/usr/lib/python3/dist-packages/sasmodels/generate.py is in python3-sasmodels 0.97~git20171104-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | """
SAS model constructor.
Small angle scattering models are defined by a set of kernel functions:
*Iq(q, p1, p2, ...)* returns the scattering at q for a form with
particular dimensions averaged over all orientations.
*Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx, qy for a form
with particular dimensions for a single orientation.
*Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the
polarized neutron spin states (up-up, up-down, down-up, down-down) for
a form with particular dimensions for a single orientation.
*form_volume(p1, p2, ...)* returns the volume of the form with particular
dimension, or 1.0 if no volume normalization is required.
*ER(p1, p2, ...)* returns the effective radius of the form with
particular dimensions.
*VR(p1, p2, ...)* returns the volume ratio for core-shell style forms.
#define INVALID(v) (expr) returns False if v.parameter is invalid
for some parameter or other (e.g., v.bell_radius < v.radius). If
necessary, the expression can call a function.
These functions are defined in a kernel module .py script and an associated
set of .c files. The model constructor will use them to create models with
polydispersity across volume and orientation parameters, and provide
scale and background parameters for each model.
*Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99
functions written for OpenCL. All functions need prototype declarations
even if the are defined before they are used. OpenCL does not support
*#include* preprocessor directives, so instead the list of includes needs
to be given as part of the metadata in the kernel module definition.
The included files should be listed using a path relative to the kernel
module, or if using "lib/file.c" if it is one of the standard includes
provided with the sasmodels source. The includes need to be listed in
order so that functions are defined before they are used.
Floating point values should be declared as *double*. For single precision
calculations, *double* will be replaced by *float*. The single precision
conversion will also tag floating point constants with "f" to make them
single precision constants. When using integral values in floating point
expressions, they should be expressed as floating point values by including
a decimal point. This includes 0., 1. and 2.
OpenCL has a *sincos* function which can improve performance when both
the *sin* and *cos* values are needed for a particular argument. Since
this function does not exist in C99, all use of *sincos* should be
replaced by the macro *SINCOS(value, sn, cn)* where *sn* and *cn* are
previously declared *double* variables. When compiled for systems without
OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls. If *value* is
an expression, it will appear twice in this case; whether or not it will be
evaluated twice depends on the quality of the compiler.
If the input parameters are invalid, the scattering calculator should
return a negative number. Particularly with polydispersity, there are
some sets of shape parameters which lead to nonsensical forms, such
as a capped cylinder where the cap radius is smaller than the
cylinder radius. The polydispersity calculation will ignore these points,
effectively chopping the parameter weight distributions at the boundary
of the infeasible region. The resulting scattering will be set to
background. This will work correctly even when polydispersity is off.
*ER* and *VR* are python functions which operate on parameter vectors.
The constructor code will generate the necessary vectors for computing
them with the desired polydispersity.
The kernel module must set variables defining the kernel meta data:
*id* is an implicit variable formed from the filename. It will be
a valid python identifier, and will be used as the reference into
the html documentation, with '_' replaced by '-'.
*name* is the model name as displayed to the user. If it is missing,
it will be constructed from the id.
*title* is a short description of the model, suitable for a tool tip,
or a one line model summary in a table of models.
*description* is an extended description of the model to be displayed
while the model parameters are being edited.
*parameters* is the list of parameters. Parameters in the kernel
functions must appear in the same order as they appear in the
parameters list. Two additional parameters, *scale* and *background*
are added to the beginning of the parameter list. They will show up
in the documentation as model parameters, but they are never sent to
the kernel functions. Note that *effect_radius* and *volfraction*
must occur first in structure factor calculations.
*category* is the default category for the model. The category is
two level structure, with the form "group:section", indicating where
in the manual the model will be located. Models are alphabetical
within their section.
*source* is the list of C-99 source files that must be joined to
create the OpenCL kernel functions. The files defining the functions
need to be listed before the files which use the functions.
*ER* is a python function defining the effective radius. If it is
not present, the effective radius is 0.
*VR* is a python function defining the volume ratio. If it is not
present, the volume ratio is 1.
*form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the
C source code for the body of the volume, Iq, and Iqxy functions
respectively. These can also be defined in the last source file.
*Iq* and *Iqxy* also be instead be python functions defining the
kernel. If they are marked as *Iq.vectorized = True* then the
kernel is passed the entire *q* vector at once, otherwise it is
passed values one *q* at a time. The performance improvement of
this step is significant.
*demo* is a dictionary of parameter=value defining a set of
parameters to use by default when *compare* is called. Any
parameter not set in *demo* gets the initial value from the
parameter list. *demo* is mostly needed to set the default
polydispersity values for tests.
A :class:`modelinfo.ModelInfo` structure is constructed from the kernel meta
data and returned to the caller.
The doc string at the start of the kernel module will be used to
construct the model documentation web pages. Embedded figures should
appear in the subdirectory "img" beside the model definition, and tagged
with the kernel module name to avoid collision with other models. Some
file systems are case-sensitive, so only use lower case characters for
file names and extensions.
Code follows the C99 standard with the following extensions and conditions::
M_PI_180 = pi/180
M_4PI_3 = 4pi/3
square(x) = x*x
cube(x) = x*x*x
sas_sinx_x(x) = sin(x)/x, with sin(0)/0 -> 1
all double precision constants must include the decimal point
all double declarations may be converted to half, float, or long double
FLOAT_SIZE is the number of bytes in the converted variables
:func:`load_kernel_module` loads the model definition file and
:func:`modelinfo.make_model_info` parses it. :func:`make_source`
converts C-based model definitions to C source code, including the
polydispersity integral. :func:`model_sources` returns the list of
source files the model depends on, and :func:`timestamp` returns
the latest time stamp amongst the source files (so you can check if
the model needs to be rebuilt).
The function :func:`make_doc` extracts the doc string and adds the
parameter table to the top. *make_figure* in *sasmodels/doc/genmodel*
creates the default figure for the model. [These two sets of code
should mignrate into docs.py so docs can be updated in one place].
"""
from __future__ import print_function
# TODO: determine which functions are useful outside of generate
#__all__ = ["model_info", "make_doc", "make_source", "convert_type"]
import sys
from os.path import abspath, dirname, join as joinpath, exists, isdir, getmtime
import re
import string
from zlib import crc32
import numpy as np # type: ignore
from .modelinfo import Parameter
from .custom import load_custom_kernel_module
try:
from typing import Tuple, Sequence, Iterator, Dict
from .modelinfo import ModelInfo
except ImportError:
pass
def get_data_path(external_dir, target_file):
path = abspath(dirname(__file__))
if exists(joinpath(path, target_file)):
return path
# check next to exe/zip file
exepath = dirname(sys.executable)
path = joinpath(exepath, external_dir)
if exists(joinpath(path, target_file)):
return path
# check in py2app Contents/Resources
path = joinpath(exepath, '..', 'Resources', external_dir)
if exists(joinpath(path, target_file)):
return abspath(path)
raise RuntimeError('Could not find '+joinpath(external_dir, target_file))
EXTERNAL_DIR = 'sasmodels-data'
DATA_PATH = get_data_path(EXTERNAL_DIR, 'kernel_template.c')
MODEL_PATH = joinpath(DATA_PATH, 'models')
F16 = np.dtype('float16')
F32 = np.dtype('float32')
F64 = np.dtype('float64')
try: # CRUFT: older numpy does not support float128
F128 = np.dtype('float128')
except TypeError:
F128 = None
# Conversion from units defined in the parameter table for each model
# to units displayed in the sphinx documentation.
# This section associates the unit with the macro to use to produce the LaTex
# code. The macro itself needs to be defined in sasmodels/doc/rst_prolog.
#
# NOTE: there is an RST_PROLOG at the end of this file which is NOT
# used for the bundled documentation. Still as long as we are defining the macros
# in two places any new addition should define the macro in both places.
RST_UNITS = {
"Ang": "|Ang|",
"1/Ang": "|Ang^-1|",
"1/Ang^2": "|Ang^-2|",
"Ang^3": "|Ang^3|",
"Ang^2": "|Ang^2|",
"1e15/cm^3": "|1e15cm^3|",
"Ang^3/mol": "|Ang^3|/mol",
"1e-6/Ang^2": "|1e-6Ang^-2|",
"degrees": "degree",
"1/cm": "|cm^-1|",
"Ang/cm": "|Ang*cm^-1|",
"g/cm^3": "|g/cm^3|",
"mg/m^2": "|mg/m^2|",
"": "None",
}
# Headers for the parameters tables in th sphinx documentation
PARTABLE_HEADERS = [
"Parameter",
"Description",
"Units",
"Default value",
]
# Minimum width for a default value (this is shorter than the column header
# width, so will be ignored).
PARTABLE_VALUE_WIDTH = 10
# Documentation header for the module, giving the model name, its short
# description and its parameter table. The remainder of the doc comes
# from the module docstring.
DOC_HEADER = """.. _%(id)s:
%(name)s
=======================================================
%(title)s
%(parameters)s
%(returns)s
%(docs)s
"""
def format_units(units):
# type: (str) -> str
"""
Convert units into ReStructured Text format.
"""
return "string" if isinstance(units, list) else RST_UNITS.get(units, units)
def make_partable(pars):
# type: (List[Parameter]) -> str
"""
Generate the parameter table to include in the sphinx documentation.
"""
column_widths = [
max(len(p.name) for p in pars),
max(len(p.description) for p in pars),
max(len(format_units(p.units)) for p in pars),
PARTABLE_VALUE_WIDTH,
]
column_widths = [max(w, len(h))
for w, h in zip(column_widths, PARTABLE_HEADERS)]
sep = " ".join("="*w for w in column_widths)
lines = [
sep,
" ".join("%-*s" % (w, h)
for w, h in zip(column_widths, PARTABLE_HEADERS)),
sep,
]
for p in pars:
lines.append(" ".join([
"%-*s" % (column_widths[0], p.name),
"%-*s" % (column_widths[1], p.description),
"%-*s" % (column_widths[2], format_units(p.units)),
"%*g" % (column_widths[3], p.default),
]))
lines.append(sep)
return "\n".join(lines)
def _search(search_path, filename):
# type: (List[str], str) -> str
"""
Find *filename* in *search_path*.
Raises ValueError if file does not exist.
"""
for path in search_path:
target = joinpath(path, filename)
if exists(target):
return target
raise ValueError("%r not found in %s" % (filename, search_path))
def model_sources(model_info):
# type: (ModelInfo) -> List[str]
"""
Return a list of the sources file paths for the module.
"""
search_path = [dirname(model_info.filename), MODEL_PATH]
return [_search(search_path, f) for f in model_info.source]
def dll_timestamp(model_info):
# type: (ModelInfo) -> int
"""
Return a timestamp for the model corresponding to the most recently
changed file or dependency.
"""
# TODO: fails DRY; templates appear two places.
model_templates = [joinpath(DATA_PATH, filename)
for filename in ('kernel_header.c', 'kernel_iq.c')]
source_files = (model_sources(model_info)
+ model_templates
+ [model_info.filename])
# Note: file may not exist when it is a standard model from library.zip
times = [getmtime(f) for f in source_files if exists(f)]
newest = max(times) if times else 0
return newest
def ocl_timestamp(model_info):
# type: (ModelInfo) -> int
"""
Return a timestamp for the model corresponding to the most recently
changed file or dependency.
Note that this does not look at the time stamps for the OpenCL header
information since that need not trigger a recompile of the DLL.
"""
# TODO: fails DRY; templates appear two places.
model_templates = [joinpath(DATA_PATH, filename)
for filename in ('kernel_header.c', 'kernel_iq.cl')]
source_files = (model_sources(model_info)
+ model_templates
+ [model_info.filename])
# Note: file may not exist when it is a standard model from library.zip
times = [getmtime(f) for f in source_files if exists(f)]
newest = max(times) if times else 0
return newest
def tag_source(source):
# type: (str) -> str
"""
Return a unique tag for the source code.
"""
# Note: need 0xffffffff&val to force an unsigned 32-bit number
try:
source = source.encode('utf8')
except AttributeError: # bytes has no encode attribute in python 3
pass
return "%08X"%(0xffffffff&crc32(source))
def convert_type(source, dtype):
# type: (str, np.dtype) -> str
"""
Convert code from double precision to the desired type.
Floating point constants are tagged with 'f' for single precision or 'L'
for long double precision.
"""
source = _fix_tgmath_int(source)
if dtype == F16:
fbytes = 2
source = _convert_type(source, "half", "f")
elif dtype == F32:
fbytes = 4
source = _convert_type(source, "float", "f")
elif dtype == F64:
fbytes = 8
# no need to convert if it is already double
elif dtype == F128:
fbytes = 16
source = _convert_type(source, "long double", "L")
else:
raise ValueError("Unexpected dtype in source conversion: %s" % dtype)
return ("#define FLOAT_SIZE %d\n" % fbytes)+source
def _convert_type(source, type_name, constant_flag):
# type: (str, str, str) -> str
"""
Replace 'double' with *type_name* in *source*, tagging floating point
constants with *constant_flag*.
"""
# Convert double keyword to float/long double/half.
# Accept an 'n' # parameter for vector # values, where n is 2, 4, 8 or 16.
# Assume complex numbers are represented as cdouble which is typedef'd
# to double2.
source = re.sub(r'(^|[^a-zA-Z0-9_]c?)double(([248]|16)?($|[^a-zA-Z0-9_]))',
r'\1%s\2'%type_name, source)
source = _tag_float(source, constant_flag)
return source
TGMATH_INT_RE = re.compile(r"""
(?: # Non-capturing match; not lookbehind since pattern length is variable
\b # word boundary
# various math functions
(a?(sin|cos|tan)h? | atan2
| erfc? | tgamma
| exp(2|10|m1)? | log(2|10|1p)? | pow[nr]? | sqrt | rsqrt | rootn
| fabs | fmax | fmin
)
\s*[(]\s* # open parenthesis
)
[+-]?(0|[1-9]\d*) # integer
(?= # lookahead match: don't want to move from end of int
\s*[,)] # comma or close parenthesis for end of argument
) # end lookahead
""", re.VERBOSE)
def _fix_tgmath_int(source):
# type: (str) -> str
"""
Replace f(integer) with f(integer.) for sin, cos, pow, etc.
OS X OpenCL complains that it can't resolve the type generic calls to
the standard math functions when they are called with integer constants,
but this does not happen with the Windows Intel driver for example.
To avoid confusion on the matrix marketplace, automatically promote
integers to floats if we recognize them in the source.
The specific functions we look for are:
trigonometric: sin, asin, sinh, asinh, etc., and atan2
exponential: exp, exp2, exp10, expm1, log, log2, log10, logp1
power: pow, pown, powr, sqrt, rsqrt, rootn
special: erf, erfc, tgamma
float: fabs, fmin, fmax
Note that we don't convert the second argument of dual argument
functions: atan2, fmax, fmin, pow, powr. This could potentially
be a problem for pow(x, 2), but that case seems to work without change.
"""
out = TGMATH_INT_RE.sub(r'\g<0>.', source)
return out
# Floating point regular expression
#
# Define parts:
#
# E = [eE][+-]?\d+ : Exponent
# P = [.] : Decimal separator
# N = [1-9]\d* : Natural number, no leading zeros
# Z = 0 : Zero
# F = \d+ : Fractional number, maybe leading zeros
# F? = \d* : Optional fractional number
#
# We want to reject bare natural numbers and bare decimal points, so we
# need to tediously outline the cases where we have either a fraction or
# an exponent:
#
# ( ZP | ZPF | ZE | ZPE | ZPFE | NP | NPF | NE | NPE | NPFE | PF | PFE )
#
#
# We can then join cases by making parts optional. The following are
# some ways to do this:
#
# ( (Z|N)(P|PF|E|PE|PFE) | PFE? ) # Split on lead
# => ( (Z|N)(PF?|(PF?)?E) | PFE? )
# ( ((Z|N)PF?|PF)E? | (Z|N)E) # Split on point
# ( (ZP|ZPF|NP|NPF|PF) | (Z|ZP|ZPF|N|NP|NPF|PF)E ) # Split on E
# => ( ((Z|N)PF?|PF) | ((Z|N)(PF?)? | PF) E )
FLOAT_RE = re.compile(r"""
(?<!\w) # use negative lookbehind since '.' confuses \b test
# use split on lead to match float ( (Z|N)(PF?|(PF?)?E) | PFE? )
( ( 0 | [1-9]\d* ) # ( ( Z | N )
([.]\d* | ([.]\d*)? [eE][+-]?\d+ ) # (PF? | (PF?)? E )
| [.]\d+ ([eE][+-]?\d+)? # | PF (E)?
) # )
(?!\w) # use negative lookahead since '.' confuses \b test
""", re.VERBOSE)
def _tag_float(source, constant_flag):
# Convert floating point constants to single by adding 'f' to the end,
# or long double with an 'L' suffix. OS/X complains if you don't do this.
out = FLOAT_RE.sub(r'\g<0>%s'%constant_flag, source)
#print("in",repr(source),"out",repr(out), constant_flag)
return out
def test_tag_float():
"""check that floating point constants are properly identified and tagged with 'f'"""
cases = """
ZP : 0.
ZPF : 0.0,0.01,0.1
Z E: 0e+001
ZP E: 0.E0
ZPFE: 0.13e-031
NP : 1., 12.
NPF : 1.0001, 1.1, 1.0
N E: 1e0, 37E-080
NP E: 1.e0, 37.E-080
NPFE: 845.017e+22
PF : .1, .0, .0100
PFE: .6e+9, .82E-004
# isolated cases
0.
1e0
0.13e-013
# untouched
struct3.e3, 03.05.67, 37
# expressions
3.75+-1.6e-7-27+13.2
a3.e2 - 0.
4*atan(1)
4.*atan(1.)
"""
output = """
ZP : 0.f
ZPF : 0.0f,0.01f,0.1f
Z E: 0e+001f
ZP E: 0.E0f
ZPFE: 0.13e-031f
NP : 1.f, 12.f
NPF : 1.0001f, 1.1f, 1.0f
N E: 1e0f, 37E-080f
NP E: 1.e0f, 37.E-080f
NPFE: 845.017e+22f
PF : .1f, .0f, .0100f
PFE: .6e+9f, .82E-004f
# isolated cases
0.f
1e0f
0.13e-013f
# untouched
struct3.e3, 03.05.67, 37
# expressions
3.75f+-1.6e-7f-27+13.2f
a3.e2 - 0.f
4*atan(1)
4.f*atan(1.f)
"""
for case_in, case_out in zip(cases.split('\n'), output.split('\n')):
out = _tag_float(case_in, 'f')
assert case_out == out, "%r => %r"%(case_in, out)
def kernel_name(model_info, variant):
# type: (ModelInfo, str) -> str
"""
Name of the exported kernel symbol.
*variant* is "Iq", "Iqxy" or "Imagnetic".
"""
return model_info.name + "_" + variant
def indent(s, depth):
# type: (str, int) -> str
"""
Indent a string of text with *depth* additional spaces on each line.
"""
spaces = " "*depth
sep = "\n" + spaces
return spaces + sep.join(s.split("\n"))
_template_cache = {} # type: Dict[str, Tuple[int, str, str]]
def load_template(filename):
# type: (str) -> str
path = joinpath(DATA_PATH, filename)
mtime = getmtime(path)
if filename not in _template_cache or mtime > _template_cache[filename][0]:
with open(path) as fid:
_template_cache[filename] = (mtime, fid.read(), path)
return _template_cache[filename][1], path
_FN_TEMPLATE = """\
double %(name)s(%(pars)s);
double %(name)s(%(pars)s) {
#line %(line)d "%(filename)s"
%(body)s
}
"""
def _gen_fn(name, pars, body, filename, line):
# type: (str, List[Parameter], str, str, int) -> str
"""
Generate a function given pars and body.
Returns the following string::
double fn(double a, double b, ...);
double fn(double a, double b, ...) {
....
}
"""
par_decl = ', '.join(p.as_function_argument() for p in pars) if pars else 'void'
return _FN_TEMPLATE % {
'name': name, 'pars': par_decl, 'body': body,
'filename': filename.replace('\\', '\\\\'), 'line': line,
}
def _call_pars(prefix, pars):
# type: (str, List[Parameter]) -> List[str]
"""
Return a list of *prefix+parameter* from parameter items.
*prefix* should be "v." if v is a struct.
"""
return [p.as_call_reference(prefix) for p in pars]
# type in IQXY pattern could be single, float, double, long double, ...
_IQXY_PATTERN = re.compile("^((inline|static) )? *([a-z ]+ )? *Iqxy *([(]|$)",
flags=re.MULTILINE)
def _have_Iqxy(sources):
# type: (List[str]) -> bool
"""
Return true if any file defines Iqxy.
Note this is not a C parser, and so can be easily confused by
non-standard syntax. Also, it will incorrectly identify the following
as having Iqxy::
/*
double Iqxy(qx, qy, ...) { ... fill this in later ... }
*/
If you want to comment out an Iqxy function, use // on the front of the
line instead.
"""
for path, code in sources:
if _IQXY_PATTERN.search(code):
return True
else:
return False
def _add_source(source, code, path):
"""
Add a file to the list of source code chunks, tagged with path and line.
"""
path = path.replace('\\', '\\\\')
source.append('#line 1 "%s"' % path)
source.append(code)
def make_source(model_info):
# type: (ModelInfo) -> Dict[str, str]
"""
Generate the OpenCL/ctypes kernel from the module info.
Uses source files found in the given search path. Returns None if this
is a pure python model, with no C source components.
"""
if callable(model_info.Iq):
raise ValueError("can't compile python model")
#return None
# TODO: need something other than volume to indicate dispersion parameters
# No volume normalization despite having a volume parameter.
# Thickness is labelled a volume in order to trigger polydispersity.
# May want a separate dispersion flag, or perhaps a separate category for
# disperse, but not volume. Volume parameters also use relative values
# for the distribution rather than the absolute values used by angular
# dispersion. Need to be careful that necessary parameters are available
# for computing volume even if we allow non-disperse volume parameters.
partable = model_info.parameters
# Load templates and user code
kernel_header = load_template('kernel_header.c')
dll_code = load_template('kernel_iq.c')
ocl_code = load_template('kernel_iq.cl')
#ocl_code = load_template('kernel_iq_local.cl')
user_code = [(f, open(f).read()) for f in model_sources(model_info)]
# Build initial sources
source = []
_add_source(source, *kernel_header)
for path, code in user_code:
_add_source(source, code, path)
# Make parameters for q, qx, qy so that we can use them in declarations
q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')]
# Generate form_volume function, etc. from body only
if isinstance(model_info.form_volume, str):
pars = partable.form_volume_parameters
source.append(_gen_fn('form_volume', pars, model_info.form_volume,
model_info.filename, model_info._form_volume_line))
if isinstance(model_info.Iq, str):
pars = [q] + partable.iq_parameters
source.append(_gen_fn('Iq', pars, model_info.Iq,
model_info.filename, model_info._Iq_line))
if isinstance(model_info.Iqxy, str):
pars = [qx, qy] + partable.iqxy_parameters
source.append(_gen_fn('Iqxy', pars, model_info.Iqxy,
model_info.filename, model_info._Iqxy_line))
# Define the parameter table
# TODO: plug in current line number
source.append('#line 542 "sasmodels/generate.py"')
source.append("#define PARAMETER_TABLE \\")
source.append("\\\n".join(p.as_definition()
for p in partable.kernel_parameters))
# Define the function calls
if partable.form_volume_parameters:
refs = _call_pars("_v.", partable.form_volume_parameters)
call_volume = "#define CALL_VOLUME(_v) form_volume(%s)"%(",".join(refs))
else:
# Model doesn't have volume. We could make the kernel run a little
# faster by not using/transferring the volume normalizations, but
# the ifdef's reduce readability more than is worthwhile.
call_volume = "#define CALL_VOLUME(v) 1.0"
source.append(call_volume)
refs = ["_q[_i]"] + _call_pars("_v.", partable.iq_parameters)
call_iq = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(refs))
if _have_Iqxy(user_code) or isinstance(model_info.Iqxy, str):
# Call 2D model
refs = ["_q[2*_i]", "_q[2*_i+1]"] + _call_pars("_v.", partable.iqxy_parameters)
call_iqxy = "#define CALL_IQ(_q,_i,_v) Iqxy(%s)" % (",".join(refs))
else:
# Call 1D model with sqrt(qx^2 + qy^2)
#warnings.warn("Creating Iqxy = Iq(sqrt(qx^2 + qy^2))")
# still defined:: refs = ["q[i]"] + _call_pars("v", iq_parameters)
pars_sqrt = ["sqrt(_q[2*_i]*_q[2*_i]+_q[2*_i+1]*_q[2*_i+1])"] + refs[1:]
call_iqxy = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(pars_sqrt))
magpars = [k-2 for k, p in enumerate(partable.call_parameters)
if p.type == 'sld']
# Fill in definitions for numbers of parameters
source.append("#define MAX_PD %s"%partable.max_pd)
source.append("#define NUM_PARS %d"%partable.npars)
source.append("#define NUM_VALUES %d" % partable.nvalues)
source.append("#define NUM_MAGNETIC %d" % partable.nmagnetic)
source.append("#define MAGNETIC_PARS %s"%",".join(str(k) for k in magpars))
for k, v in enumerate(magpars[:3]):
source.append("#define MAGNETIC_PAR%d %d"%(k+1, v))
# TODO: allow mixed python/opencl kernels?
ocl = kernels(ocl_code, call_iq, call_iqxy, model_info.name)
dll = kernels(dll_code, call_iq, call_iqxy, model_info.name)
result = {
'dll': '\n'.join(source+dll[0]+dll[1]+dll[2]),
'opencl': '\n'.join(source+ocl[0]+ocl[1]+ocl[2]),
}
return result
def kernels(kernel, call_iq, call_iqxy, name):
# type: ([str,str], str, str, str) -> List[str]
code = kernel[0]
path = kernel[1].replace('\\', '\\\\')
iq = [
# define the Iq kernel
"#define KERNEL_NAME %s_Iq" % name,
call_iq,
'#line 1 "%s Iq"' % path,
code,
"#undef CALL_IQ",
"#undef KERNEL_NAME",
]
iqxy = [
# define the Iqxy kernel from the same source with different #defines
"#define KERNEL_NAME %s_Iqxy" % name,
call_iqxy,
'#line 1 "%s Iqxy"' % path,
code,
"#undef CALL_IQ",
"#undef KERNEL_NAME",
]
imagnetic = [
# define the Imagnetic kernel
"#define KERNEL_NAME %s_Imagnetic" % name,
"#define MAGNETIC 1",
call_iqxy,
'#line 1 "%s Imagnetic"' % path,
code,
"#undef MAGNETIC",
"#undef CALL_IQ",
"#undef KERNEL_NAME",
]
return iq, iqxy, imagnetic
def load_kernel_module(model_name):
# type: (str) -> module
"""
Return the kernel module named in *model_name*.
If the name ends in *.py* then load it as a custom model using
:func:`sasmodels.custom.load_custom_kernel_module`, otherwise
load it from :mod:`sasmodels.models`.
"""
if model_name.endswith('.py'):
kernel_module = load_custom_kernel_module(model_name)
else:
from sasmodels import models
__import__('sasmodels.models.'+model_name)
kernel_module = getattr(models, model_name, None)
return kernel_module
section_marker = re.compile(r'\A(?P<first>[%s])(?P=first)*\Z'
% re.escape(string.punctuation))
def _convert_section_titles_to_boldface(lines):
# type: (Sequence[str]) -> Iterator[str]
"""
Do the actual work of identifying and converting section headings.
"""
prior = None
for line in lines:
if prior is None:
prior = line
elif section_marker.match(line):
if len(line) >= len(prior):
yield "".join(("**", prior, "**"))
prior = None
else:
yield prior
prior = line
else:
yield prior
prior = line
if prior is not None:
yield prior
def convert_section_titles_to_boldface(s):
# type: (str) -> str
"""
Use explicit bold-face rather than section headings so that the table of
contents is not polluted with section names from the model documentation.
Sections are identified as the title line followed by a line of punctuation
at least as long as the title line.
"""
return "\n".join(_convert_section_titles_to_boldface(s.split('\n')))
def make_doc(model_info):
# type: (ModelInfo) -> str
"""
Return the documentation for the model.
"""
Iq_units = "The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale."
Sq_units = "The returned value is a dimensionless structure factor, $S(q)$."
docs = model_info.docs if model_info.docs is not None else ""
docs = convert_section_titles_to_boldface(docs)
pars = make_partable(model_info.parameters.COMMON
+ model_info.parameters.kernel_parameters)
subst = dict(id=model_info.id.replace('_', '-'),
name=model_info.name,
title=model_info.title,
parameters=pars,
returns=Sq_units if model_info.structure_factor else Iq_units,
docs=docs)
return DOC_HEADER % subst
# TODO: need a single source for rst_prolog; it is also in doc/rst_prolog
RST_PROLOG = r"""\
.. |Ang| unicode:: U+212B
.. |Ang^-1| replace:: |Ang|\ :sup:`-1`
.. |Ang^2| replace:: |Ang|\ :sup:`2`
.. |Ang^-2| replace:: |Ang|\ :sup:`-2`
.. |1e-6Ang^-2| replace:: 10\ :sup:`-6`\ |Ang|\ :sup:`-2`
.. |Ang^3| replace:: |Ang|\ :sup:`3`
.. |Ang^-3| replace:: |Ang|\ :sup:`-3`
.. |Ang^-4| replace:: |Ang|\ :sup:`-4`
.. |cm^-1| replace:: cm\ :sup:`-1`
.. |cm^2| replace:: cm\ :sup:`2`
.. |cm^-2| replace:: cm\ :sup:`-2`
.. |cm^3| replace:: cm\ :sup:`3`
.. |1e15cm^3| replace:: 10\ :sup:`15`\ cm\ :sup:`3`
.. |cm^-3| replace:: cm\ :sup:`-3`
.. |sr^-1| replace:: sr\ :sup:`-1`
.. |cdot| unicode:: U+00B7
.. |deg| unicode:: U+00B0
.. |g/cm^3| replace:: g\ |cdot|\ cm\ :sup:`-3`
.. |mg/m^2| replace:: mg\ |cdot|\ m\ :sup:`-2`
.. |fm^2| replace:: fm\ :sup:`2`
.. |Ang*cm^-1| replace:: |Ang|\ |cdot|\ cm\ :sup:`-1`
"""
# TODO: make a better fake reference role
RST_ROLES = """\
.. role:: ref
.. role:: numref
"""
def make_html(model_info):
"""
Convert model docs directly to html.
"""
from . import rst2html
rst = make_doc(model_info)
return rst2html.rst2html("".join((RST_ROLES, RST_PROLOG, rst)))
def view_html(model_name):
from . import modelinfo
kernel_module = load_kernel_module(model_name)
info = modelinfo.make_model_info(kernel_module)
view_html_from_info(info)
def view_html_from_info(info):
from . import rst2html
url = "file://"+dirname(info.filename)+"/"
rst2html.view_html(make_html(info), url=url)
def demo_time():
# type: () -> None
"""
Show how long it takes to process a model.
"""
import datetime
from .modelinfo import make_model_info
from .models import cylinder
tic = datetime.datetime.now()
make_source(make_model_info(cylinder))
toc = (datetime.datetime.now() - tic).total_seconds()
print("time: %g"%toc)
def main():
# type: () -> None
"""
Program which prints the source produced by the model.
"""
import sys
from .modelinfo import make_model_info
if len(sys.argv) <= 1:
print("usage: python -m sasmodels.generate modelname")
else:
name = sys.argv[1]
kernel_module = load_kernel_module(name)
model_info = make_model_info(kernel_module)
source = make_source(model_info)
print(source['dll'])
if __name__ == "__main__":
main()
|