/usr/lib/python3/dist-packages/sasmodels/compare.py is in python3-sasmodels 0.97~git20171104-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Program to compare models using different compute engines.
This program lets you compare results between OpenCL and DLL versions
of the code and between precision (half, fast, single, double, quad),
where fast precision is single precision using native functions for
trig, etc., and may not be completely IEEE 754 compliant. This lets
make sure that the model calculations are stable, or if you need to
tag the model as double precision only.
Run using ./compare.sh (Linux, Mac) or compare.bat (Windows) in the
sasmodels root to see the command line options.
Note that there is no way within sasmodels to select between an
OpenCL CPU device and a GPU device, but you can do so by setting the
PYOPENCL_CTX environment variable ahead of time. Start a python
interpreter and enter::
import pyopencl as cl
cl.create_some_context()
This will prompt you to select from the available OpenCL devices
and tell you which string to use for the PYOPENCL_CTX variable.
On Windows you will need to remove the quotes.
"""
from __future__ import print_function
import sys
import os
import math
import datetime
import traceback
import re
import numpy as np # type: ignore
from . import core
from . import kerneldll
from . import exception
from .data import plot_theory, empty_data1D, empty_data2D, load_data
from .direct_model import DirectModel
from .convert import revert_name, revert_pars, constrain_new_to_old
from .generate import FLOAT_RE
try:
from typing import Optional, Dict, Any, Callable, Tuple
except Exception:
pass
else:
from .modelinfo import ModelInfo, Parameter, ParameterSet
from .data import Data
Calculator = Callable[[float], np.ndarray]
USAGE = """
usage: sascomp model [options...] [key=val]
Generate and compare SAS models. If a single model is specified it shows
a plot of that model. Different models can be compared, or the same model
with different parameters. The same model with the same parameters can
be compared with different calculation engines to see the effects of precision
on the resultant values.
model or model1,model2 are the names of the models to compare (see below).
Options (* for default):
=== data generation ===
-data="path" uses q, dq from the data file
-noise=0 sets the measurement error dI/I
-res=0 sets the resolution width dQ/Q if calculating with resolution
-lowq*/-midq/-highq/-exq use q values up to 0.05, 0.2, 1.0, 10.0
-q=min:max alternative specification of qrange
-nq=128 sets the number of Q points in the data set
-1d*/-2d computes 1d or 2d data
-zero indicates that q=0 should be included
=== model parameters ===
-preset*/-random[=seed] preset or random parameters
-sets=n generates n random datasets with the seed given by -random=seed
-pars/-nopars* prints the parameter set or not
-default/-demo* use demo vs default parameters
=== calculation options ===
-mono*/-poly force monodisperse or allow polydisperse demo parameters
-cutoff=1e-5* cutoff value for including a point in polydispersity
-magnetic/-nonmagnetic* suppress magnetism
-accuracy=Low accuracy of the resolution calculation Low, Mid, High, Xhigh
-neval=1 sets the number of evals for more accurate timing
=== precision options ===
-calc=default uses the default calcution precision
-single/-double/-half/-fast sets an OpenCL calculation engine
-single!/-double!/-quad! sets an OpenMP calculation engine
-sasview sets the sasview calculation engine
=== plotting ===
-plot*/-noplot plots or suppress the plot of the model
-linear/-log*/-q4 intensity scaling on plots
-hist/-nohist* plot histogram of relative error
-abs/-rel* plot relative or absolute error
-title="note" adds note to the plot title, after the model name
=== output options ===
-edit starts the parameter explorer
-help/-html shows the model docs instead of running the model
The interpretation of quad precision depends on architecture, and may
vary from 64-bit to 128-bit, with 80-bit floats being common (1e-19 precision).
On unix and mac you may need single quotes around the DLL computation
engines, such as -calc='single!,double!' since !, is treated as a history
expansion request in the shell.
Key=value pairs allow you to set specific values for the model parameters.
Key=value1,value2 to compare different values of the same parameter. The
value can be an expression including other parameters.
Items later on the command line override those that appear earlier.
Examples:
# compare single and double precision calculation for a barbell
sascomp barbell -calc=single,double
# generate 10 random lorentz models, with seed=27
sascomp lorentz -sets=10 -seed=27
# compare ellipsoid with R = R_polar = R_equatorial to sphere of radius R
sascomp sphere,ellipsoid radius_polar=radius radius_equatorial=radius
# model timing test requires multiple evals to perform the estimate
sascomp pringle -calc=single,double -timing=100,100 -noplot
"""
# Update docs with command line usage string. This is separate from the usual
# doc string so that we can display it at run time if there is an error.
# lin
__doc__ = (__doc__ # pylint: disable=redefined-builtin
+ """
Program description
-------------------
""" + USAGE)
kerneldll.ALLOW_SINGLE_PRECISION_DLLS = True
# list of math functions for use in evaluating parameters
MATH = dict((k,getattr(math, k)) for k in dir(math) if not k.startswith('_'))
# CRUFT python 2.6
if not hasattr(datetime.timedelta, 'total_seconds'):
def delay(dt):
"""Return number date-time delta as number seconds"""
return dt.days * 86400 + dt.seconds + 1e-6 * dt.microseconds
else:
def delay(dt):
"""Return number date-time delta as number seconds"""
return dt.total_seconds()
class push_seed(object):
"""
Set the seed value for the random number generator.
When used in a with statement, the random number generator state is
restored after the with statement is complete.
:Parameters:
*seed* : int or array_like, optional
Seed for RandomState
:Example:
Seed can be used directly to set the seed::
>>> from numpy.random import randint
>>> push_seed(24)
<...push_seed object at...>
>>> print(randint(0,1000000,3))
[242082 899 211136]
Seed can also be used in a with statement, which sets the random
number generator state for the enclosed computations and restores
it to the previous state on completion::
>>> with push_seed(24):
... print(randint(0,1000000,3))
[242082 899 211136]
Using nested contexts, we can demonstrate that state is indeed
restored after the block completes::
>>> with push_seed(24):
... print(randint(0,1000000))
... with push_seed(24):
... print(randint(0,1000000,3))
... print(randint(0,1000000))
242082
[242082 899 211136]
899
The restore step is protected against exceptions in the block::
>>> with push_seed(24):
... print(randint(0,1000000))
... try:
... with push_seed(24):
... print(randint(0,1000000,3))
... raise Exception()
... except Exception:
... print("Exception raised")
... print(randint(0,1000000))
242082
[242082 899 211136]
Exception raised
899
"""
def __init__(self, seed=None):
# type: (Optional[int]) -> None
self._state = np.random.get_state()
np.random.seed(seed)
def __enter__(self):
# type: () -> None
pass
def __exit__(self, exc_type, exc_value, traceback):
# type: (Any, BaseException, Any) -> None
# TODO: better typing for __exit__ method
np.random.set_state(self._state)
def tic():
# type: () -> Callable[[], float]
"""
Timer function.
Use "toc=tic()" to start the clock and "toc()" to measure
a time interval.
"""
then = datetime.datetime.now()
return lambda: delay(datetime.datetime.now() - then)
def set_beam_stop(data, radius, outer=None):
# type: (Data, float, float) -> None
"""
Add a beam stop of the given *radius*. If *outer*, make an annulus.
Note: this function does not require sasview
"""
if hasattr(data, 'qx_data'):
q = np.sqrt(data.qx_data**2 + data.qy_data**2)
data.mask = (q < radius)
if outer is not None:
data.mask |= (q >= outer)
else:
data.mask = (data.x < radius)
if outer is not None:
data.mask |= (data.x >= outer)
def parameter_range(p, v):
# type: (str, float) -> Tuple[float, float]
"""
Choose a parameter range based on parameter name and initial value.
"""
# process the polydispersity options
if p.endswith('_pd_n'):
return 0., 100.
elif p.endswith('_pd_nsigma'):
return 0., 5.
elif p.endswith('_pd_type'):
raise ValueError("Cannot return a range for a string value")
elif any(s in p for s in ('theta', 'phi', 'psi')):
# orientation in [-180,180], orientation pd in [0,45]
if p.endswith('_pd'):
return 0., 45.
else:
return -180., 180.
elif p.endswith('_pd'):
return 0., 1.
elif 'sld' in p:
return -0.5, 10.
elif p == 'background':
return 0., 10.
elif p == 'scale':
return 0., 1.e3
elif v < 0.:
return 2.*v, -2.*v
else:
return 0., (2.*v if v > 0. else 1.)
def _randomize_one(model_info, name, value):
# type: (ModelInfo, str, float) -> float
# type: (ModelInfo, str, str) -> str
"""
Randomize a single parameter.
"""
# Set the amount of polydispersity/angular dispersion, but by default pd_n
# is zero so there is no polydispersity. This allows us to turn on/off
# pd by setting pd_n, and still have randomly generated values
if name.endswith('_pd'):
par = model_info.parameters[name[:-3]]
if par.type == 'orientation':
# Let oriention variation peak around 13 degrees; 95% < 42 degrees
return 180*np.random.beta(2.5, 20)
else:
# Let polydispersity peak around 15%; 95% < 0.4; max=100%
return np.random.beta(1.5, 7)
# pd is selected globally rather than per parameter, so set to 0 for no pd
# In particular, when multiple pd dimensions, want to decrease the number
# of points per dimension for faster computation
if name.endswith('_pd_n'):
return 0
# Don't mess with distribution type for now
if name.endswith('_pd_type'):
return 'gaussian'
# type-dependent value of number of sigmas; for gaussian use 3.
if name.endswith('_pd_nsigma'):
return 3.
# background in the range [0.01, 1]
if name == 'background':
return 10**np.random.uniform(-2, 0)
# scale defaults to 0.1% to 30% volume fraction
if name == 'scale':
return 10**np.random.uniform(-3, -0.5)
# If it is a list of choices, pick one at random with equal probability
# In practice, the model specific random generator will override.
par = model_info.parameters[name]
if len(par.limits) > 2: # choice list
return np.random.randint(len(par.limits))
# If it is a fixed range, pick from it with equal probability.
# For logarithmic ranges, the model will have to override.
if np.isfinite(par.limits).all():
return np.random.uniform(*par.limits)
# If the paramter is marked as an sld use the range of neutron slds
# TODO: ought to randomly contrast match a pair of SLDs
if par.type == 'sld':
return np.random.uniform(-0.5, 12)
# Limit magnetic SLDs to a smaller range, from zero to iron=5/A^2
if par.name.startswith('M0:'):
return np.random.uniform(0, 5)
# Guess at the random length/radius/thickness. In practice, all models
# are going to set their own reasonable ranges.
if par.type == 'volume':
if ('length' in par.name or
'radius' in par.name or
'thick' in par.name):
return 10**np.random.uniform(2, 4)
# In the absence of any other info, select a value in [0, 2v], or
# [-2|v|, 2|v|] if v is negative, or [0, 1] if v is zero. Mostly the
# model random parameter generators will override this default.
low, high = parameter_range(par.name, value)
limits = (max(par.limits[0], low), min(par.limits[1], high))
return np.random.uniform(*limits)
def _random_pd(model_info, pars):
pd = [p for p in model_info.parameters.kernel_parameters if p.polydisperse]
pd_volume = []
pd_oriented = []
for p in pd:
if p.type == 'orientation':
pd_oriented.append(p.name)
elif p.length_control is not None:
n = int(pars.get(p.length_control, 1) + 0.5)
pd_volume.extend(p.name+str(k+1) for k in range(n))
elif p.length > 1:
pd_volume.extend(p.name+str(k+1) for k in range(p.length))
else:
pd_volume.append(p.name)
u = np.random.rand()
n = len(pd_volume)
if u < 0.01 or n < 1:
pass # 1% chance of no polydispersity
elif u < 0.86 or n < 2:
pars[np.random.choice(pd_volume)+"_pd_n"] = 35
elif u < 0.99 or n < 3:
choices = np.random.choice(len(pd_volume), size=2)
pars[pd_volume[choices[0]]+"_pd_n"] = 25
pars[pd_volume[choices[1]]+"_pd_n"] = 10
else:
choices = np.random.choice(len(pd_volume), size=3)
pars[pd_volume[choices[0]]+"_pd_n"] = 25
pars[pd_volume[choices[1]]+"_pd_n"] = 10
pars[pd_volume[choices[2]]+"_pd_n"] = 5
if pd_oriented:
pars['theta_pd_n'] = 20
if np.random.rand() < 0.1:
pars['phi_pd_n'] = 5
if np.random.rand() < 0.1:
if any(p.name == 'psi' for p in model_info.parameters.kernel_parameters):
#print("generating psi_pd_n")
pars['psi_pd_n'] = 5
## Show selected polydispersity
#for name, value in pars.items():
# if name.endswith('_pd_n') and value > 0:
# print(name, value, pars.get(name[:-5], 0), pars.get(name[:-2], 0))
def randomize_pars(model_info, pars):
# type: (ModelInfo, ParameterSet) -> ParameterSet
"""
Generate random values for all of the parameters.
Valid ranges for the random number generator are guessed from the name of
the parameter; this will not account for constraints such as cap radius
greater than cylinder radius in the capped_cylinder model, so
:func:`constrain_pars` needs to be called afterward..
"""
# Note: the sort guarantees order of calls to random number generator
random_pars = dict((p, _randomize_one(model_info, p, v))
for p, v in sorted(pars.items()))
if model_info.random is not None:
random_pars.update(model_info.random())
_random_pd(model_info, random_pars)
return random_pars
def constrain_pars(model_info, pars):
# type: (ModelInfo, ParameterSet) -> None
"""
Restrict parameters to valid values.
This includes model specific code for models such as capped_cylinder
which need to support within model constraints (cap radius more than
cylinder radius in this case).
Warning: this updates the *pars* dictionary in place.
"""
# TODO: move the model specific code to the individual models
name = model_info.id
# if it is a product model, then just look at the form factor since
# none of the structure factors need any constraints.
if '*' in name:
name = name.split('*')[0]
# Suppress magnetism for python models (not yet implemented)
if callable(model_info.Iq):
pars.update(suppress_magnetism(pars))
if name == 'barbell':
if pars['radius_bell'] < pars['radius']:
pars['radius'], pars['radius_bell'] = pars['radius_bell'], pars['radius']
elif name == 'capped_cylinder':
if pars['radius_cap'] < pars['radius']:
pars['radius'], pars['radius_cap'] = pars['radius_cap'], pars['radius']
elif name == 'guinier':
# Limit guinier to an Rg such that Iq > 1e-30 (single precision cutoff)
# I(q) = A e^-(Rg^2 q^2/3) > e^-(30 ln 10)
# => ln A - (Rg^2 q^2/3) > -30 ln 10
# => Rg^2 q^2/3 < 30 ln 10 + ln A
# => Rg < sqrt(90 ln 10 + 3 ln A)/q
#q_max = 0.2 # mid q maximum
q_max = 1.0 # high q maximum
rg_max = np.sqrt(90*np.log(10) + 3*np.log(pars['scale']))/q_max
pars['rg'] = min(pars['rg'], rg_max)
elif name == 'pearl_necklace':
if pars['radius'] < pars['thick_string']:
pars['radius'], pars['thick_string'] = pars['thick_string'], pars['radius']
pass
elif name == 'rpa':
# Make sure phi sums to 1.0
if pars['case_num'] < 2:
pars['Phi1'] = 0.
pars['Phi2'] = 0.
elif pars['case_num'] < 5:
pars['Phi1'] = 0.
total = sum(pars['Phi'+c] for c in '1234')
for c in '1234':
pars['Phi'+c] /= total
def parlist(model_info, pars, is2d):
# type: (ModelInfo, ParameterSet, bool) -> str
"""
Format the parameter list for printing.
"""
lines = []
parameters = model_info.parameters
magnetic = False
magnetic_pars = []
for p in parameters.user_parameters(pars, is2d):
if any(p.id.startswith(x) for x in ('M0:', 'mtheta:', 'mphi:')):
continue
if p.id.startswith('up:'):
magnetic_pars.append("%s=%s"%(p.id, pars.get(p.id, p.default)))
continue
fields = dict(
value=pars.get(p.id, p.default),
pd=pars.get(p.id+"_pd", 0.),
n=int(pars.get(p.id+"_pd_n", 0)),
nsigma=pars.get(p.id+"_pd_nsgima", 3.),
pdtype=pars.get(p.id+"_pd_type", 'gaussian'),
relative_pd=p.relative_pd,
M0=pars.get('M0:'+p.id, 0.),
mphi=pars.get('mphi:'+p.id, 0.),
mtheta=pars.get('mtheta:'+p.id, 0.),
)
lines.append(_format_par(p.name, **fields))
magnetic = magnetic or fields['M0'] != 0.
if magnetic and magnetic_pars:
lines.append(" ".join(magnetic_pars))
return "\n".join(lines)
#return "\n".join("%s: %s"%(p, v) for p, v in sorted(pars.items()))
def _format_par(name, value=0., pd=0., n=0, nsigma=3., pdtype='gaussian',
relative_pd=False, M0=0., mphi=0., mtheta=0.):
# type: (str, float, float, int, float, str) -> str
line = "%s: %g"%(name, value)
if pd != 0. and n != 0:
if relative_pd:
pd *= value
line += " +/- %g (%d points in [-%g,%g] sigma %s)"\
% (pd, n, nsigma, nsigma, pdtype)
if M0 != 0.:
line += " M0:%.3f mtheta:%.1f mphi:%.1f" % (M0, mtheta, mphi)
return line
def suppress_pd(pars, suppress=True):
# type: (ParameterSet) -> ParameterSet
"""
If suppress is True complete eliminate polydispersity of the model to test
models more quickly. If suppress is False, make sure at least one
parameter is polydisperse, setting the first polydispersity parameter to
15% if no polydispersity is given (with no explicit demo parameters given
in the model, there will be no default polydispersity).
"""
pars = pars.copy()
#print("pars=", pars)
if suppress:
for p in pars:
if p.endswith("_pd_n"):
pars[p] = 0
else:
any_pd = False
first_pd = None
for p in pars:
if p.endswith("_pd_n"):
pd = pars.get(p[:-2], 0.)
any_pd |= (pars[p] != 0 and pd != 0.)
if first_pd is None:
first_pd = p
if not any_pd and first_pd is not None:
if pars[first_pd] == 0:
pars[first_pd] = 35
if first_pd[:-2] not in pars or pars[first_pd[:-2]] == 0:
pars[first_pd[:-2]] = 0.15
return pars
def suppress_magnetism(pars, suppress=True):
# type: (ParameterSet) -> ParameterSet
"""
If suppress is True complete eliminate magnetism of the model to test
models more quickly. If suppress is False, make sure at least one sld
parameter is magnetic, setting the first parameter to have a strong
magnetic sld (8/A^2) at 60 degrees (with no explicit demo parameters given
in the model, there will be no default magnetism).
"""
pars = pars.copy()
if suppress:
for p in pars:
if p.startswith("M0:"):
pars[p] = 0
else:
any_mag = False
first_mag = None
for p in pars:
if p.startswith("M0:"):
any_mag |= (pars[p] != 0)
if first_mag is None:
first_mag = p
if not any_mag and first_mag is not None:
pars[first_mag] = 8.
return pars
def eval_sasview(model_info, data):
# type: (Modelinfo, Data) -> Calculator
"""
Return a model calculator using the pre-4.0 SasView models.
"""
# importing sas here so that the error message will be that sas failed to
# import rather than the more obscure smear_selection not imported error
import sas
import sas.models
from sas.models.qsmearing import smear_selection
from sas.models.MultiplicationModel import MultiplicationModel
from sas.models.dispersion_models import models as dispersers
def get_model_class(name):
# type: (str) -> "sas.models.BaseComponent"
#print("new",sorted(_pars.items()))
__import__('sas.models.' + name)
ModelClass = getattr(getattr(sas.models, name, None), name, None)
if ModelClass is None:
raise ValueError("could not find model %r in sas.models"%name)
return ModelClass
# WARNING: ugly hack when handling model!
# Sasview models with multiplicity need to be created with the target
# multiplicity, so we cannot create the target model ahead of time for
# for multiplicity models. Instead we store the model in a list and
# update the first element of that list with the new multiplicity model
# every time we evaluate.
# grab the sasview model, or create it if it is a product model
if model_info.composition:
composition_type, parts = model_info.composition
if composition_type == 'product':
P, S = [get_model_class(revert_name(p))() for p in parts]
model = [MultiplicationModel(P, S)]
else:
raise ValueError("sasview mixture models not supported by compare")
else:
old_name = revert_name(model_info)
if old_name is None:
raise ValueError("model %r does not exist in old sasview"
% model_info.id)
ModelClass = get_model_class(old_name)
model = [ModelClass()]
model[0].disperser_handles = {}
# build a smearer with which to call the model, if necessary
smearer = smear_selection(data, model=model)
if hasattr(data, 'qx_data'):
q = np.sqrt(data.qx_data**2 + data.qy_data**2)
index = ((~data.mask) & (~np.isnan(data.data))
& (q >= data.qmin) & (q <= data.qmax))
if smearer is not None:
smearer.model = model # because smear_selection has a bug
smearer.accuracy = data.accuracy
smearer.set_index(index)
def _call_smearer():
smearer.model = model[0]
return smearer.get_value()
theory = _call_smearer
else:
theory = lambda: model[0].evalDistribution([data.qx_data[index],
data.qy_data[index]])
elif smearer is not None:
theory = lambda: smearer(model[0].evalDistribution(data.x))
else:
theory = lambda: model[0].evalDistribution(data.x)
def calculator(**pars):
# type: (float, ...) -> np.ndarray
"""
Sasview calculator for model.
"""
oldpars = revert_pars(model_info, pars)
# For multiplicity models, create a model with the correct multiplicity
control = oldpars.pop("CONTROL", None)
if control is not None:
# sphericalSLD has one fewer multiplicity. This update should
# happen in revert_pars, but it hasn't been called yet.
model[0] = ModelClass(control)
# paying for parameter conversion each time to keep life simple, if not fast
for k, v in oldpars.items():
if k.endswith('.type'):
par = k[:-5]
if v == 'gaussian': continue
cls = dispersers[v if v != 'rectangle' else 'rectangula']
handle = cls()
model[0].disperser_handles[par] = handle
try:
model[0].set_dispersion(par, handle)
except Exception:
exception.annotate_exception("while setting %s to %r"
%(par, v))
raise
#print("sasview pars",oldpars)
for k, v in oldpars.items():
name_attr = k.split('.') # polydispersity components
if len(name_attr) == 2:
par, disp_par = name_attr
model[0].dispersion[par][disp_par] = v
else:
model[0].setParam(k, v)
return theory()
calculator.engine = "sasview"
return calculator
DTYPE_MAP = {
'half': '16',
'fast': 'fast',
'single': '32',
'double': '64',
'quad': '128',
'f16': '16',
'f32': '32',
'f64': '64',
'float16': '16',
'float32': '32',
'float64': '64',
'float128': '128',
'longdouble': '128',
}
def eval_opencl(model_info, data, dtype='single', cutoff=0.):
# type: (ModelInfo, Data, str, float) -> Calculator
"""
Return a model calculator using the OpenCL calculation engine.
"""
if not core.HAVE_OPENCL:
raise RuntimeError("OpenCL not available")
model = core.build_model(model_info, dtype=dtype, platform="ocl")
calculator = DirectModel(data, model, cutoff=cutoff)
calculator.engine = "OCL%s"%DTYPE_MAP[str(model.dtype)]
return calculator
def eval_ctypes(model_info, data, dtype='double', cutoff=0.):
# type: (ModelInfo, Data, str, float) -> Calculator
"""
Return a model calculator using the DLL calculation engine.
"""
model = core.build_model(model_info, dtype=dtype, platform="dll")
calculator = DirectModel(data, model, cutoff=cutoff)
calculator.engine = "OMP%s"%DTYPE_MAP[str(model.dtype)]
return calculator
def time_calculation(calculator, pars, evals=1):
# type: (Calculator, ParameterSet, int) -> Tuple[np.ndarray, float]
"""
Compute the average calculation time over N evaluations.
An additional call is generated without polydispersity in order to
initialize the calculation engine, and make the average more stable.
"""
# initialize the code so time is more accurate
if evals > 1:
calculator(**suppress_pd(pars))
toc = tic()
# make sure there is at least one eval
value = calculator(**pars)
for _ in range(evals-1):
value = calculator(**pars)
average_time = toc()*1000. / evals
#print("I(q)",value)
return value, average_time
def make_data(opts):
# type: (Dict[str, Any]) -> Tuple[Data, np.ndarray]
"""
Generate an empty dataset, used with the model to set Q points
and resolution.
*opts* contains the options, with 'qmax', 'nq', 'res',
'accuracy', 'is2d' and 'view' parsed from the command line.
"""
qmin, qmax, nq, res = opts['qmin'], opts['qmax'], opts['nq'], opts['res']
if opts['is2d']:
q = np.linspace(-qmax, qmax, nq) # type: np.ndarray
data = empty_data2D(q, resolution=res)
data.accuracy = opts['accuracy']
set_beam_stop(data, 0.0004)
index = ~data.mask
else:
if opts['view'] == 'log' and not opts['zero']:
q = np.logspace(math.log10(qmin), math.log10(qmax), nq)
else:
q = np.linspace(qmin, qmax, nq)
if opts['zero']:
q = np.hstack((0, q))
data = empty_data1D(q, resolution=res)
index = slice(None, None)
return data, index
def make_engine(model_info, data, dtype, cutoff):
# type: (ModelInfo, Data, str, float) -> Calculator
"""
Generate the appropriate calculation engine for the given datatype.
Datatypes with '!' appended are evaluated using external C DLLs rather
than OpenCL.
"""
if dtype == 'sasview':
return eval_sasview(model_info, data)
elif dtype is None or not dtype.endswith('!'):
return eval_opencl(model_info, data, dtype=dtype, cutoff=cutoff)
else:
return eval_ctypes(model_info, data, dtype=dtype[:-1], cutoff=cutoff)
def _show_invalid(data, theory):
# type: (Data, np.ma.ndarray) -> None
"""
Display a list of the non-finite values in theory.
"""
if not theory.mask.any():
return
if hasattr(data, 'x'):
bad = zip(data.x[theory.mask], theory[theory.mask])
print(" *** ", ", ".join("I(%g)=%g"%(x, y) for x, y in bad))
def compare(opts, limits=None):
# type: (Dict[str, Any], Optional[Tuple[float, float]]) -> Tuple[float, float]
"""
Preform a comparison using options from the command line.
*limits* are the limits on the values to use, either to set the y-axis
for 1D or to set the colormap scale for 2D. If None, then they are
inferred from the data and returned. When exploring using Bumps,
the limits are set when the model is initially called, and maintained
as the values are adjusted, making it easier to see the effects of the
parameters.
"""
limits = np.Inf, -np.Inf
for k in range(opts['sets']):
opts['pars'] = parse_pars(opts)
if opts['pars'] is None:
return
result = run_models(opts, verbose=True)
if opts['plot']:
limits = plot_models(opts, result, limits=limits, setnum=k)
if opts['plot']:
import matplotlib.pyplot as plt
plt.show()
def run_models(opts, verbose=False):
# type: (Dict[str, Any]) -> Dict[str, Any]
base, comp = opts['engines']
base_n, comp_n = opts['count']
base_pars, comp_pars = opts['pars']
data = opts['data']
comparison = comp is not None
base_time = comp_time = None
base_value = comp_value = resid = relerr = None
# Base calculation
try:
base_raw, base_time = time_calculation(base, base_pars, base_n)
base_value = np.ma.masked_invalid(base_raw)
if verbose:
print("%s t=%.2f ms, intensity=%.0f"
% (base.engine, base_time, base_value.sum()))
_show_invalid(data, base_value)
except ImportError:
traceback.print_exc()
# Comparison calculation
if comparison:
try:
comp_raw, comp_time = time_calculation(comp, comp_pars, comp_n)
comp_value = np.ma.masked_invalid(comp_raw)
if verbose:
print("%s t=%.2f ms, intensity=%.0f"
% (comp.engine, comp_time, comp_value.sum()))
_show_invalid(data, comp_value)
except ImportError:
traceback.print_exc()
# Compare, but only if computing both forms
if comparison:
resid = (base_value - comp_value)
relerr = resid/np.where(comp_value != 0., abs(comp_value), 1.0)
if verbose:
_print_stats("|%s-%s|"
% (base.engine, comp.engine) + (" "*(3+len(comp.engine))),
resid)
_print_stats("|(%s-%s)/%s|"
% (base.engine, comp.engine, comp.engine),
relerr)
return dict(base_value=base_value, comp_value=comp_value,
base_time=base_time, comp_time=comp_time,
resid=resid, relerr=relerr)
def _print_stats(label, err):
# type: (str, np.ma.ndarray) -> None
# work with trimmed data, not the full set
sorted_err = np.sort(abs(err.compressed()))
if len(sorted_err) == 0.:
print(label + " no valid values")
return
p50 = int((len(sorted_err)-1)*0.50)
p98 = int((len(sorted_err)-1)*0.98)
data = [
"max:%.3e"%sorted_err[-1],
"median:%.3e"%sorted_err[p50],
"98%%:%.3e"%sorted_err[p98],
"rms:%.3e"%np.sqrt(np.mean(sorted_err**2)),
"zero-offset:%+.3e"%np.mean(sorted_err),
]
print(label+" "+" ".join(data))
def plot_models(opts, result, limits=(np.Inf, -np.Inf), setnum=0):
# type: (Dict[str, Any], Dict[str, Any], Optional[Tuple[float, float]]) -> Tuple[float, float]
base_value, comp_value = result['base_value'], result['comp_value']
base_time, comp_time = result['base_time'], result['comp_time']
resid, relerr = result['resid'], result['relerr']
have_base, have_comp = (base_value is not None), (comp_value is not None)
base, comp = opts['engines']
data = opts['data']
use_data = (opts['datafile'] is not None) and (have_base ^ have_comp)
# Plot if requested
view = opts['view']
import matplotlib.pyplot as plt
vmin, vmax = limits
if have_base:
vmin = min(vmin, base_value.min())
vmax = max(vmax, base_value.max())
if have_comp:
vmin = min(vmin, comp_value.min())
vmax = max(vmax, comp_value.max())
limits = vmin, vmax
if have_base:
if have_comp:
plt.subplot(131)
plot_theory(data, base_value, view=view, use_data=use_data, limits=limits)
plt.title("%s t=%.2f ms"%(base.engine, base_time))
#cbar_title = "log I"
if have_comp:
if have_base:
plt.subplot(132)
if not opts['is2d'] and have_base:
plot_theory(data, base_value, view=view, use_data=use_data, limits=limits)
plot_theory(data, comp_value, view=view, use_data=use_data, limits=limits)
plt.title("%s t=%.2f ms"%(comp.engine, comp_time))
#cbar_title = "log I"
if have_base and have_comp:
plt.subplot(133)
if not opts['rel_err']:
err, errstr, errview = resid, "abs err", "linear"
else:
err, errstr, errview = abs(relerr), "rel err", "log"
if (err == 0.).all():
errview = 'linear'
if 0: # 95% cutoff
sorted = np.sort(err.flatten())
cutoff = sorted[int(sorted.size*0.95)]
err[err > cutoff] = cutoff
#err,errstr = base/comp,"ratio"
plot_theory(data, None, resid=err, view=view, use_data=use_data)
plt.yscale(errview)
plt.title("max %s = %.3g"%(errstr, abs(err).max()))
#cbar_title = errstr if errview=="linear" else "log "+errstr
#if is2D:
# h = plt.colorbar()
# h.ax.set_title(cbar_title)
fig = plt.gcf()
extra_title = ' '+opts['title'] if opts['title'] else ''
fig.suptitle(":".join(opts['name']) + extra_title)
if have_base and have_comp and opts['show_hist']:
plt.figure()
v = relerr
v[v == 0] = 0.5*np.min(np.abs(v[v != 0]))
plt.hist(np.log10(np.abs(v)), normed=1, bins=50)
plt.xlabel('log10(err), err = |(%s - %s) / %s|'
% (base.engine, comp.engine, comp.engine))
plt.ylabel('P(err)')
plt.title('Distribution of relative error between calculation engines')
return limits
# ===========================================================================
#
# Set of command line options.
# Normal options such as -plot/-noplot are specified as 'name'.
# For options such as -nq=500 which require a value use 'name='.
#
OPTIONS = [
# Plotting
'plot', 'noplot',
'linear', 'log', 'q4',
'rel', 'abs',
'hist', 'nohist',
'title=',
# Data generation
'data=', 'noise=', 'res=', 'nq=', 'q=',
'lowq', 'midq', 'highq', 'exq', 'zero',
'2d', '1d',
# Parameter set
'preset', 'random', 'random=', 'sets=',
'demo', 'default', # TODO: remove demo/default
'nopars', 'pars',
# Calculation options
'poly', 'mono', 'cutoff=',
'magnetic', 'nonmagnetic',
'accuracy=',
'neval=', # for timing...
# Precision options
'calc=',
'half', 'fast', 'single', 'double', 'single!', 'double!', 'quad!',
'sasview', # TODO: remove sasview 3.x support
# Output options
'help', 'html', 'edit',
]
NAME_OPTIONS = set(k for k in OPTIONS if not k.endswith('='))
VALUE_OPTIONS = [k[:-1] for k in OPTIONS if k.endswith('=')]
def columnize(items, indent="", width=79):
# type: (List[str], str, int) -> str
"""
Format a list of strings into columns.
Returns a string with carriage returns ready for printing.
"""
column_width = max(len(w) for w in items) + 1
num_columns = (width - len(indent)) // column_width
num_rows = len(items) // num_columns
items = items + [""] * (num_rows * num_columns - len(items))
columns = [items[k*num_rows:(k+1)*num_rows] for k in range(num_columns)]
lines = [" ".join("%-*s"%(column_width, entry) for entry in row)
for row in zip(*columns)]
output = indent + ("\n"+indent).join(lines)
return output
def get_pars(model_info, use_demo=False):
# type: (ModelInfo, bool) -> ParameterSet
"""
Extract demo parameters from the model definition.
"""
# Get the default values for the parameters
pars = {}
for p in model_info.parameters.call_parameters:
parts = [('', p.default)]
if p.polydisperse:
parts.append(('_pd', 0.0))
parts.append(('_pd_n', 0))
parts.append(('_pd_nsigma', 3.0))
parts.append(('_pd_type', "gaussian"))
for ext, val in parts:
if p.length > 1:
dict(("%s%d%s" % (p.id, k, ext), val)
for k in range(1, p.length+1))
else:
pars[p.id + ext] = val
# Plug in values given in demo
if use_demo and model_info.demo:
pars.update(model_info.demo)
return pars
INTEGER_RE = re.compile("^[+-]?[1-9][0-9]*$")
def isnumber(str):
match = FLOAT_RE.match(str)
isfloat = (match and not str[match.end():])
return isfloat or INTEGER_RE.match(str)
# For distinguishing pairs of models for comparison
# key-value pair separator =
# shell characters | & ; <> $ % ' " \ # `
# model and parameter names _
# parameter expressions - + * / . ( )
# path characters including tilde expansion and windows drive ~ / :
# not sure about brackets [] {}
# maybe one of the following @ ? ^ ! ,
PAR_SPLIT = ','
def parse_opts(argv):
# type: (List[str]) -> Dict[str, Any]
"""
Parse command line options.
"""
MODELS = core.list_models()
flags = [arg for arg in argv
if arg.startswith('-')]
values = [arg for arg in argv
if not arg.startswith('-') and '=' in arg]
positional_args = [arg for arg in argv
if not arg.startswith('-') and '=' not in arg]
models = "\n ".join("%-15s"%v for v in MODELS)
if len(positional_args) == 0:
print(USAGE)
print("\nAvailable models:")
print(columnize(MODELS, indent=" "))
return None
invalid = [o[1:] for o in flags
if o[1:] not in NAME_OPTIONS
and not any(o.startswith('-%s='%t) for t in VALUE_OPTIONS)]
if invalid:
print("Invalid options: %s"%(", ".join(invalid)))
return None
name = positional_args[-1]
# pylint: disable=bad-whitespace
# Interpret the flags
opts = {
'plot' : True,
'view' : 'log',
'is2d' : False,
'qmin' : None,
'qmax' : 0.05,
'nq' : 128,
'res' : 0.0,
'noise' : 0.0,
'accuracy' : 'Low',
'cutoff' : '0.0',
'seed' : -1, # default to preset
'mono' : True,
# Default to magnetic a magnetic moment is set on the command line
'magnetic' : False,
'show_pars' : False,
'show_hist' : False,
'rel_err' : True,
'explore' : False,
'use_demo' : True,
'zero' : False,
'html' : False,
'title' : None,
'datafile' : None,
'sets' : 0,
'engine' : 'default',
'evals' : '1',
}
for arg in flags:
if arg == '-noplot': opts['plot'] = False
elif arg == '-plot': opts['plot'] = True
elif arg == '-linear': opts['view'] = 'linear'
elif arg == '-log': opts['view'] = 'log'
elif arg == '-q4': opts['view'] = 'q4'
elif arg == '-1d': opts['is2d'] = False
elif arg == '-2d': opts['is2d'] = True
elif arg == '-exq': opts['qmax'] = 10.0
elif arg == '-highq': opts['qmax'] = 1.0
elif arg == '-midq': opts['qmax'] = 0.2
elif arg == '-lowq': opts['qmax'] = 0.05
elif arg == '-zero': opts['zero'] = True
elif arg.startswith('-nq='): opts['nq'] = int(arg[4:])
elif arg.startswith('-q='):
opts['qmin'], opts['qmax'] = [float(v) for v in arg[3:].split(':')]
elif arg.startswith('-res='): opts['res'] = float(arg[5:])
elif arg.startswith('-noise='): opts['noise'] = float(arg[7:])
elif arg.startswith('-sets='): opts['sets'] = int(arg[6:])
elif arg.startswith('-accuracy='): opts['accuracy'] = arg[10:]
elif arg.startswith('-cutoff='): opts['cutoff'] = arg[8:]
elif arg.startswith('-random='): opts['seed'] = int(arg[8:])
elif arg.startswith('-title='): opts['title'] = arg[7:]
elif arg.startswith('-data='): opts['datafile'] = arg[6:]
elif arg.startswith('-calc='): opts['engine'] = arg[6:]
elif arg.startswith('-neval='): opts['evals'] = arg[7:]
elif arg == '-random': opts['seed'] = np.random.randint(1000000)
elif arg == '-preset': opts['seed'] = -1
elif arg == '-mono': opts['mono'] = True
elif arg == '-poly': opts['mono'] = False
elif arg == '-magnetic': opts['magnetic'] = True
elif arg == '-nonmagnetic': opts['magnetic'] = False
elif arg == '-pars': opts['show_pars'] = True
elif arg == '-nopars': opts['show_pars'] = False
elif arg == '-hist': opts['show_hist'] = True
elif arg == '-nohist': opts['show_hist'] = False
elif arg == '-rel': opts['rel_err'] = True
elif arg == '-abs': opts['rel_err'] = False
elif arg == '-half': opts['engine'] = 'half'
elif arg == '-fast': opts['engine'] = 'fast'
elif arg == '-single': opts['engine'] = 'single'
elif arg == '-double': opts['engine'] = 'double'
elif arg == '-single!': opts['engine'] = 'single!'
elif arg == '-double!': opts['engine'] = 'double!'
elif arg == '-quad!': opts['engine'] = 'quad!'
elif arg == '-sasview': opts['engine'] = 'sasview'
elif arg == '-edit': opts['explore'] = True
elif arg == '-demo': opts['use_demo'] = True
elif arg == '-default': opts['use_demo'] = False
elif arg == '-html': opts['html'] = True
elif arg == '-help': opts['html'] = True
# pylint: enable=bad-whitespace
# Magnetism forces 2D for now
if opts['magnetic']:
opts['is2d'] = True
# Force random if sets is used
if opts['sets'] >= 1 and opts['seed'] < 0:
opts['seed'] = np.random.randint(1000000)
if opts['sets'] == 0:
opts['sets'] = 1
# Create the computational engines
if opts['qmin'] is None:
opts['qmin'] = 0.001*opts['qmax']
if opts['datafile'] is not None:
data = load_data(os.path.expanduser(opts['datafile']))
else:
data, _ = make_data(opts)
comparison = any(PAR_SPLIT in v for v in values)
if PAR_SPLIT in name:
names = name.split(PAR_SPLIT, 2)
comparison = True
else:
names = [name]*2
try:
model_info = [core.load_model_info(k) for k in names]
except ImportError as exc:
print(str(exc))
print("Could not find model; use one of:\n " + models)
return None
if PAR_SPLIT in opts['engine']:
engine_types = opts['engine'].split(PAR_SPLIT, 2)
comparison = True
else:
engine_types = [opts['engine']]*2
if PAR_SPLIT in opts['evals']:
evals = [int(k) for k in opts['evals'].split(PAR_SPLIT, 2)]
comparison = True
else:
evals = [int(opts['evals'])]*2
if PAR_SPLIT in opts['cutoff']:
cutoff = [float(k) for k in opts['cutoff'].split(PAR_SPLIT, 2)]
comparison = True
else:
cutoff = [float(opts['cutoff'])]*2
base = make_engine(model_info[0], data, engine_types[0], cutoff[0])
if comparison:
comp = make_engine(model_info[1], data, engine_types[1], cutoff[1])
else:
comp = None
# pylint: disable=bad-whitespace
# Remember it all
opts.update({
'data' : data,
'name' : names,
'def' : model_info,
'count' : evals,
'engines' : [base, comp],
'values' : values,
})
# pylint: enable=bad-whitespace
return opts
def parse_pars(opts):
model_info, model_info2 = opts['def']
# Get demo parameters from model definition, or use default parameters
# if model does not define demo parameters
pars = get_pars(model_info, opts['use_demo'])
pars2 = get_pars(model_info2, opts['use_demo'])
pars2.update((k, v) for k, v in pars.items() if k in pars2)
# randomize parameters
#pars.update(set_pars) # set value before random to control range
if opts['seed'] > -1:
pars = randomize_pars(model_info, pars)
if model_info != model_info2:
pars2 = randomize_pars(model_info2, pars2)
# Share values for parameters with the same name
for k, v in pars.items():
if k in pars2:
pars2[k] = v
else:
pars2 = pars.copy()
constrain_pars(model_info, pars)
constrain_pars(model_info2, pars2)
pars = suppress_pd(pars, opts['mono'])
pars2 = suppress_pd(pars2, opts['mono'])
pars = suppress_magnetism(pars, not opts['magnetic'])
pars2 = suppress_magnetism(pars2, not opts['magnetic'])
# Fill in parameters given on the command line
presets = {}
presets2 = {}
for arg in opts['values']:
k, v = arg.split('=', 1)
if k not in pars and k not in pars2:
# extract base name without polydispersity info
s = set(p.split('_pd')[0] for p in pars)
print("%r invalid; parameters are: %s"%(k, ", ".join(sorted(s))))
return None
v1, v2 = v.split(PAR_SPLIT, 2) if PAR_SPLIT in v else (v,v)
if v1 and k in pars:
presets[k] = float(v1) if isnumber(v1) else v1
if v2 and k in pars2:
presets2[k] = float(v2) if isnumber(v2) else v2
# If pd given on the command line, default pd_n to 35
for k, v in list(presets.items()):
if k.endswith('_pd'):
presets.setdefault(k+'_n', 35.)
for k, v in list(presets2.items()):
if k.endswith('_pd'):
presets2.setdefault(k+'_n', 35.)
# Evaluate preset parameter expressions
context = MATH.copy()
context['np'] = np
context.update(pars)
context.update((k, v) for k, v in presets.items() if isinstance(v, float))
for k, v in presets.items():
if not isinstance(v, float) and not k.endswith('_type'):
presets[k] = eval(v, context)
context.update(presets)
context.update((k, v) for k, v in presets2.items() if isinstance(v, float))
for k, v in presets2.items():
if not isinstance(v, float) and not k.endswith('_type'):
presets2[k] = eval(v, context)
# update parameters with presets
pars.update(presets) # set value after random to control value
pars2.update(presets2) # set value after random to control value
#import pprint; pprint.pprint(model_info)
if opts['show_pars']:
if model_info.name != model_info2.name or pars != pars2:
print("==== %s ====="%model_info.name)
print(str(parlist(model_info, pars, opts['is2d'])))
print("==== %s ====="%model_info2.name)
print(str(parlist(model_info2, pars2, opts['is2d'])))
else:
print(str(parlist(model_info, pars, opts['is2d'])))
return pars, pars2
def show_docs(opts):
# type: (Dict[str, Any]) -> None
"""
show html docs for the model
"""
import os
from .generate import make_html
from . import rst2html
info = opts['def'][0]
html = make_html(info)
path = os.path.dirname(info.filename)
url = "file://"+path.replace("\\","/")[2:]+"/"
rst2html.view_html_qtapp(html, url)
def explore(opts):
# type: (Dict[str, Any]) -> None
"""
explore the model using the bumps gui.
"""
import wx # type: ignore
from bumps.names import FitProblem # type: ignore
from bumps.gui.app_frame import AppFrame # type: ignore
from bumps.gui import signal
is_mac = "cocoa" in wx.version()
# Create an app if not running embedded
app = wx.App() if wx.GetApp() is None else None
model = Explore(opts)
problem = FitProblem(model)
frame = AppFrame(parent=None, title="explore", size=(1000, 700))
if not is_mac:
frame.Show()
frame.panel.set_model(model=problem)
frame.panel.Layout()
frame.panel.aui.Split(0, wx.TOP)
def reset_parameters(event):
model.revert_values()
signal.update_parameters(problem)
frame.Bind(wx.EVT_TOOL, reset_parameters, frame.ToolBar.GetToolByPos(1))
if is_mac: frame.Show()
# If running withing an app, start the main loop
if app:
app.MainLoop()
class Explore(object):
"""
Bumps wrapper for a SAS model comparison.
The resulting object can be used as a Bumps fit problem so that
parameters can be adjusted in the GUI, with plots updated on the fly.
"""
def __init__(self, opts):
# type: (Dict[str, Any]) -> None
from bumps.cli import config_matplotlib # type: ignore
from . import bumps_model
config_matplotlib()
self.opts = opts
opts['pars'] = list(opts['pars'])
p1, p2 = opts['pars']
m1, m2 = opts['def']
self.fix_p2 = m1 != m2 or p1 != p2
model_info = m1
pars, pd_types = bumps_model.create_parameters(model_info, **p1)
# Initialize parameter ranges, fixing the 2D parameters for 1D data.
if not opts['is2d']:
for p in model_info.parameters.user_parameters({}, is2d=False):
for ext in ['', '_pd', '_pd_n', '_pd_nsigma']:
k = p.name+ext
v = pars.get(k, None)
if v is not None:
v.range(*parameter_range(k, v.value))
else:
for k, v in pars.items():
v.range(*parameter_range(k, v.value))
self.pars = pars
self.starting_values = dict((k, v.value) for k, v in pars.items())
self.pd_types = pd_types
self.limits = np.Inf, -np.Inf
def revert_values(self):
for k, v in self.starting_values.items():
self.pars[k].value = v
def model_update(self):
pass
def numpoints(self):
# type: () -> int
"""
Return the number of points.
"""
return len(self.pars) + 1 # so dof is 1
def parameters(self):
# type: () -> Any # Dict/List hierarchy of parameters
"""
Return a dictionary of parameters.
"""
return self.pars
def nllf(self):
# type: () -> float
"""
Return cost.
"""
# pylint: disable=no-self-use
return 0. # No nllf
def plot(self, view='log'):
# type: (str) -> None
"""
Plot the data and residuals.
"""
pars = dict((k, v.value) for k, v in self.pars.items())
pars.update(self.pd_types)
self.opts['pars'][0] = pars
if not self.fix_p2:
self.opts['pars'][1] = pars
result = run_models(self.opts)
limits = plot_models(self.opts, result, limits=self.limits)
if self.limits is None:
vmin, vmax = limits
self.limits = vmax*1e-7, 1.3*vmax
import pylab; pylab.clf()
plot_models(self.opts, result, limits=self.limits)
def main(*argv):
# type: (*str) -> None
"""
Main program.
"""
opts = parse_opts(argv)
if opts is not None:
if opts['seed'] > -1:
print("Randomize using -random=%i"%opts['seed'])
np.random.seed(opts['seed'])
if opts['html']:
show_docs(opts)
elif opts['explore']:
opts['pars'] = parse_pars(opts)
if opts['pars'] is None:
return
explore(opts)
else:
compare(opts)
if __name__ == "__main__":
main(*sys.argv[1:])
|