.id = par.id + suffix
class Parameter(object):
"""
The available kernel parameters are defined as a list, with each parameter
defined as a sublist with the following elements:
*name* is the name that will be displayed to the user. Names
should be lower case, with words separated by underscore. If
acronyms are used, the whole acronym should be upper case. For vector
parameters, the name will be followed by *[len]* where *len* is an
integer length of the vector, or the name of the parameter which
controls the length. The attribute *id* will be created from name
without the length.
*units* should be one of *degrees* for angles, *Ang* for lengths,
*1e-6/Ang^2* for SLDs.
*default value* will be the initial value for the model when it
is selected, or when an initial value is not otherwise specified.
*limits = [lb, ub]* are the hard limits on the parameter value, used to
limit the polydispersity density function. In the fit, the parameter limits
given to the fit are the limits on the central value of the parameter.
If there is polydispersity, it will evaluate parameter values outside
the fit limits, but not outside the hard limits specified in the model.
If there are no limits, use +/-inf imported from numpy.
*type* indicates how the parameter will be used. "volume" parameters
will be used in all functions. "orientation" parameters will be used
in *Iqxy* and *Imagnetic*. "magnetic* parameters will be used in
*Imagnetic* only. If *type* is the empty string, the parameter will
be used in all of *Iq*, *Iqxy* and *Imagnetic*. "sld" parameters
can automatically be promoted to magnetic parameters, each of which
will have a magnitude and a direction, which may be different from
other sld parameters. The volume parameters are used for calls
to form_volume within the kernel (required for volume normalization)
and for calls to ER and VR for effective radius and volume ratio
respectively.
*description* is a short description of the parameter. This will
be displayed in the parameter table and used as a tool tip for the
parameter value in the user interface.
Additional values can be set after the parameter is created:
* *length* is the length of the field if it is a vector field
* *length_control* is the parameter which sets the vector length
* *is_control* is True if the parameter is a control parameter for a vector
* *polydisperse* is true if the parameter accepts a polydispersity
* *relative_pd* is true if that polydispersity is a portion of the
value (so a 10% length dipsersity would use a polydispersity value
of 0.1) rather than absolute dispersisity (such as an angle plus or
minus 15 degrees).
*choices* is the option names for a drop down list of options, as for
example, might be used to set the value of a shape parameter.
These values are set by :func:`make_parameter_table` and
:func:`parse_parameter` therein.
"""
def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
ptype='', description=''):
# type: (str, str, float, Limits, str, str) -> None
self.id = name.split('[')[0].strip() # type: str
self.name = name # type: str
self.units = units # type: str
self.default = default # type: float
self.limits = limits # type: Limits
self.type = ptype # type: str
self.description = description # type: str
# Length and length_control will be filled in once the complete
# parameter table is available.
self.length = 1 # type: int
self.length_control = None # type: Optional[str]
self.is_control = False # type: bool
# TODO: need better control over whether a parameter is polydisperse
self.polydisperse = False # type: bool
self.relative_pd = False # type: bool
# choices are also set externally.
self.choices = [] # type: List[str]
def as_definition(self):
# type: () -> str
"""
Declare space for the variable in a parameter structure.
For example, the parameter thickness with length 3 will
return "double thickness[3];", with no spaces before and
no new line character afterward.
"""
if self.length == 1:
return "double %s;"%self.id
else:
return "double %s[%d];"%(self.id, self.length)
def as_function_argument(self):
# type: () -> str
r"""
Declare the variable as a function argument.
For example, the parameter thickness with length 3 will
return "double \*thickness", with no spaces before and
no comma afterward.
"""
if self.length == 1:
return "double %s"%self.id
else:
return "double *%s"%self.id
def as_call_reference(self, prefix=""):
# type: (str) -> str
"""
Return *prefix* + parameter name. For struct references, use "v."
as the prefix.
"""
# Note: if the parameter is a struct type, then we will need to use
# &prefix+id. For scalars and vectors we can just use prefix+id.
return prefix + self.id
def __str__(self):
# type: () -> str
return "<%s>"%self.name
def __repr__(self):
# type: () -> str
return "P<%s>"%self.name
class ParameterTable(object):
"""
ParameterTable manages the list of available parameters.
There are a couple of complications which mean that the list of parameters
for the kernel differs from the list of parameters that the user sees.
(1) Common parameters. Scale and background are implicit to every model,
but are not passed to the kernel.
(2) Vector parameters. Vector parameters are passed to the kernel as a
pointer to an array, e.g., thick[], but they are seen by the user as n
separate parameters thick1, thick2, ...
Therefore, the parameter table is organized by how it is expected to be
used. The following information is needed to set up the kernel functions:
* *kernel_parameters* is the list of parameters in the kernel parameter
table, with vector parameter p declared as p[].
* *iq_parameters* is the list of parameters to the Iq(q, ...) function,
with vector parameter p sent as p[].
* *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...)
function, with vector parameter p sent as p[].
* *form_volume_parameters* is the list of parameters to the form_volume(...)
function, with vector parameter p sent as p[].
Problem details, which sets up the polydispersity loops, requires the
following:
* *theta_offset* is the offset of the theta parameter in the kernel parameter
table, with vector parameters counted as n individual parameters
p1, p2, ..., or offset is -1 if there is no theta parameter.
* *max_pd* is the maximum number of polydisperse parameters, with vector
parameters counted as n individual parameters p1, p2, ... Note that
this number is limited to sasmodels.modelinfo.MAX_PD.
* *npars* is the total number of parameters to the kernel, with vector
parameters counted as n individual parameters p1, p2, ...
* *call_parameters* is the complete list of parameters to the kernel,
including scale and background, with vector parameters recorded as
individual parameters p1, p2, ...
* *active_1d* is the set of names that may be polydisperse for 1d data
* *active_2d* is the set of names that may be polydisperse for 2d data
User parameters are the set of parameters visible to the user, including
the scale and background parameters that the kernel does not see. User
parameters don't use vector notation, and instead use p1, p2, ...
"""
# scale and background are implicit parameters
COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
def __init__(self, parameters):
# type: (List[Parameter]) -> None
self.kernel_parameters = parameters
self._set_vector_lengths()
self.npars = sum(p.length for p in self.kernel_parameters)
self.nmagnetic = sum(p.length for p in self.kernel_parameters
if p.type == 'sld')
self.nvalues = 2 + self.npars
if self.nmagnetic:
self.nvalues += 3 + 3*self.nmagnetic
self.call_parameters = self._get_call_parameters()
self.defaults = self._get_defaults()
#self._name_table= dict((p.id, p) for p in parameters)
# Set the kernel parameters. Assumes background and scale are the
# first two parameters in the parameter list, but these are not sent
# to the underlying kernel functions.
self.iq_parameters = [p for p in self.kernel_parameters
if p.type not in ('orientation', 'magnetic')]
self.iqxy_parameters = [p for p in self.kernel_parameters
if p.type != 'magnetic']
self.form_volume_parameters = [p for p in self.kernel_parameters
if p.type == 'volume']
# Theta offset
offset = 0
for p in self.kernel_parameters:
if p.name == 'theta':
self.theta_offset = offset
break
offset += p.length
else:
self.theta_offset = -1
# number of polydisperse parameters
num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
# Don't use more polydisperse parameters than are available in the model
self.max_pd = min(num_pd, MAX_PD)
# true if has 2D parameters
self.has_2d = any(p.type in ('orientation', 'magnetic')
for p in self.kernel_parameters)
self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
if p.id.startswith('M0:')]
self.pd_1d = set(p.name for p in self.call_parameters
if p.polydisperse and p.type not in ('orientation', 'magnetic'))
self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
def __getitem__(self, key):
# Find the parameter definition
for par in self.call_parameters:
if par.name == key:
break
else:
raise KeyError("unknown parameter %r"%key)
return par
def _set_vector_lengths(self):
# type: () -> List[str]
"""
Walk the list of kernel parameters, setting the length field of the
vector parameters from the upper limit of the reference parameter.
This needs to be done once the entire parameter table is available
since the reference may still be undefined when the parameter is
initially created.
Returns the list of control parameter names.
Note: This modifies the underlying parameter object.
"""
# Sort out the length of the vector parameters such as thickness[n]
for p in self.kernel_parameters:
if p.length_control:
for ref in self.kernel_parameters:
if ref.id == p.length_control:
break
else:
raise ValueError("no reference variable %r for %s"
% (p.length_control, p.name))
ref.is_control = True
ref.polydisperse = False
low, high = ref.limits
if int(low) != low or int(high) != high or low < 0 or high > 20:
raise ValueError("expected limits on %s to be within [0, 20]"
% ref.name)
p.length = int(high)
def _get_defaults(self):
# type: () -> ParameterSet
"""
Get a list of parameter defaults from the parameters.
Expands vector parameters into parameter id+number.
"""
# Construct default values, including vector defaults
defaults = {}
for p in self.call_parameters:
if p.length == 1:
defaults[p.id] = p.default
else:
for k in range(1, p.length+1):
defaults["%s%d"%(p.id, k)] = p.default
return defaults
def _get_call_parameters(self):
# type: () -> List[Parameter]
full_list = self.COMMON[:]
for p in self.kernel_parameters:
if p.length == 1:
full_list.append(p)
else:
for k in range(1, p.length+1):
pk = Parameter(p.id+str(k), p.units, p.default,
p.limits, p.type, p.description)
pk.polydisperse = p.polydisperse
pk.relative_pd = p.relative_pd
pk.choices = p.choices
full_list.append(pk)
# Add the magnetic parameters to the end of the call parameter list.
if self.nmagnetic > 0:
full_list.extend([
Parameter('up:frac_i', '', 0., [0., 1.],
'magnetic', 'fraction of spin up incident'),
Parameter('up:frac_f', '', 0., [0., 1.],
'magnetic', 'fraction of spin up final'),
Parameter('up:angle', 'degress', 0., [0., 360.],
'magnetic', 'spin up angle'),
])
slds = [p for p in full_list if p.type == 'sld']
for p in slds:
full_list.extend([
Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
'magnetic', 'magnetic amplitude for '+p.description),
Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
'magnetic', 'magnetic latitude for '+p.description),
Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
'magnetic', 'magnetic longitude for '+p.description),
])
#print("call parameters", full_list)
return full_list
def user_parameters(self, pars, is2d=True):
# type: (Dict[str, float], bool) -> List[Parameter]
"""
Return the list of parameters for the given data type.
Vector parameters are expanded in place. If multiple parameters
share the same vector length, then the parameters will be interleaved
in the result. The control parameters come first. For example,
if the parameter table is ordered as::
sld_core
sld_shell[num_shells]
sld_solvent
thickness[num_shells]
num_shells
and *pars[num_shells]=2* then the returned list will be::
num_shells
scale
background
sld_core
sld_shell1
thickness1
sld_shell2
thickness2
sld_solvent
Note that shell/thickness pairs are grouped together in the result
even though they were not grouped in the incoming table. The control
parameter is always returned first since the GUI will want to set it
early, and rerender the table when it is changed.
Parameters marked as sld will automatically have a set of associated
magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
information (up:theta, up:frac_i, up:frac_f).
"""
# control parameters go first
control = [p for p in self.kernel_parameters if p.is_control]
# Gather entries such as name[n] into groups of the same n
dependent = {} # type: Dict[str, List[Parameter]]
dependent.update((p.id, []) for p in control)
for p in self.kernel_parameters:
if p.length_control is not None:
dependent[p.length_control].append(p)
# Gather entries such as name[4] into groups of the same length
fixed_length = {} # type: Dict[int, List[Parameter]]
for p in self.kernel_parameters:
if p.length > 1 and p.length_control is None:
fixed_length.setdefault(p.length, []).append(p)
# Using the call_parameters table, we already have expanded forms
# for each of the vector parameters; put them in a lookup table
# Note: p.id and p.name are currently identical for the call parameters
expanded_pars = dict((p.id, p) for p in self.call_parameters)
def append_group(name):
"""add the named parameter, and related magnetic parameters if any"""
result.append(expanded_pars[name])
if is2d:
for tag in 'M0:', 'mtheta:', 'mphi:':
if tag+name in expanded_pars:
result.append(expanded_pars[tag+name])
# Gather the user parameters in order
result = control + self.COMMON
for p in self.kernel_parameters:
if not is2d and p.type in ('orientation', 'magnetic'):
pass
elif p.is_control:
pass # already added
elif p.length_control is not None:
table = dependent.get(p.length_control, [])
if table:
# look up length from incoming parameters
table_length = int(pars.get(p.length_control, p.length))
del dependent[p.length_control] # first entry seen
for k in range(1, table_length+1):
for entry in table:
append_group(entry.id+str(k))
else:
pass # already processed all entries
elif p.length > 1:
table = fixed_length.get(p.length, [])
if table:
table_length = p.length
del fixed_length[p.length]
for k in range(1, table_length+1):
for entry in table:
append_group(entry.id+str(k))
else:
pass # already processed all entries
else:
append_group(p.id)
if is2d and 'up:angle' in expanded_pars:
result.extend([
expanded_pars['up:frac_i'],
expanded_pars['up:frac_f'],
expanded_pars['up:angle'],
])
return result
def isstr(x):
# type: (Any) -> bool
"""
Return True if the object is a string.
"""
# TODO: 2-3 compatible tests for str, including unicode strings
return isinstance(x, str)
def _find_source_lines(model_info, kernel_module):
"""
Identify the location of the C source inside the model definition file.
This code runs through the source of the kernel module looking for
lines that start with 'Iq', 'Iqxy' or 'form_volume'. Clearly there are
all sorts of reasons why this might not work (e.g., code commented out
in a triple-quoted line block, code built using string concatenation,
or code defined in the branch of an 'if' block), but it should work
properly in the 95% case, and getting the incorrect line number will
be harmless.
"""
# Check if we need line numbers at all
if callable(model_info.Iq):
return None
if (model_info.Iq is None
and model_info.Iqxy is None
and model_info.Imagnetic is None
and model_info.form_volume is None):
return
# find the defintion lines for the different code blocks
try:
source = inspect.getsource(kernel_module)
except IOError:
return
for k, v in enumerate(source.split('\n')):
if v.startswith('Imagnetic'):
model_info._Imagnetic_line = k+1
elif v.startswith('Iqxy'):
model_info._Iqxy_line = k+1
elif v.startswith('Iq'):
model_info._Iq_line = k+1
elif v.startswith('form_volume'):
model_info._form_volume_line = k+1
def make_model_info(kernel_module):
# type: (module) -> ModelInfo
"""
Extract the model definition from the loaded kernel module.
Fill in default values for parts of the module that are not provided.
Note: vectorized Iq and Iqxy functions will be created for python
models when the model is first called, not when the model is loaded.
"""
if hasattr(kernel_module, "model_info"):
# Custom sum/multi models
return kernel_module.model_info
info = ModelInfo()
#print("make parameter table", kernel_module.parameters)
parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
kernel_id = splitext(basename(filename))[0]
name = getattr(kernel_module, 'name', None)
if name is None:
name = " ".join(w.capitalize() for w in kernel_id.split('_'))
info.id = kernel_id # string used to load the kernel
info.filename = filename
info.name = name
info.title = getattr(kernel_module, 'title', name+" model")
info.description = getattr(kernel_module, 'description', 'no description')
info.parameters = parameters
info.demo = demo
info.composition = None
info.docs = kernel_module.__doc__
info.category = getattr(kernel_module, 'category', None)
info.structure_factor = getattr(kernel_module, 'structure_factor', False)
info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
info.source = getattr(kernel_module, 'source', [])
# TODO: check the structure of the tests
info.tests = getattr(kernel_module, 'tests', [])
info.ER = getattr(kernel_module, 'ER', None) # type: ignore
info.VR = getattr(kernel_module, 'VR', None) # type: ignore
info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
info.profile = getattr(kernel_module, 'profile', None) # type: ignore
info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
# Default single and opencl to True for C models. Python models have callable Iq.
info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
info.single = getattr(kernel_module, 'single', not callable(info.Iq))
info.random = getattr(kernel_module, 'random', None)
# multiplicity info
control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
default_control = control_pars[0] if control_pars else None
info.control = getattr(kernel_module, 'control', default_control)
info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
_find_source_lines(info, kernel_module)
return info
class ModelInfo(object):
"""
Interpret the model definition file, categorizing the parameters.
The module can be loaded with a normal python import statement if you
know which module you need, or with __import__('sasmodels.model.'+name)
if the name is in a string.
The structure should be mostly static, other than the delayed definition
of *Iq* and *Iqxy* if they need to be defined.
"""
#: Full path to the file defining the kernel, if any.
filename = None # type: Optional[str]
#: Id of the kernel used to load it from the filesystem.
id = None # type: str
#: Display name of the model, which defaults to the model id but with
#: capitalization of the parts so for example core_shell defaults to
#: "Core Shell".
name = None # type: str
#: Short description of the model.
title = None # type: str
#: Long description of the model.
description = None # type: str
#: Model parameter table. Parameters are defined using a list of parameter
#: definitions, each of which is contains parameter name, units,
#: default value, limits, type and description. See :class:`Parameter`
#: for details on the individual parameters. The parameters are gathered
#: into a :class:`ParameterTable`, which provides various views into the
#: parameter list.
parameters = None # type: ParameterTable
#: Demo parameters as a *parameter:value* map used as the default values
#: for :mod:`compare`. Any parameters not set in *demo* will use the
#: defaults from the parameter table. That means no polydispersity, and
#: in the case of multiplicity models, a minimal model with no interesting
#: scattering.
demo = None # type: Dict[str, float]
#: Composition is None if this is an independent model, or it is a
#: tuple with comoposition type ('product' or 'misture') and a list of
#: :class:`ModelInfo` blocks for the composed objects. This allows us
#: to rebuild a complete mixture or product model from the info block.
#: *composition* is not given in the model definition file, but instead
#: arises when the model is constructed using names such as
#: *sphere*hardsphere* or *cylinder+sphere*.
composition = None # type: Optional[Tuple[str, List[ModelInfo]]]
#: Name of the control parameter for a variant model such as :ref:`rpa`.
#: The *control* parameter should appear in the parameter table, with
#: limits defined as *[CASES]*, for case names such as
#: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
#: This should give *limits=[[case1, case2, ...]]*, but the
#: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
#: *choices=CASES* to the :class:`Parameter` definition. Note that
#: models can use a list of cases as a parameter without it being a
#: control parameter. Either way, the parameter is sent to the model
#: evaluator as *float(choice_num)*, where choices are numbered from 0.
#: See also :attr:`hidden`.
control = None # type: str
#: Different variants require different parameters. In order to show
#: just the parameters needed for the variant selected by :attr:`control`,
#: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
#: indicating which parameters need to be hidden. For multiplicity
#: models, you need to use the complete name of the parameter, including
#: its number. So for example, if variant "a" uses only *sld1* and *sld2*,
#: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
#: should be in the hidden set.
hidden = None # type: Optional[Callable[[int], Set[str]]]
#: Doc string from the top of the model file. This should be formatted
#: using ReStructuredText format, with latex markup in ".. math"
#: environments, or in dollar signs. This will be automatically
#: extracted to a .rst file by :func:`generate.make_docs`, then
#: converted to HTML or PDF by Sphinx.
docs = None # type: str
#: Location of the model description in the documentation. This takes the
#: form of "section" or "section:subsection". So for example,
#: :ref:`porod` uses *category="shape-independent"* so it is in the
#: :ref:`shape-independent` section whereas
#: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
#: it in the :ref:`shape-cylinder` section.
category = None # type: Optional[str]
#: True if the model can be computed accurately with single precision.
#: This is True by default, but models such as :ref:`bcc-paracrystal` set
#: it to False because they require double precision calculations.
single = None # type: bool
#: True if the model can be run as an opencl model. If for some reason
#: the model cannot be run in opencl (e.g., because the model passes
#: functions by reference), then set this to false.
opencl = None # type: bool
#: True if the model is a structure factor used to model the interaction
#: between form factor models. This will default to False if it is not
#: provided in the file.
structure_factor = None # type: bool
#: List of C source files used to define the model. The source files
#: should define the *Iq* function, and possibly *Iqxy*, though a default
#: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided.
#: Files containing the most basic functions must appear first in the list,
#: followed by the files that use those functions. Form factors are
#: indicated by providing a :attr:`ER` function.
source = None # type: List[str]
#: The set of tests that must pass. The format of the tests is described
#: in :mod:`model_test`.
tests = None # type: List[TestCondition]
#: Returns the effective radius of the model given its volume parameters.
#: The presence of *ER* indicates that the model is a form factor model
#: that may be used together with a structure factor to form an implicit
#: multiplication model.
#:
#: The parameters to the *ER* function must be marked with type *volume*.
#: in the parameter table. They will appear in the same order as they
#: do in the table. The values passed to *ER* will be vectors, with one
#: value for each polydispersity condition. For example, if the model
#: is polydisperse over both length and radius, then both length and
#: radius will have the same number of values in the vector, with one
#: value for each *length X radius*. If only *radius* is polydisperse,
#: then the value for *length* will be repeated once for each value of
#: *radius*. The *ER* function should return one effective radius for
#: each parameter set. Multiplicity parameters will be received as
#: arrays, with one row per polydispersity condition.
ER = None # type: Optional[Callable[[np.ndarray], np.ndarray]]
#: Returns the occupied volume and the total volume for each parameter set.
#: See :attr:`ER` for details on the parameters.
VR = None # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
#: Returns the form volume for python-based models. Form volume is needed
#: for volume normalization in the polydispersity integral. If no
#: parameters are *volume* parameters, then form volume is not needed.
#: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
#: defined using a string containing C code), form_volume must also be
#: C code, either defined as a string, or in the sources.
form_volume = None # type: Union[None, str, Callable[[np.ndarray], float]]
#: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
#: by the parameter table. *Iq* can be defined as a python function, or
#: as a C function. If it is defined in C, then set *Iq* to the body of
#: the C function, including the return statement. This function takes
#: values for *q* and each of the parameters as separate *double* values
#: (which may be converted to float or long double by sasmodels). All
#: source code files listed in :attr:`sources` will be loaded before the
#: *Iq* function is defined. If *Iq* is not present, then sources should
#: define *static double Iq(double q, double a, double b, ...)* which
#: will return *I(q, a, b, ...)*. Multiplicity parameters are sent as
#: pointers to doubles. Constants in floating point expressions should
#: include the decimal point. See :mod:`generate` for more details.
Iq = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
#: Returns *I(qx, qy, a, b, ...)*. The interface follows :attr:`Iq`.
Iqxy = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
#: Returns *I(qx, qy, a, b, ...)*. The interface follows :attr:`Iq`.
Imagnetic = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
#: Returns a model profile curve *x, y*. If *profile* is defined, this
#: curve will appear in response to the *Show* button in SasView. Use
#: :attr:`profile_axes` to set the axis labels. Note that *y* values
#: will be scaled by 1e6 before plotting.
profile = None # type: Optional[Callable[[np.ndarray], None]]
#: Axis labels for the :attr:`profile` plot. The default is *['x', 'y']*.
#: Only the *x* component is used for now.
profile_axes = None # type: Tuple[str, str]
#: Returns *sesans(z, a, b, ...)* for models which can directly compute
#: the SESANS correlation function. Note: not currently implemented.
sesans = None # type: Optional[Callable[[np.ndarray], np.ndarray]]
# line numbers within the python file for bits of C source, if defined
# NB: some compilers fail with a "#line 0" directive, so default to 1.
_Imagnetic_line = 1
_Iqxy_line = 1
_Iq_line = 1
_form_volume_line = 1
def __init__(self):
# type: () -> None
pass
def get_hidden_parameters(self, control):
"""
Returns the set of hidden parameters for the model. *control* is the
value of the control parameter. Note that multiplicity models have
an implicit control parameter, which is the parameter that controls
the multiplicity.
"""
if self.hidden is not None:
hidden = self.hidden(control)
else:
controls = [p for p in self.parameters.kernel_parameters
if p.is_control]
if len(controls) != 1:
raise ValueError("more than one control parameter")
hidden = set(p.id+str(k)
for p in self.parameters.kernel_parameters
for k in range(control+1, p.length+1)
if p.length > 1)
return hidden
|