/usr/lib/python3/dist-packages/relational/optimizations.py is in python3-relational 2.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | # Relational
# Copyright (C) 2009-2016 Salvo "LtWorf" Tomaselli
#
# Relational is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it>
#
# This module contains functions to perform various optimizations on the expression trees.
# The list general_optimizations contains pointers to general functions, so they can be called
# within a cycle.
#
# It is possible to add new general optimizations by adding the function in the list
# general_optimizations present in this module. And the optimization will be executed with the
# other ones when optimizing.
#
# A function will have one parameter, which is the root node of the tree describing the expression.
# The class used is defined in optimizer module.
# A function will have to return the number of changes performed on the tree.
from io import StringIO
from tokenize import generate_tokens
from relational import parser
sel_op = (
'//=', '**=', 'and', 'not', 'in', '//', '**', '<<', '>>', '==', '!=', '>=', '<=', '+=', '-=',
'*=', '/=', '%=', 'or', '+', '-', '*', '/', '&', '|', '^', '~', '<', '>', '%', '=', '(', ')', ',', '[', ']')
PRODUCT = parser.PRODUCT
DIFFERENCE = parser.DIFFERENCE
UNION = parser.UNION
INTERSECTION = parser.INTERSECTION
DIVISION = parser.DIVISION
JOIN = parser.JOIN
JOIN_LEFT = parser.JOIN_LEFT
JOIN_RIGHT = parser.JOIN_RIGHT
JOIN_FULL = parser.JOIN_FULL
PROJECTION = parser.PROJECTION
SELECTION = parser.SELECTION
RENAME = parser.RENAME
ARROW = parser.ARROW
def find_duplicates(node, dups=None):
'''
Finds repeated subtrees in a parse
tree.
'''
if dups is None:
dups = {}
dups[str(node)] = node
def replace_leaves(node, context):
'''
Node is a parsed tree
context is a dictionary containing
parsed trees as values.
If a name appearing in node appears
also in context, the parse tree is
modified to replace the node with the
subtree found in context.
'''
if node.kind == parser.UNARY:
replace_leaves(node.child, context)
elif node.kind == parser.BINARY:
replace_leaves(node.left, context)
replace_leaves(node.right, context)
elif node.name in context:
replace_node(node, context[node.name])
def replace_node(replace, replacement):
'''This function replaces "replace" node with the node "with",
the father of the node will now point to the with node'''
replace.name = replacement.name
replace.kind = replacement.kind
if replace.kind == parser.UNARY:
replace.child = replacement.child
replace.prop = replacement.prop
elif replace.kind == parser.BINARY:
replace.right = replacement.right
replace.left = replacement.left
def recoursive_scan(function, node, rels=None):
'''Does a recoursive optimization on the tree.
This function will recoursively execute the function given
as "function" parameter starting from node to all the tree.
if rels is provided it will be passed as argument to the function.
Otherwise the function will be called just on the node.
Result value: function is supposed to return the amount of changes
it has performed on the tree.
The various result will be added up and this final value will be the
returned value.'''
changes = 0
# recoursive scan
if node.kind == parser.UNARY:
if rels != None:
changes += function(node.child, rels)
else:
changes += function(node.child)
elif node.kind == parser.BINARY:
if rels != None:
changes += function(node.right, rels)
changes += function(node.left, rels)
else:
changes += function(node.right)
changes += function(node.left)
return changes
def duplicated_select(n):
'''This function locates and deletes things like
σ a ( σ a(C)) and the ones like σ a ( σ b(C))
replacing the 1st one with a single select and
the 2nd one with a single select with both conditions
in and
'''
changes = 0
if n.name == SELECTION and n.child.name == SELECTION:
if n.prop != n.child.prop: # Nested but different, joining them
n.prop = n.prop + " and " + n.child.prop
# This adds parenthesis if they are needed
if n.child.prop.startswith('(') or n.prop.startswith('('):
n.prop = '(%s)' % n.prop
n.child = n.child.child
changes = 1
changes += duplicated_select(n)
return changes + recoursive_scan(duplicated_select, n)
def futile_union_intersection_subtraction(n):
'''This function locates things like r ᑌ r, and replaces them with r.
R ᑌ R --> R
R ᑎ R --> R
R - R --> σ False (R)
σ k (R) - R --> σ False (R)
R - σ k (R) --> σ not k (R)
σ k (R) ᑌ R --> R
σ k (R) ᑎ R --> σ k (R)
'''
changes = 0
# Union and intersection of the same thing
if n.name in (UNION, INTERSECTION, JOIN, JOIN_LEFT, JOIN_RIGHT, JOIN_FULL) and n.left == n.right:
changes = 1
replace_node(n, n.left)
# selection and union of the same thing
elif (n.name == UNION):
if n.left.name == SELECTION and n.left.child == n.right:
changes = 1
replace_node(n, n.right)
elif n.right.name == SELECTION and n.right.child == n.left:
changes = 1
replace_node(n, n.left)
# selection and intersection of the same thing
elif n.name == INTERSECTION:
if n.left.name == SELECTION and n.left.child == n.right:
changes = 1
replace_node(n, n.left)
elif n.right.name == SELECTION and n.right.child == n.left:
changes = 1
replace_node(n, n.right)
# Subtraction and selection of the same thing
elif n.name == DIFFERENCE and \
n.right.name == SELECTION and \
n.right.child == n.left:
n.name = n.right.name
n.kind = n.right.kind
n.child = n.right.child
n.prop = '(not (%s))' % n.right.prop
n.left = n.right = None
# Subtraction of the same thing or with selection on the left child
elif n.name == DIFFERENCE and (n.left == n.right or (n.left.name == SELECTION and n.left.child == n.right)):
changes = 1
n.kind = parser.UNARY
n.name = SELECTION
n.prop = 'False'
n.child = n.left.get_left_leaf()
# n.left=n.right=None
return changes + recoursive_scan(futile_union_intersection_subtraction, n)
def down_to_unions_subtractions_intersections(n):
'''This funcion locates things like σ i==2 (c ᑌ d), where the union
can be a subtraction and an intersection and replaces them with
σ i==2 (c) ᑌ σ i==2(d).
'''
changes = 0
_o = (UNION, DIFFERENCE, INTERSECTION)
if n.name == SELECTION and n.child.name in _o:
left = parser.node()
left.prop = n.prop
left.name = n.name
left.child = n.child.left
left.kind = parser.UNARY
right = parser.node()
right.prop = n.prop
right.name = n.name
right.child = n.child.right
right.kind = parser.UNARY
n.name = n.child.name
n.left = left
n.right = right
n.child = None
n.prop = None
n.kind = parser.BINARY
changes += 1
return changes + recoursive_scan(down_to_unions_subtractions_intersections, n)
def duplicated_projection(n):
'''This function locates thing like π i ( π j (R)) and replaces
them with π i (R)'''
changes = 0
if n.name == PROJECTION and n.child.name == PROJECTION:
n.child = n.child.child
changes += 1
return changes + recoursive_scan(duplicated_projection, n)
def selection_inside_projection(n):
'''This function locates things like σ j (π k(R)) and
converts them into π k(σ j (R))'''
changes = 0
if n.name == SELECTION and n.child.name == PROJECTION:
changes = 1
temp = n.prop
n.prop = n.child.prop
n.child.prop = temp
n.name = PROJECTION
n.child.name = SELECTION
return changes + recoursive_scan(selection_inside_projection, n)
def swap_union_renames(n):
'''This function locates things like
ρ a➡b(R) ᑌ ρ a➡b(Q)
and replaces them with
ρ a➡b(R ᑌ Q).
Does the same with subtraction and intersection'''
changes = 0
if n.name in (DIFFERENCE, UNION, INTERSECTION) and n.left.name == n.right.name and n.left.name == RENAME:
l_vars = {}
for i in n.left.prop.split(','):
q = i.split(ARROW)
l_vars[q[0].strip()] = q[1].strip()
r_vars = {}
for i in n.right.prop.split(','):
q = i.split(ARROW)
r_vars[q[0].strip()] = q[1].strip()
if r_vars == l_vars:
changes = 1
# Copying self, but child will be child of renames
q = parser.node()
q.name = n.name
q.kind = parser.BINARY
q.left = n.left.child
q.right = n.right.child
n.name = RENAME
n.kind = parser.UNARY
n.child = q
n.prop = n.left.prop
n.left = n.right = None
return changes + recoursive_scan(swap_union_renames, n)
def futile_renames(n):
'''This function purges renames like id->id'''
changes = 0
if n.name == RENAME:
# Located two nested renames.
changes = 1
# Creating a dictionary with the attributes
_vars = {}
for i in n.prop.split(','):
q = i.split(ARROW)
_vars[q[0].strip()] = q[1].strip()
# Scans dictionary to locate things like "a->b,b->c" and replace them
# with "a->c"
for key in list(_vars.keys()):
value = _vars.get(key)
if key == value:
_vars.pop(value) # Removes the unused one
if len(_vars) == 0: # Nothing to rename, removing the rename op
replace_node(n, n.child)
else:
n.prop = ','.join('%s%s%s' % (i[0], ARROW, i[1]) for i in _vars.items())
return changes + recoursive_scan(futile_renames, n)
def subsequent_renames(n):
'''This function removes redoundant subsequent renames joining them into one'''
'''Purges renames like id->id Since it's needed to be performed BEFORE this one
so it is not in the list with the other optimizations'''
futile_renames(n)
changes = 0
if n.name == RENAME and n.child.name == RENAME:
# Located two nested renames.
changes = 1
# Joining the attribute into one
n.prop += ',' + n.child.prop
n.child = n.child.child
# Creating a dictionary with the attributes
_vars = {}
for i in n.prop.split(','):
q = i.split(ARROW)
_vars[q[0].strip()] = q[1].strip()
# Scans dictionary to locate things like "a->b,b->c" and replace them
# with "a->c"
for key in list(_vars.keys()):
value = _vars.get(key)
if value in _vars.keys():
if _vars[value] != key:
# Double rename on attribute
_vars[key] = _vars[_vars[key]] # Sets value
_vars.pop(value) # Removes the unused one
else: # Cycle rename a->b,b->a
_vars.pop(value) # Removes the unused one
_vars.pop(key) # Removes the unused one
if len(_vars) == 0: # Nothing to rename, removing the rename op
replace_node(n, n.child)
else:
n.prop = ','.join('%s%s%s' % (i[0], ARROW, i[1]) for i in _vars.items())
return changes + recoursive_scan(subsequent_renames, n)
class level_string(str):
level = 0
def tokenize_select(expression):
'''This function returns the list of tokens present in a
selection. The expression can contain parenthesis.
It will use a subclass of str with the attribute level, which
will specify the nesting level of the token into parenthesis.'''
g = generate_tokens(StringIO(str(expression)).readline)
l = list(token[1] for token in g)
l.remove('')
# Changes the 'a','.','method' token group into a single 'a.method' token
try:
while True:
dot = l.index('.')
l[dot] = '%s.%s' % (l[dot - 1], l[dot + 1])
l.pop(dot + 1)
l.pop(dot - 1)
except:
pass
level = 0
for i in range(len(l)):
l[i] = level_string(l[i])
l[i].level = level
if l[i] == '(':
level += 1
elif l[i] == ')':
level -= 1
return l
def swap_rename_projection(n):
'''This function locates things like π k(ρ j(R))
and replaces them with ρ j(π k(R)).
This will let rename work on a hopefully smaller set
and more important, will hopefully allow further optimizations.
Will also eliminate fields in the rename that are cutted in the projection.
'''
changes = 0
if n.name == PROJECTION and n.child.name == RENAME:
changes = 1
# π index,name(ρ id➡index(R))
_vars = {}
for i in n.child.prop.split(','):
q = i.split(ARROW)
_vars[q[1].strip()] = q[0].strip()
_pr = n.prop.split(',')
for i in range(len(_pr)):
try:
_pr[i] = _vars[_pr[i].strip()]
except:
pass
_pr_reborn = n.prop.split(',')
for i in list(_vars.keys()):
if i not in _pr_reborn:
_vars.pop(i)
n.name = n.child.name
n.prop = ','.join('%s%s%s' % (i[1], ARROW, i[0]) for i in _vars.items())
n.child.name = PROJECTION
n.child.prop = ''
for i in _pr:
n.child.prop += i + ','
n.child.prop = n.child.prop[:-1]
return changes + recoursive_scan(swap_rename_projection, n)
def swap_rename_select(n):
'''This function locates things like σ k(ρ j(R)) and replaces
them with ρ j(σ k(R)). Renaming the attributes used in the
selection, so the operation is still valid.'''
changes = 0
if n.name == SELECTION and n.child.name == RENAME:
changes = 1
# Dictionary containing attributes of rename
_vars = {}
for i in n.child.prop.split(','):
q = i.split(ARROW)
_vars[q[1].strip()] = q[0].strip()
# tokenizes expression in select
_tokens = tokenize_select(n.prop)
# Renaming stuff
for i in range(len(_tokens)):
splitted = _tokens[i].split('.', 1)
if splitted[0] in _vars:
if len(splitted) == 1:
_tokens[i] = _vars[_tokens[i].split('.')[0]]
else:
_tokens[i] = _vars[
_tokens[i].split('.')[0]] + '.' + splitted[1]
# Swapping operators
n.name = RENAME
n.child.name = SELECTION
n.prop = n.child.prop
n.child.prop = ' '.join(_tokens)
return changes + recoursive_scan(swap_rename_select, n)
def select_union_intersect_subtract(n):
'''This function locates things like σ i(a) ᑌ σ q(a)
and replaces them with σ (i OR q) (a)
Removing a O(n²) operation like the union'''
changes = 0
if n.name in {UNION, INTERSECTION, DIFFERENCE} and \
n.left.name == SELECTION and \
n.right.name == SELECTION and \
n.left.child == n.right.child:
changes = 1
d = {UNION: 'or', INTERSECTION: 'and', DIFFERENCE: 'and not'}
op = d[n.name]
newnode = parser.node()
if n.left.prop.startswith('(') or n.right.prop.startswith('('):
t_str = '('
if n.left.prop.startswith('('):
t_str += '(%s)'
else:
t_str += '%s'
t_str += ' %s '
if n.right.prop.startswith('('):
t_str += '(%s)'
else:
t_str += '%s'
t_str += ')'
newnode.prop = t_str % (n.left.prop, op, n.right.prop)
else:
newnode.prop = '%s %s %s' % (n.left.prop, op, n.right.prop)
newnode.name = SELECTION
newnode.child = n.left.child
newnode.kind = parser.UNARY
replace_node(n, newnode)
return changes + recoursive_scan(select_union_intersect_subtract, n)
def union_and_product(n):
'''
A * B ∪ A * C = A * (B ∪ C)
Same thing with inner join
'''
changes = 0
if n.name == UNION and n.left.name in {PRODUCT, JOIN} and n.left.name == n.right.name:
newnode = parser.node()
newnode.kind = parser.BINARY
newnode.name = n.left.name
newchild = parser.node()
newchild.kind = parser.BINARY
newchild.name = UNION
if n.left.left == n.right.left or n.left.left == n.right.right:
newnode.left = n.left.left
newnode.right = newchild
newchild.left = n.left.right
newchild.right = n.right.left if n.left.left == n.right.right else n.right.right
replace_node(n, newnode)
changes = 1
elif n.left.right == n.right.left or n.left.left == n.right.right:
newnode.left = n.left.right
newnode.right = newchild
newchild.left = n.left.left
newchild.right = n.right.left if n.right.left == n.right.right else n.right.right
replace_node(n, newnode)
changes = 1
return changes + recoursive_scan(union_and_product, n)
def projection_and_union(n, rels):
'''
Turns
π a,b,c(A) ∪ π a,b,c(B)
into
π a,b,c(A ∪ B)
if A and B are union compatible
'''
changes = 0
if n.name == UNION and \
n.left.name == PROJECTION and \
n.right.name == PROJECTION and \
set(n.left.child.result_format(rels)) == set(n.right.child.result_format(rels)):
newchild = parser.Node()
newchild.kind = parser.BINARY
newchild.name = UNION
newchild.left = n.left.child
newchild.right = n.right.child
newnode = parser.Node()
newnode.child = newchild
newnode.kind = parser.UNARY
newnode.name = PROJECTION
newnode.prop = n.right.prop
replace_node(n, newnode)
changes = 1
return changes + recoursive_scan(projection_and_union, n, rels)
def selection_and_product(n, rels):
'''This function locates things like σ k (R*Q) and converts them into
σ l (σ j (R) * σ i (Q)). Where j contains only attributes belonging to R,
i contains attributes belonging to Q and l contains attributes belonging to both'''
changes = 0
if n.name == SELECTION and n.child.name in (PRODUCT, JOIN):
l_attr = n.child.left.result_format(rels)
r_attr = n.child.right.result_format(rels)
tokens = tokenize_select(n.prop)
groups = []
temp = []
for i in tokens:
if i == 'and' and i.level == 0:
groups.append(temp)
temp = []
else:
temp.append(i)
if len(temp) != 0:
groups.append(temp)
temp = []
left = []
right = []
both = []
for i in groups:
l_fields = False # has fields in left?
r_fields = False # has fields in left?
for j in set(i).difference(sel_op):
j = j.split('.')[0]
if j in l_attr: # Field in left
l_fields = True
if j in r_attr: # Field in right
r_fields = True
if l_fields and r_fields: # Fields in both
both.append(i)
elif l_fields:
left.append(i)
elif r_fields:
right.append(i)
else: # Unknown.. adding in both
both.append(i)
# Preparing left selection
if len(left) > 0:
changes = 1
l_node = parser.node()
l_node.name = SELECTION
l_node.kind = parser.UNARY
l_node.child = n.child.left
l_node.prop = ''
n.child.left = l_node
while len(left) > 0:
c = left.pop(0)
for i in c:
l_node.prop += i + ' '
if len(left) > 0:
l_node.prop += ' and '
if '(' in l_node.prop:
l_node.prop = '(%s)' % l_node.prop
# Preparing right selection
if len(right) > 0:
changes = 1
r_node = parser.node()
r_node.name = SELECTION
r_node.prop = ''
r_node.kind = parser.UNARY
r_node.child = n.child.right
n.child.right = r_node
while len(right) > 0:
c = right.pop(0)
r_node.prop += ' '.join(c)
if len(right) > 0:
r_node.prop += ' and '
if '(' in r_node.prop:
r_node.prop = '(%s)' % r_node.prop
# Changing main selection
n.prop = ''
if len(both) != 0:
while len(both) > 0:
c = both.pop(0)
n.prop += ' '.join(c)
if len(both) > 0:
n.prop += ' and '
if '(' in n.prop:
n.prop = '(%s)' % n.prop
else: # No need for general select
replace_node(n, n.child)
return changes + recoursive_scan(selection_and_product, n, rels)
def useless_projection(n, rels):
'''
Removes projections that are over all the fields
'''
changes = 0
if n.name == PROJECTION and \
set(n.child.result_format(rels)) == set(i.strip() for i in n.prop.split(',')):
changes = 1
replace_node(n, n.child)
return changes + recoursive_scan(useless_projection, n, rels)
general_optimizations = [
duplicated_select,
down_to_unions_subtractions_intersections,
duplicated_projection,
selection_inside_projection,
subsequent_renames,
swap_rename_select,
futile_union_intersection_subtraction,
swap_union_renames,
swap_rename_projection,
select_union_intersect_subtract,
union_and_product,
]
specific_optimizations = [
selection_and_product,
projection_and_union,
useless_projection,
]
if __name__ == "__main__":
print (tokenize_select("skill == 'C' and id % 2 == 0"))
|