This file is indexed.

/usr/lib/python3/dist-packages/sasmodels/kernelcl.py is in python3-sasmodels 0.97~git20171104-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
"""
GPU driver for C kernels

There should be a single GPU environment running on the system.  This
environment is constructed on the first call to :func:`env`, and the
same environment is returned on each call.

After retrieving the environment, the next step is to create the kernel.
This is done with a call to :meth:`GpuEnvironment.make_kernel`, which
returns the type of data used by the kernel.

Next a :class:`GpuData` object should be created with the correct kind
of data.  This data object can be used by multiple kernels, for example,
if the target model is a weighted sum of multiple kernels.  The data
should include any extra evaluation points required to compute the proper
data smearing.  This need not match the square grid for 2D data if there
is an index saying which q points are active.

Together the GpuData, the program, and a device form a :class:`GpuKernel`.
This kernel is used during fitting, receiving new sets of parameters and
evaluating them.  The output value is stored in an output buffer on the
devices, where it can be combined with other structure factors and form
factors and have instrumental resolution effects applied.

In order to use OpenCL for your models, you will need OpenCL drivers for
your machine.  These should be available from your graphics card vendor.
Intel provides OpenCL drivers for CPUs as well as their integrated HD
graphics chipsets.  AMD also provides drivers for Intel CPUs, but as of
this writing the performance is lacking compared to the Intel drivers.
NVidia combines drivers for CUDA and OpenCL in one package.  The result
is a bit messy if you have multiple drivers installed.  You can see which
drivers are available by starting python and running:

    import pyopencl as cl
    cl.create_some_context(interactive=True)

Once you have done that, it will show the available drivers which you
can select.  It will then tell you that you can use these drivers
automatically by setting the SAS_OPENCL environment variable, which is
PYOPENCL_CTX equivalent but not conflicting with other pyopnecl programs.

Some graphics cards have multiple devices on the same card.  You cannot
yet use both of them concurrently to evaluate models, but you can run
the program twice using a different device for each session.

OpenCL kernels are compiled when needed by the device driver.  Some
drivers produce compiler output even when there is no error.  You
can see the output by setting PYOPENCL_COMPILER_OUTPUT=1.  It should be
harmless, albeit annoying.
"""
from __future__ import print_function

import os
import warnings
import logging
import time

import numpy as np  # type: ignore

try:
    #raise NotImplementedError("OpenCL not yet implemented for new kernel template")
    import pyopencl as cl  # type: ignore
    # Ask OpenCL for the default context so that we know that one exists
    cl.create_some_context(interactive=False)
except Exception as exc:
    warnings.warn("OpenCL startup failed with ***"
                  + str(exc) + "***; using C compiler instead")
    raise RuntimeError("OpenCL not available")

from pyopencl import mem_flags as mf
from pyopencl.characterize import get_fast_inaccurate_build_options

from . import generate
from .kernel import KernelModel, Kernel

try:
    from typing import Tuple, Callable, Any
    from .modelinfo import ModelInfo
    from .details import CallDetails
except ImportError:
    pass

# CRUFT: pyopencl < 2017.1  (as of June 2016 needs quotes around include path)
def quote_path(v):
    """
    Quote the path if it is not already quoted.

    If v starts with '-', then assume that it is a -I option or similar
    and do not quote it.  This is fragile:  -Ipath with space needs to
    be quoted.
    """
    return '"'+v+'"' if v and ' ' in v and not v[0] in "\"'-" else v

def fix_pyopencl_include():
    """
    Monkey patch pyopencl to allow spaces in include file path.
    """
    import pyopencl as cl
    if hasattr(cl, '_DEFAULT_INCLUDE_OPTIONS'):
        cl._DEFAULT_INCLUDE_OPTIONS = [quote_path(v) for v in cl._DEFAULT_INCLUDE_OPTIONS]

fix_pyopencl_include()


# The max loops number is limited by the amount of local memory available
# on the device.  You don't want to make this value too big because it will
# waste resources, nor too small because it may interfere with users trying
# to do their polydispersity calculations.  A value of 1024 should be much
# larger than necessary given that cost grows as npts^k where k is the number
# of polydisperse parameters.
MAX_LOOPS = 2048


# Pragmas for enable OpenCL features.  Be sure to protect them so that they
# still compile even if OpenCL is not present.
_F16_PRAGMA = """\
#if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp16)
#  pragma OPENCL EXTENSION cl_khr_fp16: enable
#endif
"""

_F64_PRAGMA = """\
#if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp64)
#  pragma OPENCL EXTENSION cl_khr_fp64: enable
#endif
"""


ENV = None
def environment():
    # type: () -> "GpuEnvironment"
    """
    Returns a singleton :class:`GpuEnvironment`.

    This provides an OpenCL context and one queue per device.
    """
    global ENV
    if ENV is None:
        ENV = GpuEnvironment()
    return ENV

def has_type(device, dtype):
    # type: (cl.Device, np.dtype) -> bool
    """
    Return true if device supports the requested precision.
    """
    if dtype == generate.F32:
        return True
    elif dtype == generate.F64:
        return "cl_khr_fp64" in device.extensions
    elif dtype == generate.F16:
        return "cl_khr_fp16" in device.extensions
    else:
        return False

def get_warp(kernel, queue):
    # type: (cl.Kernel, cl.CommandQueue) -> int
    """
    Return the size of an execution batch for *kernel* running on *queue*.
    """
    return kernel.get_work_group_info(
        cl.kernel_work_group_info.PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
        queue.device)

def _stretch_input(vector, dtype, extra=1e-3, boundary=32):
    # type: (np.ndarray, np.dtype, float, int) -> np.ndarray
    """
    Stretch an input vector to the correct boundary.

    Performance on the kernels can drop by a factor of two or more if the
    number of values to compute does not fall on a nice power of two
    boundary.   The trailing additional vector elements are given a
    value of *extra*, and so f(*extra*) will be computed for each of
    them.  The returned array will thus be a subset of the computed array.

    *boundary* should be a power of 2 which is at least 32 for good
    performance on current platforms (as of Jan 2015).  It should
    probably be the max of get_warp(kernel,queue) and
    device.min_data_type_align_size//4.
    """
    remainder = vector.size % boundary
    if remainder != 0:
        size = vector.size + (boundary - remainder)
        vector = np.hstack((vector, [extra] * (size - vector.size)))
    return np.ascontiguousarray(vector, dtype=dtype)


def compile_model(context, source, dtype, fast=False):
    # type: (cl.Context, str, np.dtype, bool) -> cl.Program
    """
    Build a model to run on the gpu.

    Returns the compiled program and its type.  The returned type will
    be float32 even if the desired type is float64 if any of the
    devices in the context do not support the cl_khr_fp64 extension.
    """
    dtype = np.dtype(dtype)
    if not all(has_type(d, dtype) for d in context.devices):
        raise RuntimeError("%s not supported for devices"%dtype)

    source_list = [generate.convert_type(source, dtype)]

    if dtype == generate.F16:
        source_list.insert(0, _F16_PRAGMA)
    elif dtype == generate.F64:
        source_list.insert(0, _F64_PRAGMA)

    # Note: USE_SINCOS makes the intel cpu slower under opencl
    if context.devices[0].type == cl.device_type.GPU:
        source_list.insert(0, "#define USE_SINCOS\n")
    options = (get_fast_inaccurate_build_options(context.devices[0])
               if fast else [])
    source = "\n".join(source_list)
    program = cl.Program(context, source).build(options=options)
    #print("done with "+program)
    return program


# for now, this returns one device in the context
# TODO: create a context that contains all devices on all platforms
class GpuEnvironment(object):
    """
    GPU context, with possibly many devices, and one queue per device.
    """
    def __init__(self):
        # type: () -> None
        # find gpu context
        #self.context = cl.create_some_context()

        self.context = None
        if 'SAS_OPENCL' in os.environ:
            #Setting PYOPENCL_CTX as a SAS_OPENCL to create cl context
            os.environ["PYOPENCL_CTX"] = os.environ["SAS_OPENCL"]
        if 'PYOPENCL_CTX' in os.environ:
            self._create_some_context()

        if not self.context:
            self.context = _get_default_context()

        # Byte boundary for data alignment
        #self.data_boundary = max(d.min_data_type_align_size
        #                         for d in self.context.devices)
        self.queues = [cl.CommandQueue(context, context.devices[0])
                       for context in self.context]
        self.compiled = {}

    def has_type(self, dtype):
        # type: (np.dtype) -> bool
        """
        Return True if all devices support a given type.
        """
        return any(has_type(d, dtype)
                   for context in self.context
                   for d in context.devices)

    def get_queue(self, dtype):
        # type: (np.dtype) -> cl.CommandQueue
        """
        Return a command queue for the kernels of type dtype.
        """
        for context, queue in zip(self.context, self.queues):
            if all(has_type(d, dtype) for d in context.devices):
                return queue

    def get_context(self, dtype):
        # type: (np.dtype) -> cl.Context
        """
        Return a OpenCL context for the kernels of type dtype.
        """
        for context in self.context:
            if all(has_type(d, dtype) for d in context.devices):
                return context

    def _create_some_context(self):
        # type: () -> cl.Context
        """
        Protected call to cl.create_some_context without interactivity.  Use
        this if SAS_OPENCL is set in the environment.  Sets the *context*
        attribute.
        """
        try:
            self.context = [cl.create_some_context(interactive=False)]
        except Exception as exc:
            warnings.warn(str(exc))
            warnings.warn("pyopencl.create_some_context() failed")
            warnings.warn("the environment variable 'SAS_OPENCL' might not be set correctly")

    def compile_program(self, name, source, dtype, fast, timestamp):
        # type: (str, str, np.dtype, bool, float) -> cl.Program
        """
        Compile the program for the device in the given context.
        """
        # Note: PyOpenCL caches based on md5 hash of source, options and device
        # so we don't really need to cache things for ourselves.  I'll do so
        # anyway just to save some data munging time.
        tag = generate.tag_source(source)
        key = "%s-%s-%s%s"%(name, dtype, tag, ("-fast" if fast else ""))
        # Check timestamp on program
        program, program_timestamp = self.compiled.get(key, (None, np.inf))
        if program_timestamp < timestamp:
            del self.compiled[key]
        if key not in self.compiled:
            context = self.get_context(dtype)
            logging.info("building %s for OpenCL %s", key,
                         context.devices[0].name.strip())
            program = compile_model(self.get_context(dtype),
                                    str(source), dtype, fast)
            self.compiled[key] = (program, timestamp)
        return program

def _get_default_context():
    # type: () -> List[cl.Context]
    """
    Get an OpenCL context, preferring GPU over CPU, and preferring Intel
    drivers over AMD drivers.
    """
    # Note: on mobile devices there is automatic clock scaling if either the
    # CPU or the GPU is underutilized; probably doesn't affect us, but we if
    # it did, it would mean that putting a busy loop on the CPU while the GPU
    # is running may increase throughput.
    #
    # Macbook pro, base install:
    #     {'Apple': [Intel CPU, NVIDIA GPU]}
    # Macbook pro, base install:
    #     {'Apple': [Intel CPU, Intel GPU]}
    # 2 x nvidia 295 with Intel and NVIDIA opencl drivers installed
    #     {'Intel': [CPU], 'NVIDIA': [GPU, GPU, GPU, GPU]}
    gpu, cpu = None, None
    for platform in cl.get_platforms():
        # AMD provides a much weaker CPU driver than Intel/Apple, so avoid it.
        # If someone has bothered to install the AMD/NVIDIA drivers, prefer
        # them over the integrated graphics driver that may have been supplied
        # with the CPU chipset.
        preferred_cpu = (platform.vendor.startswith('Intel')
                         or platform.vendor.startswith('Apple'))
        preferred_gpu = (platform.vendor.startswith('Advanced')
                         or platform.vendor.startswith('NVIDIA'))
        for device in platform.get_devices():
            if device.type == cl.device_type.GPU:
                # If the existing type is not GPU then it will be CUSTOM
                # or ACCELERATOR so don't override it.
                if gpu is None or (preferred_gpu and gpu.type == cl.device_type.GPU):
                    gpu = device
            elif device.type == cl.device_type.CPU:
                if cpu is None or preferred_cpu:
                    cpu = device
            else:
                # System has cl.device_type.ACCELERATOR or cl.device_type.CUSTOM
                # Intel Phi for example registers as an accelerator
                # Since the user installed a custom device on their system
                # and went through the pain of sorting out OpenCL drivers for
                # it, lets assume they really do want to use it as their
                # primary compute device.
                gpu = device

    # order the devices by gpu then by cpu; when searching for an available
    # device by data type they will be checked in this order, which means
    # that if the gpu supports double then the cpu will never be used (though
    # we may make it possible to explicitly request the cpu at some point).
    devices = []
    if gpu is not None:
        devices.append(gpu)
    if cpu is not None:
        devices.append(cpu)
    return [cl.Context([d]) for d in devices]


class GpuModel(KernelModel):
    """
    GPU wrapper for a single model.

    *source* and *model_info* are the model source and interface as returned
    from :func:`generate.make_source` and :func:`generate.make_model_info`.

    *dtype* is the desired model precision.  Any numpy dtype for single
    or double precision floats will do, such as 'f', 'float32' or 'single'
    for single and 'd', 'float64' or 'double' for double.  Double precision
    is an optional extension which may not be available on all devices.
    Half precision ('float16','half') may be available on some devices.
    Fast precision ('fast') is a loose version of single precision, indicating
    that the compiler is allowed to take shortcuts.
    """
    def __init__(self, source, model_info, dtype=generate.F32, fast=False):
        # type: (Dict[str,str], ModelInfo, np.dtype, bool) -> None
        self.info = model_info
        self.source = source
        self.dtype = dtype
        self.fast = fast
        self.program = None # delay program creation
        self._kernels = None

    def __getstate__(self):
        # type: () -> Tuple[ModelInfo, str, np.dtype, bool]
        return self.info, self.source, self.dtype, self.fast

    def __setstate__(self, state):
        # type: (Tuple[ModelInfo, str, np.dtype, bool]) -> None
        self.info, self.source, self.dtype, self.fast = state
        self.program = None

    def make_kernel(self, q_vectors):
        # type: (List[np.ndarray]) -> "GpuKernel"
        if self.program is None:
            compile_program = environment().compile_program
            timestamp = generate.ocl_timestamp(self.info)
            self.program = compile_program(
                self.info.name,
                self.source['opencl'],
                self.dtype,
                self.fast,
                timestamp)
            variants = ['Iq', 'Iqxy', 'Imagnetic']
            names = [generate.kernel_name(self.info, k) for k in variants]
            kernels = [getattr(self.program, k) for k in names]
            self._kernels = dict((k, v) for k, v in zip(variants, kernels))
        is_2d = len(q_vectors) == 2
        if is_2d:
            kernel = [self._kernels['Iqxy'], self._kernels['Imagnetic']]
        else:
            kernel = [self._kernels['Iq']]*2
        return GpuKernel(kernel, self.dtype, self.info, q_vectors)

    def release(self):
        # type: () -> None
        """
        Free the resources associated with the model.
        """
        if self.program is not None:
            self.program = None

    def __del__(self):
        # type: () -> None
        self.release()

# TODO: check that we don't need a destructor for buffers which go out of scope
class GpuInput(object):
    """
    Make q data available to the gpu.

    *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data,
    and *[qx, qy]* for 2-D data.  Internally, the vectors will be reallocated
    to get the best performance on OpenCL, which may involve shifting and
    stretching the array to better match the memory architecture.  Additional
    points will be evaluated with *q=1e-3*.

    *dtype* is the data type for the q vectors. The data type should be
    set to match that of the kernel, which is an attribute of
    :class:`GpuProgram`.  Note that not all kernels support double
    precision, so even if the program was created for double precision,
    the *GpuProgram.dtype* may be single precision.

    Call :meth:`release` when complete.  Even if not called directly, the
    buffer will be released when the data object is freed.
    """
    def __init__(self, q_vectors, dtype=generate.F32):
        # type: (List[np.ndarray], np.dtype) -> None
        # TODO: do we ever need double precision q?
        env = environment()
        self.nq = q_vectors[0].size
        self.dtype = np.dtype(dtype)
        self.is_2d = (len(q_vectors) == 2)
        # TODO: stretch input based on get_warp()
        # not doing it now since warp depends on kernel, which is not known
        # at this point, so instead using 32, which is good on the set of
        # architectures tested so far.
        if self.is_2d:
            # Note: 16 rather than 15 because result is 1 longer than input.
            width = ((self.nq+16)//16)*16
            self.q = np.empty((width, 2), dtype=dtype)
            self.q[:self.nq, 0] = q_vectors[0]
            self.q[:self.nq, 1] = q_vectors[1]
        else:
            # Note: 32 rather than 31 because result is 1 longer than input.
            width = ((self.nq+32)//32)*32
            self.q = np.empty(width, dtype=dtype)
            self.q[:self.nq] = q_vectors[0]
        self.global_size = [self.q.shape[0]]
        context = env.get_context(self.dtype)
        #print("creating inputs of size", self.global_size)
        self.q_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
                             hostbuf=self.q)

    def release(self):
        # type: () -> None
        """
        Free the memory.
        """
        if self.q_b is not None:
            self.q_b.release()
            self.q_b = None

    def __del__(self):
        # type: () -> None
        self.release()

class GpuKernel(Kernel):
    """
    Callable SAS kernel.

    *kernel* is the GpuKernel object to call

    *model_info* is the module information

    *q_vectors* is the q vectors at which the kernel should be evaluated

    *dtype* is the kernel precision

    The resulting call method takes the *pars*, a list of values for
    the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight)
    vectors for the polydisperse parameters.  *cutoff* determines the
    integration limits: any points with combined weight less than *cutoff*
    will not be calculated.

    Call :meth:`release` when done with the kernel instance.
    """
    def __init__(self, kernel, dtype, model_info, q_vectors):
        # type: (cl.Kernel, np.dtype, ModelInfo, List[np.ndarray]) -> None
        q_input = GpuInput(q_vectors, dtype)
        self.kernel = kernel
        self.info = model_info
        self.dtype = dtype
        self.dim = '2d' if q_input.is_2d else '1d'
        # plus three for the normalization values
        self.result = np.empty(q_input.nq+1, dtype)

        # Inputs and outputs for each kernel call
        # Note: res may be shorter than res_b if global_size != nq
        env = environment()
        self.queue = env.get_queue(dtype)

        self.result_b = cl.Buffer(self.queue.context, mf.READ_WRITE,
                                  q_input.global_size[0] * dtype.itemsize)
        self.q_input = q_input # allocated by GpuInput above

        self._need_release = [self.result_b, self.q_input]
        self.real = (np.float32 if dtype == generate.F32
                     else np.float64 if dtype == generate.F64
                     else np.float16 if dtype == generate.F16
                     else np.float32)  # will never get here, so use np.float32

    def __call__(self, call_details, values, cutoff, magnetic):
        # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray
        context = self.queue.context
        # Arrange data transfer to card
        details_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
                              hostbuf=call_details.buffer)
        values_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
                             hostbuf=values)

        kernel = self.kernel[1 if magnetic else 0]
        args = [
            np.uint32(self.q_input.nq), None, None,
            details_b, values_b, self.q_input.q_b, self.result_b,
            self.real(cutoff),
        ]
        #print("Calling OpenCL")
        #call_details.show(values)
        # Call kernel and retrieve results
        wait_for = None
        last_nap = time.clock()
        step = 1000000//self.q_input.nq + 1
        for start in range(0, call_details.num_eval, step):
            stop = min(start + step, call_details.num_eval)
            #print("queuing",start,stop)
            args[1:3] = [np.int32(start), np.int32(stop)]
            wait_for = [kernel(self.queue, self.q_input.global_size, None,
                               *args, wait_for=wait_for)]
            if stop < call_details.num_eval:
                # Allow other processes to run
                wait_for[0].wait()
                current_time = time.clock()
                if current_time - last_nap > 0.5:
                    time.sleep(0.05)
                    last_nap = current_time
        cl.enqueue_copy(self.queue, self.result, self.result_b)
        #print("result", self.result)

        # Free buffers
        for v in (details_b, values_b):
            if v is not None:
                v.release()

        pd_norm = self.result[self.q_input.nq]
        scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0)
        background = values[1]
        #print("scale",scale,values[0],self.result[self.q_input.nq],background)
        return scale*self.result[:self.q_input.nq] + background
        # return self.result[:self.q_input.nq]

    def release(self):
        # type: () -> None
        """
        Release resources associated with the kernel.
        """
        for v in self._need_release:
            v.release()
        self._need_release = []

    def __del__(self):
        # type: () -> None
        self.release()