This file is indexed.

/usr/lib/python3/dist-packages/pgpy/packet/fields.py is in python3-pgpy 0.4.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
""" fields.py
"""
from __future__ import absolute_import, division

import abc
import binascii
import collections
import copy
import hashlib
import itertools
import math
import os

from pyasn1.codec.der import decoder
from pyasn1.codec.der import encoder
from pyasn1.type.univ import Integer
from pyasn1.type.univ import Sequence
from pyasn1.type.namedtype import NamedTypes, NamedType

from cryptography.exceptions import InvalidSignature

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric import dsa
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric import padding

from cryptography.hazmat.primitives.kdf.concatkdf import ConcatKDFHash

from cryptography.hazmat.primitives.keywrap import aes_key_wrap
from cryptography.hazmat.primitives.keywrap import aes_key_unwrap

from cryptography.hazmat.primitives.padding import PKCS7

from .subpackets import Signature as SignatureSP
from .subpackets import UserAttribute
from .subpackets import signature
from .subpackets import userattribute

from .types import MPI
from .types import MPIs

from ..constants import EllipticCurveOID
from ..constants import HashAlgorithm
from ..constants import PubKeyAlgorithm
from ..constants import String2KeyType
from ..constants import SymmetricKeyAlgorithm

from ..decorators import sdproperty

from ..errors import PGPDecryptionError
from ..errors import PGPError

from ..symenc import _decrypt
from ..symenc import _encrypt

from ..types import Field

__all__ = ['SubPackets',
           'UserAttributeSubPackets',
           'Signature',
           'RSASignature',
           'DSASignature',
           'ECDSASignature',
           'PubKey',
           'OpaquePubKey',
           'RSAPub',
           'DSAPub',
           'ElGPub',
           'ECDSAPub',
           'ECDHPub',
           'String2Key',
           'ECKDF',
           'PrivKey',
           'OpaquePrivKey',
           'RSAPriv',
           'DSAPriv',
           'ElGPriv',
           'ECDSAPriv',
           'ECDHPriv',
           'CipherText',
           'RSACipherText',
           'ElGCipherText',
           'ECDHCipherText', ]


class SubPackets(collections.MutableMapping, Field):
    _spmodule = signature

    def __init__(self):
        super(SubPackets, self).__init__()
        self._hashed_sp = collections.OrderedDict()
        self._unhashed_sp = collections.OrderedDict()

    def __bytearray__(self):
        _bytes = bytearray()
        _bytes += self.__hashbytearray__()
        _bytes += self.__unhashbytearray__()
        return _bytes

    def __hashbytearray__(self):
        _bytes = bytearray()
        _bytes += self.int_to_bytes(sum(len(sp) for sp in self._hashed_sp.values()), 2)
        for hsp in self._hashed_sp.values():
            _bytes += hsp.__bytearray__()
        return _bytes

    def __unhashbytearray__(self):
        _bytes = bytearray()
        _bytes += self.int_to_bytes(sum(len(sp) for sp in self._unhashed_sp.values()), 2)
        for uhsp in self._unhashed_sp.values():
            _bytes += uhsp.__bytearray__()
        return _bytes

    def __len__(self):  # pragma: no cover
        return sum(sp.header.length for sp in itertools.chain(self._hashed_sp.values(), self._unhashed_sp.values())) + 4

    def __iter__(self):
        for sp in itertools.chain(self._hashed_sp.values(), self._unhashed_sp.values()):
            yield sp

    def __setitem__(self, key, val):
        # the key provided should always be the classname for the subpacket
        # but, there can be multiple subpackets of the same type
        # so, it should be stored in the format: [h_]<key>_<seqid>
        # where:
        #  - <key> is the classname of val
        #  - <seqid> is a sequence id, starting at 0, for a given classname

        i = 0
        if isinstance(key, tuple):  # pragma: no cover
            key, i = key

        d = self._unhashed_sp
        if key.startswith('h_'):
            d, key = self._hashed_sp, key[2:]

        while (key, i) in d:
            i += 1

        d[(key, i)] = val

    def __getitem__(self, key):
        if isinstance(key, tuple):  # pragma: no cover
            return self._hashed_sp.get(key, self._unhashed_sp.get(key))

        if key.startswith('h_'):
            return [v for k, v in self._hashed_sp.items() if key[2:] == k[0]]

        else:
            return [v for k, v in itertools.chain(self._hashed_sp.items(), self._unhashed_sp.items()) if key == k[0]]

    def __delitem__(self, key):
        ##TODO: this
        raise NotImplementedError

    def __contains__(self, key):
        return key in set(k for k, _ in itertools.chain(self._hashed_sp, self._unhashed_sp))

    def __copy__(self):
        sp = SubPackets()
        sp._hashed_sp = self._hashed_sp.copy()
        sp._unhashed_sp = self._unhashed_sp.copy()

        return sp

    def addnew(self, spname, hashed=False, **kwargs):
        nsp = getattr(self._spmodule, spname)()
        for p, v in kwargs.items():
            if hasattr(nsp, p):
                setattr(nsp, p, v)
        nsp.update_hlen()
        if hashed:
            self['h_' + spname] = nsp

        else:
            self[spname] = nsp

    def update_hlen(self):
        for sp in self:
            sp.update_hlen()

    def parse(self, packet):
        hl = self.bytes_to_int(packet[:2])
        del packet[:2]

        # we do it this way because we can't ensure that subpacket headers are sized appropriately
        # for their contents, but we can at least output that correctly
        # so instead of tracking how many bytes we can now output, we track how many bytes have we parsed so far
        plen = len(packet)
        while plen - len(packet) < hl:
            sp = SignatureSP(packet)
            self['h_' + sp.__class__.__name__] = sp

        uhl = self.bytes_to_int(packet[:2])
        del packet[:2]

        plen = len(packet)
        while plen - len(packet) < uhl:
            sp = SignatureSP(packet)
            self[sp.__class__.__name__] = sp


class UserAttributeSubPackets(SubPackets):
    """
    This is nearly the same as just the unhashed subpackets from above,
    except that there isn't a length specifier. So, parse will only parse one packet,
    appending that one packet to self.__unhashed_sp.
    """
    _spmodule = userattribute

    def __bytearray__(self):
        _bytes = bytearray()
        for uhsp in self._unhashed_sp.values():
            _bytes += uhsp.__bytearray__()
        return _bytes

    def __len__(self):  # pragma: no cover
        return sum(len(sp) for sp in self._unhashed_sp.values())

    def parse(self, packet):
        # parse just one packet and add it to the unhashed subpacket ordereddict
        # I actually have yet to come across a User Attribute packet with more than one subpacket
        # which makes sense, given that there is only one defined subpacket
        sp = UserAttribute(packet)
        self[sp.__class__.__name__] = sp


class Signature(MPIs):
    def __init__(self):
        for i in self.__mpis__:
            setattr(self, i, MPI(0))

    def __bytearray__(self):
        _bytes = bytearray()
        for i in self:
            _bytes += i.to_mpibytes()
        return _bytes

    @abc.abstractproperty
    def __sig__(self):
        """return the signature bytes in a format that can be understood by the signature verifier"""

    @abc.abstractmethod
    def from_signer(self, sig):
        """create and parse a concrete Signature class instance"""


class RSASignature(Signature):
    __mpis__ = ('md_mod_n', )

    def __sig__(self):
        return self.md_mod_n.to_mpibytes()[2:]

    def parse(self, packet):
        self.md_mod_n = MPI(packet)

    def from_signer(self, sig):
        self.md_mod_n = MPI(self.bytes_to_int(sig))


class DSASignature(Signature):
    __mpis__ = ('r', 's')

    def __sig__(self):
        # return the signature data into an ASN.1 sequence of integers in DER format
        seq = Sequence(componentType=NamedTypes(*[NamedType(n, Integer()) for n in self.__mpis__]))
        for n in self.__mpis__:
            seq.setComponentByName(n, getattr(self, n))

        return encoder.encode(seq)

    def from_signer(self, sig):
        ##TODO: just use pyasn1 for this
        def _der_intf(_asn):
            if _asn[0] != 0x02:  # pragma: no cover
                raise ValueError("Expected: Integer (0x02). Got: 0x{:02X}".format(_asn[0]))
            del _asn[0]

            if _asn[0] & 0x80:  # pragma: no cover
                llen = _asn[0] & 0x7F
                del _asn[0]

                flen = self.bytes_to_int(_asn[:llen])
                del _asn[:llen]

            else:
                flen = _asn[0] & 0x7F
                del _asn[0]

            i = self.bytes_to_int(_asn[:flen])
            del _asn[:flen]
            return i

        if isinstance(sig, bytes):
            sig = bytearray(sig)

        # this is a very limited asn1 decoder - it is only intended to decode a DER encoded sequence of integers
        if not sig[0] == 0x30:
            raise NotImplementedError("Expected: Sequence (0x30). Got: 0x{:02X}".format(sig[0]))
        del sig[0]

        # skip the sequence length field
        if sig[0] & 0x80:  # pragma: no cover
            llen = sig[0] & 0x7F
            del sig[:llen + 1]

        else:
            del sig[0]

        self.r = MPI(_der_intf(sig))
        self.s = MPI(_der_intf(sig))

    def parse(self, packet):
        self.r = MPI(packet)
        self.s = MPI(packet)


class ECDSASignature(DSASignature):
    def from_signer(self, sig):
        seq, _ = decoder.decode(sig)
        self.r = MPI(seq[0])
        self.s = MPI(seq[1])


class PubKey(MPIs):
    __pubfields__ = ()

    @property
    def __mpis__(self):
        for i in self.__pubfields__:
            yield i

    def __init__(self):
        super(PubKey, self).__init__()
        for field in self.__pubfields__:
            if isinstance(field, tuple):  # pragma: no cover
                field, val = field

            else:
                val = MPI(0)

            setattr(self, field, val)

    @abc.abstractmethod
    def __pubkey__(self):
        """return the requisite *PublicKey class from the cryptography library"""

    def __len__(self):
        return sum(len(getattr(self, i)) for i in self.__pubfields__)

    def __bytearray__(self):
        _bytes = bytearray()
        for field in self.__pubfields__:
            _bytes += getattr(self, field).to_mpibytes()

        return _bytes

    def publen(self):
        return len(self)

    def verify(self, subj, sigbytes, hash_alg):
        return NotImplemented  # pragma: no cover


class OpaquePubKey(PubKey):  # pragma: no cover
    def __init__(self):
        super(OpaquePubKey, self).__init__()
        self.data = bytearray()

    def __iter__(self):
        yield self.data

    def __pubkey__(self):
        return NotImplemented

    def __bytearray__(self):
        return self.data

    def parse(self, packet):
        ##TODO: this needs to be length-bounded to the end of the packet
        self.data = packet


class RSAPub(PubKey):
    __pubfields__ = ('n', 'e')

    def __pubkey__(self):
        return rsa.RSAPublicNumbers(self.e, self.n).public_key(default_backend())

    def verify(self, subj, sigbytes, hash_alg):
        # zero-pad sigbytes if necessary
        sigbytes = (b'\x00' * (self.n.byte_length() - len(sigbytes))) + sigbytes
        verifier = self.__pubkey__().verifier(sigbytes, padding.PKCS1v15(), hash_alg)
        verifier.update(subj)

        try:
            verifier.verify()

        except InvalidSignature:
            return False

        return True

    def parse(self, packet):
        self.n = MPI(packet)
        self.e = MPI(packet)


class DSAPub(PubKey):
    __pubfields__ = ('p', 'q', 'g', 'y')

    def __pubkey__(self):
        params = dsa.DSAParameterNumbers(self.p, self.q, self.g)
        return dsa.DSAPublicNumbers(self.y, params).public_key(default_backend())

    def verify(self, subj, sigbytes, hash_alg):
        verifier = self.__pubkey__().verifier(sigbytes, hash_alg)
        verifier.update(subj)

        try:
            verifier.verify()

        except InvalidSignature:
            return False

        return True

    def parse(self, packet):
        self.p = MPI(packet)
        self.q = MPI(packet)
        self.g = MPI(packet)
        self.y = MPI(packet)


class ElGPub(PubKey):
    __pubfields__ = ('p', 'g', 'y')

    def __pubkey__(self):
        raise NotImplementedError()

    def parse(self, packet):
        self.p = MPI(packet)
        self.g = MPI(packet)
        self.y = MPI(packet)


class ECDSAPub(PubKey):
    __pubfields__ = ('x', 'y')

    def __init__(self):
        super(ECDSAPub, self).__init__()
        self.oid = None

    def __len__(self):
        return sum([len(getattr(self, i)) - 2 for i in self.__pubfields__] +
                   [3, len(encoder.encode(self.oid.value)) - 1])

    def __pubkey__(self):
        return ec.EllipticCurvePublicNumbers(self.x, self.y, self.oid.curve()).public_key(default_backend())

    def __bytearray__(self):
        _b = bytearray()
        _b += encoder.encode(self.oid.value)[1:]
        # 0x04 || x || y
        # where x and y are the same length
        _xy = b'\x04' + self.x.to_mpibytes()[2:] + self.y.to_mpibytes()[2:]
        _b += MPI(self.bytes_to_int(_xy, 'big')).to_mpibytes()

        return _b

    def __copy__(self):
        pkt = super(ECDSAPub, self).__copy__()
        pkt.oid = self.oid
        return pkt

    def verify(self, subj, sigbytes, hash_alg):
        verifier = self.__pubkey__().verifier(sigbytes, ec.ECDSA(hash_alg))
        verifier.update(subj)

        try:
            verifier.verify()

        except InvalidSignature:
            return False

        return True

    def parse(self, packet):
        oidlen = packet[0]
        del packet[0]
        _oid = bytearray(b'\x06')
        _oid.append(oidlen)
        _oid += bytearray(packet[:oidlen])
        # try:
        oid, _  = decoder.decode(bytes(_oid))

        # except:
        #     raise PGPError("Bad OID octet stream: b'{:s}'".format(''.join(['\\x{:02X}'.format(c) for c in _oid])))
        self.oid = EllipticCurveOID(oid)
        del packet[:oidlen]

        # flen = (self.oid.bit_length // 8)
        xy = bytearray(MPI(packet).to_mpibytes()[2:])
        # xy = bytearray(MPI(packet).to_bytes(flen, 'big'))
        # the first byte is just \x04
        del xy[:1]
        # now xy needs to be separated into x, y
        xylen = len(xy)
        x, y = xy[:xylen // 2], xy[xylen // 2:]
        self.x = MPI(self.bytes_to_int(x))
        self.y = MPI(self.bytes_to_int(y))


class ECDHPub(PubKey):
    __pubfields__ = ('x', 'y')

    def __init__(self):
        super(ECDHPub, self).__init__()
        self.oid = None
        self.kdf = ECKDF()

    def __len__(self):
        return sum([len(getattr(self, i)) - 2 for i in self.__pubfields__] +
                   [3,
                    len(self.kdf),
                    len(encoder.encode(self.oid.value)) - 1])

    def __pubkey__(self):
        return ec.EllipticCurvePublicNumbers(self.x, self.y, self.oid.curve()).public_key(default_backend())

    def __bytearray__(self):
        _b = bytearray()
        _b += encoder.encode(self.oid.value)[1:]
        # 0x04 || x || y
        # where x and y are the same length
        _xy = b'\x04' + self.x.to_mpibytes()[2:] + self.y.to_mpibytes()[2:]
        _b += MPI(self.bytes_to_int(_xy, 'big')).to_mpibytes()
        _b += self.kdf.__bytearray__()

        return _b

    def __copy__(self):
        pkt = super(ECDHPub, self).__copy__()
        pkt.oid = self.oid
        pkt.kdf = copy.copy(self.kdf)
        return pkt

    def parse(self, packet):
        """
        Algorithm-Specific Fields for ECDH keys:

          o  a variable-length field containing a curve OID, formatted
             as follows:

             -  a one-octet size of the following field; values 0 and
                0xFF are reserved for future extensions

             -  the octets representing a curve OID, defined in
                Section 11

             -  MPI of an EC point representing a public key

          o  a variable-length field containing KDF parameters,
             formatted as follows:

             -  a one-octet size of the following fields; values 0 and
                0xff are reserved for future extensions

             -  a one-octet value 01, reserved for future extensions

             -  a one-octet hash function ID used with a KDF

             -  a one-octet algorithm ID for the symmetric algorithm
                used to wrap the symmetric key used for the message
                encryption; see Section 8 for details
        """
        oidlen = packet[0]
        del packet[0]
        _oid = bytearray(b'\x06')
        _oid.append(oidlen)
        _oid += bytearray(packet[:oidlen])
        # try:
        oid, _  = decoder.decode(bytes(_oid))

        # except:
        #     raise PGPError("Bad OID octet stream: b'{:s}'".format(''.join(['\\x{:02X}'.format(c) for c in _oid])))
        self.oid = EllipticCurveOID(oid)
        del packet[:oidlen]

        # flen = (self.oid.bit_length // 8)
        xy = bytearray(MPI(packet).to_mpibytes()[2:])
        # xy = bytearray(MPI(packet).to_bytes(flen, 'big'))
        # the first byte is just \x04
        del xy[:1]
        # now xy needs to be separated into x, y
        xylen = len(xy)
        x, y = xy[:xylen // 2], xy[xylen // 2:]
        self.x = MPI(self.bytes_to_int(x))
        self.y = MPI(self.bytes_to_int(y))

        self.kdf.parse(packet)


class String2Key(Field):
    """
    3.7.  String-to-Key (S2K) Specifiers

    String-to-key (S2K) specifiers are used to convert passphrase strings
    into symmetric-key encryption/decryption keys.  They are used in two
    places, currently: to encrypt the secret part of private keys in the
    private keyring, and to convert passphrases to encryption keys for
    symmetrically encrypted messages.

    3.7.1.  String-to-Key (S2K) Specifier Types

    There are three types of S2K specifiers currently supported, and
    some reserved values:

       ID          S2K Type
       --          --------
       0           Simple S2K
       1           Salted S2K
       2           Reserved value
       3           Iterated and Salted S2K
       100 to 110  Private/Experimental S2K

    These are described in Sections 3.7.1.1 - 3.7.1.3.

    3.7.1.1.  Simple S2K

    This directly hashes the string to produce the key data.  See below
    for how this hashing is done.

       Octet 0:        0x00
       Octet 1:        hash algorithm

    Simple S2K hashes the passphrase to produce the session key.  The
    manner in which this is done depends on the size of the session key
    (which will depend on the cipher used) and the size of the hash
    algorithm's output.  If the hash size is greater than the session key
    size, the high-order (leftmost) octets of the hash are used as the
    key.

    If the hash size is less than the key size, multiple instances of the
    hash context are created -- enough to produce the required key data.
    These instances are preloaded with 0, 1, 2, ... octets of zeros (that
    is to say, the first instance has no preloading, the second gets
    preloaded with 1 octet of zero, the third is preloaded with two
    octets of zeros, and so forth).

    As the data is hashed, it is given independently to each hash
    context.  Since the contexts have been initialized differently, they
    will each produce different hash output.  Once the passphrase is
    hashed, the output data from the multiple hashes is concatenated,
    first hash leftmost, to produce the key data, with any excess octets
    on the right discarded.

    3.7.1.2.  Salted S2K

    This includes a "salt" value in the S2K specifier -- some arbitrary
    data -- that gets hashed along with the passphrase string, to help
    prevent dictionary attacks.

       Octet 0:        0x01
       Octet 1:        hash algorithm
       Octets 2-9:     8-octet salt value

    Salted S2K is exactly like Simple S2K, except that the input to the
    hash function(s) consists of the 8 octets of salt from the S2K
    specifier, followed by the passphrase.

    3.7.1.3.  Iterated and Salted S2K

    This includes both a salt and an octet count.  The salt is combined
    with the passphrase and the resulting value is hashed repeatedly.
    This further increases the amount of work an attacker must do to try
    dictionary attacks.

       Octet  0:        0x03
       Octet  1:        hash algorithm
       Octets 2-9:      8-octet salt value
       Octet  10:       count, a one-octet, coded value

    The count is coded into a one-octet number using the following
    formula:

       #define EXPBIAS 6
           count = ((Int32)16 + (c & 15)) << ((c >> 4) + EXPBIAS);

    The above formula is in C, where "Int32" is a type for a 32-bit
    integer, and the variable "c" is the coded count, Octet 10.

    Iterated-Salted S2K hashes the passphrase and salt data multiple
    times.  The total number of octets to be hashed is specified in the
    encoded count in the S2K specifier.  Note that the resulting count
    value is an octet count of how many octets will be hashed, not an
    iteration count.

    Initially, one or more hash contexts are set up as with the other S2K
    algorithms, depending on how many octets of key data are needed.
    Then the salt, followed by the passphrase data, is repeatedly hashed
    until the number of octets specified by the octet count has been
    hashed.  The one exception is that if the octet count is less than
    the size of the salt plus passphrase, the full salt plus passphrase
    will be hashed even though that is greater than the octet count.
    After the hashing is done, the data is unloaded from the hash
    context(s) as with the other S2K algorithms.
    """
    @sdproperty
    def encalg(self):
        return self._encalg

    @encalg.register(int)
    @encalg.register(SymmetricKeyAlgorithm)
    def encalg_int(self, val):
        self._encalg = SymmetricKeyAlgorithm(val)

    @sdproperty
    def specifier(self):
        return self._specifier

    @specifier.register(int)
    @specifier.register(String2KeyType)
    def specifier_int(self, val):
        self._specifier = String2KeyType(val)

    @sdproperty
    def halg(self):
        return self._halg

    @halg.register(int)
    @halg.register(HashAlgorithm)
    def halg_int(self, val):
        self._halg = HashAlgorithm(val)

    @sdproperty
    def count(self):
        return (16 + (self._count & 15)) << ((self._count >> 4) + 6)

    @count.register(int)
    def count_int(self, val):
        if val < 0 or val > 255:  # pragma: no cover
            raise ValueError("count must be between 0 and 256")
        self._count = val

    def __init__(self):
        super(String2Key, self).__init__()
        self.usage = 0
        self.encalg = 0
        self.specifier = 0
        self.iv = None

        # specifier-specific fields
        # simple, salted, iterated
        self.halg = 0

        # salted, iterated
        self.salt = bytearray()

        # iterated
        self.count = 0

    def __bytearray__(self):
        _bytes = bytearray()
        _bytes.append(self.usage)
        if bool(self):
            _bytes.append(self.encalg)
            _bytes.append(self.specifier)
            if self.specifier >= String2KeyType.Simple:
                _bytes.append(self.halg)
            if self.specifier >= String2KeyType.Salted:
                _bytes += self.salt
            if self.specifier == String2KeyType.Iterated:
                _bytes.append(self._count)
            if self.iv is not None:
                _bytes += self.iv
        return _bytes

    def __len__(self):
        return len(self.__bytearray__())

    def __bool__(self):
        return self.usage in [254, 255]

    def __nonzero__(self):
        return self.__bool__()

    def __copy__(self):
        s2k = String2Key()
        s2k.usage = self.usage
        s2k.encalg = self.encalg
        s2k.specifier = self.specifier
        s2k.iv = self.iv
        s2k.halg = self.halg
        s2k.salt = copy.copy(self.salt)
        s2k.count = self._count
        return s2k

    def parse(self, packet, iv=True):
        self.usage = packet[0]
        del packet[0]

        if bool(self):
            self.encalg = packet[0]
            del packet[0]

            self.specifier = packet[0]
            del packet[0]

            if self.specifier >= String2KeyType.Simple:
                # this will always be true
                self.halg = packet[0]
                del packet[0]

            if self.specifier >= String2KeyType.Salted:
                self.salt = packet[:8]
                del packet[:8]

            if self.specifier == String2KeyType.Iterated:
                self.count = packet[0]
                del packet[0]

            if iv:
                self.iv = packet[:(self.encalg.block_size // 8)]
                del packet[:(self.encalg.block_size // 8)]

    def derive_key(self, passphrase):
        ##TODO: raise an exception if self.usage is not 254 or 255
        keylen = self.encalg.key_size
        hashlen = self.halg.digest_size * 8

        ctx = int(math.ceil((keylen / hashlen)))

        # Simple S2K - always done
        hsalt = b''
        hpass = passphrase.encode('latin-1')

        # salted, iterated S2K
        if self.specifier >= String2KeyType.Salted:
            hsalt = bytes(self.salt)

        count = len(hsalt + hpass)
        if self.specifier == String2KeyType.Iterated and self.count > len(hsalt + hpass):
            count = self.count

        hcount = (count // len(hsalt + hpass))
        hleft = count - (hcount * len(hsalt + hpass))

        hashdata = ((hsalt + hpass) * hcount) + (hsalt + hpass)[:hleft]

        h = []
        for i in range(0, ctx):
            _h = self.halg.hasher
            _h.update(b'\x00' * i)
            _h.update(hashdata)
            h.append(_h)

        # GC some stuff
        del hsalt
        del hpass
        del hashdata

        # and return the key!
        return b''.join(hc.digest() for hc in h)[:(keylen // 8)]


class ECKDF(Field):
    """
    o  a variable-length field containing KDF parameters,
       formatted as follows:

       -  a one-octet size of the following fields; values 0 and
          0xff are reserved for future extensions

       -  a one-octet value 01, reserved for future extensions

       -  a one-octet hash function ID used with a KDF

       -  a one-octet algorithm ID for the symmetric algorithm
          used to wrap the symmetric key used for the message
          encryption; see Section 8 for details
    """
    @sdproperty
    def halg(self):
        return self._halg

    @halg.register(int)
    @halg.register(HashAlgorithm)
    def halg_int(self, val):
        self._halg = HashAlgorithm(val)

    @sdproperty
    def encalg(self):
        return self._encalg

    @encalg.register(int)
    @encalg.register(SymmetricKeyAlgorithm)
    def encalg_int(self, val):
        self._encalg = SymmetricKeyAlgorithm(val)

    def __init__(self):
        super(ECKDF, self).__init__()
        self.halg = 0
        self.encalg = 0

    def __bytearray__(self):
        _bytes = bytearray()
        _bytes.append(len(self) - 1)
        _bytes.append(0x01)
        _bytes.append(self.halg)
        _bytes.append(self.encalg)
        return _bytes

    def __len__(self):
        return 4

    def parse(self, packet):
        # packet[0] should always be 3
        # packet[1] should always be 1
        # TODO: this assert is likely not necessary, but we should raise some kind of exception
        #       if parsing fails due to these fields being incorrect
        assert packet[:2] == b'\x03\x01'
        del packet[:2]

        self.halg = packet[0]
        del packet[0]

        self.encalg = packet[0]
        del packet[0]

    def derive_key(self, s, curve, pkalg, fingerprint):
        # wrapper around the Concatenation KDF method provided by cryptography
        # assemble the additional data as defined in RFC 6637:
        #  Param = curve_OID_len || curve_OID || public_key_alg_ID || 03 || 01 || KDF_hash_ID || KEK_alg_ID for AESKeyWrap || "Anonymous
        data = bytearray()
        data += encoder.encode(curve.value)[1:]
        data.append(pkalg)
        data += b'\x03\x01'
        data.append(self.halg)
        data.append(self.encalg)
        data += b'Anonymous Sender    '
        data += binascii.unhexlify(fingerprint.replace(' ', ''))

        ckdf = ConcatKDFHash(algorithm=getattr(hashes, self.halg.name)(), length=self.encalg.key_size // 8, otherinfo=bytes(data), backend=default_backend())
        return ckdf.derive(s)


class PrivKey(PubKey):
    __privfields__ = ()

    @property
    def __mpis__(self):
        for i in super(PrivKey, self).__mpis__:
            yield i

        for i in self.__privfields__:
            yield i

    def __init__(self):
        super(PrivKey, self).__init__()

        self.s2k = String2Key()
        self.encbytes = bytearray()
        self.chksum = bytearray()

        for field in self.__privfields__:
            setattr(self, field, MPI(0))

    def __bytearray__(self):
        _bytes = bytearray()
        _bytes += super(PrivKey, self).__bytearray__()

        _bytes += self.s2k.__bytearray__()
        if self.s2k:
            _bytes += self.encbytes

        else:
            for field in self.__privfields__:
                _bytes += getattr(self, field).to_mpibytes()

        if self.s2k.usage == 0:
            _bytes += self.chksum

        return _bytes

    def __len__(self):
        l = super(PrivKey, self).__len__() + len(self.s2k) + len(self.chksum)
        if self.s2k:
            l += len(self.encbytes)

        else:
            l += sum(len(getattr(self, i)) for i in self.__privfields__)

        return l

    def __copy__(self):
        pk = super(PrivKey, self).__copy__()
        pk.s2k = copy.copy(self.s2k)
        pk.encbytes = copy.copy(self.encbytes)
        pk.chksum = copy.copy(self.chksum)
        return pk

    @abc.abstractmethod
    def __privkey__(self):
        """return the requisite *PrivateKey class from the cryptography library"""

    @abc.abstractmethod
    def _generate(self, key_size):
        """Generate a new PrivKey"""

    def _compute_chksum(self):
        "Calculate the key checksum"

    def publen(self):
        return super(PrivKey, self).__len__()

    def encrypt_keyblob(self, passphrase, enc_alg, hash_alg):
        # PGPy will only ever use iterated and salted S2k mode
        self.s2k.usage = 254
        self.s2k.encalg = enc_alg
        self.s2k.specifier = String2KeyType.Iterated
        self.s2k.iv = enc_alg.gen_iv()
        self.s2k.halg = hash_alg
        self.s2k.salt = bytearray(os.urandom(8))
        self.s2k.count = hash_alg.tuned_count

        # now that String-to-Key is ready to go, derive sessionkey from passphrase
        # and then unreference passphrase
        sessionkey = self.s2k.derive_key(passphrase)
        del passphrase

        pt = bytearray()
        for pf in self.__privfields__:
            pt += getattr(self, pf).to_mpibytes()

        # append a SHA-1 hash of the plaintext so far to the plaintext
        pt += hashlib.new('sha1', pt).digest()

        # encrypt
        self.encbytes = bytearray(_encrypt(bytes(pt), bytes(sessionkey), enc_alg, bytes(self.s2k.iv)))

        # delete pt and clear self
        del pt
        self.clear()

    @abc.abstractmethod
    def decrypt_keyblob(self, passphrase):
        if not self.s2k:  # pragma: no cover
            # not encrypted
            return

        # Encryption/decryption of the secret data is done in CFB mode using
        # the key created from the passphrase and the Initial Vector from the
        # packet.  A different mode is used with V3 keys (which are only RSA)
        # than with other key formats.  (...)
        #
        # With V4 keys, a simpler method is used.  All secret MPI values are
        # encrypted in CFB mode, including the MPI bitcount prefix.

        # derive the session key from our passphrase, and then unreference passphrase
        sessionkey = self.s2k.derive_key(passphrase)
        del passphrase

        # attempt to decrypt this key
        pt = _decrypt(bytes(self.encbytes), bytes(sessionkey), self.s2k.encalg, bytes(self.s2k.iv))

        # check the hash to see if we decrypted successfully or not
        if self.s2k.usage == 254 and not pt[-20:] == hashlib.new('sha1', pt[:-20]).digest():
            # if the usage byte is 254, key material is followed by a 20-octet sha-1 hash of the rest
            # of the key material block
            raise PGPDecryptionError("Passphrase was incorrect!")

        if self.s2k.usage == 255 and not self.bytes_to_int(pt[-2:]) == (sum(bytearray(pt[:-2])) % 65536):  # pragma: no cover
            # if the usage byte is 255, key material is followed by a 2-octet checksum of the rest
            # of the key material block
            raise PGPDecryptionError("Passphrase was incorrect!")

        return bytearray(pt)

    def sign(self, sigdata, hash_alg):
        return NotImplemented  # pragma: no cover

    def clear(self):
        """delete and re-initialize all private components to zero"""
        for field in self.__privfields__:
            delattr(self, field)
            setattr(self, field, MPI(0))


class OpaquePrivKey(PrivKey, OpaquePubKey):  # pragma: no cover
    def __privkey__(self):
        return NotImplemented

    def _generate(self, key_size):
        # return NotImplemented
        raise NotImplementedError()

    def decrypt_keyblob(self, passphrase):
        return NotImplemented


class RSAPriv(PrivKey, RSAPub):
    __privfields__ = ('d', 'p', 'q', 'u')

    def __privkey__(self):
        return rsa.RSAPrivateNumbers(self.p, self.q, self.d,
                                     rsa.rsa_crt_dmp1(self.d, self.p),
                                     rsa.rsa_crt_dmq1(self.d, self.q),
                                     rsa.rsa_crt_iqmp(self.p, self.q),
                                     rsa.RSAPublicNumbers(self.e, self.n)).private_key(default_backend())

    def _compute_chksum(self):
        chs = sum(sum(bytearray(c.to_mpibytes())) for c in (self.d, self.p, self.q, self.u)) % 65536
        self.chksum = bytearray(self.int_to_bytes(chs, 2))

    def _generate(self, key_size):
        if any(c != 0 for c in self):  # pragma: no cover
            raise PGPError("key is already populated")

        # generate some big numbers!
        pk = rsa.generate_private_key(65537, key_size, default_backend())
        pkn = pk.private_numbers()

        self.n = MPI(pkn.public_numbers.n)
        self.e = MPI(pkn.public_numbers.e)
        self.d = MPI(pkn.d)
        self.p = MPI(pkn.p)
        self.q = MPI(pkn.q)
        # from the RFC:
        # "- MPI of u, the multiplicative inverse of p, mod q."
        # or, simply, p^-1 mod p
        # rsa.rsa_crt_iqmp(p, q) normally computes q^-1 mod p,
        # so if we swap the values around we get the answer we want
        self.u = MPI(rsa.rsa_crt_iqmp(pkn.q, pkn.p))

        del pkn
        del pk

        self._compute_chksum()

    def parse(self, packet):
        super(RSAPriv, self).parse(packet)
        self.s2k.parse(packet)

        if not self.s2k:
            self.d = MPI(packet)
            self.p = MPI(packet)
            self.q = MPI(packet)
            self.u = MPI(packet)

            if self.s2k.usage == 0:
                self.chksum = packet[:2]
                del packet[:2]

        else:
            ##TODO: this needs to be bounded to the length of the encrypted key material
            self.encbytes = packet

    def decrypt_keyblob(self, passphrase):
        kb = super(RSAPriv, self).decrypt_keyblob(passphrase)
        del passphrase

        self.d = MPI(kb)
        self.p = MPI(kb)
        self.q = MPI(kb)
        self.u = MPI(kb)

        if self.s2k.usage in [254, 255]:
            self.chksum = kb
            del kb

    def sign(self, sigdata, hash_alg):
        signer = self.__privkey__().signer(padding.PKCS1v15(), hash_alg)
        signer.update(sigdata)
        return signer.finalize()


class DSAPriv(PrivKey, DSAPub):
    __privfields__ = ('x',)

    def __privkey__(self):
        params = dsa.DSAParameterNumbers(self.p, self.q, self.g)
        pn = dsa.DSAPublicNumbers(self.y, params)
        return dsa.DSAPrivateNumbers(self.x, pn).private_key(default_backend())

    def _compute_chksum(self):
        chs = sum(bytearray(self.x.to_mpibytes())) % 65536
        self.chksum = bytearray(self.int_to_bytes(chs, 2))

    def _generate(self, key_size):
        if any(c != 0 for c in self):  # pragma: no cover
            raise PGPError("key is already populated")

        # generate some big numbers!
        pk = dsa.generate_private_key(key_size, default_backend())
        pkn = pk.private_numbers()

        self.p = MPI(pkn.public_numbers.parameter_numbers.p)
        self.q = MPI(pkn.public_numbers.parameter_numbers.q)
        self.g = MPI(pkn.public_numbers.parameter_numbers.g)
        self.y = MPI(pkn.public_numbers.y)
        self.x = MPI(pkn.x)

        del pkn
        del pk

        self._compute_chksum()

    def parse(self, packet):
        super(DSAPriv, self).parse(packet)
        self.s2k.parse(packet)

        if not self.s2k:
            self.x = MPI(packet)

        else:
            self.encbytes = packet

        if self.s2k.usage in [0, 255]:
            self.chksum = packet[:2]
            del packet[:2]

    def decrypt_keyblob(self, passphrase):
        kb = super(DSAPriv, self).decrypt_keyblob(passphrase)
        del passphrase

        self.x = MPI(kb)

        if self.s2k.usage in [254, 255]:
            self.chksum = kb
            del kb

    def sign(self, sigdata, hash_alg):
        signer = self.__privkey__().signer(hash_alg)
        signer.update(sigdata)
        return signer.finalize()


class ElGPriv(PrivKey, ElGPub):
    __privfields__ = ('x', )

    def __privkey__(self):
        raise NotImplementedError()

    def _compute_chksum(self):
        chs = sum(bytearray(self.x.to_mpibytes())) % 65536
        self.chksum = bytearray(self.int_to_bytes(chs, 2))

    def _generate(self, key_size):
        raise NotImplementedError(PubKeyAlgorithm.ElGamal)

    def parse(self, packet):
        super(ElGPriv, self).parse(packet)
        self.s2k.parse(packet)

        if not self.s2k:
            self.x = MPI(packet)

        else:
            self.encbytes = packet

        if self.s2k.usage in [0, 255]:
            self.chksum = packet[:2]
            del packet[:2]

    def decrypt_keyblob(self, passphrase):
        kb = super(ElGPriv, self).decrypt_keyblob(passphrase)
        del passphrase

        self.x = MPI(kb)

        if self.s2k.usage in [254, 255]:
            self.chksum = kb
            del kb


class ECDSAPriv(PrivKey, ECDSAPub):
    __privfields__ = ('s', )

    def __privkey__(self):
        ecp = ec.EllipticCurvePublicNumbers(self.x, self.y, self.oid.curve())
        return ec.EllipticCurvePrivateNumbers(self.s, ecp).private_key(default_backend())

    def _compute_chksum(self):
        chs = sum(bytearray(self.s.to_mpibytes())) % 65536
        self.chksum = bytearray(self.int_to_bytes(chs, 2))

    def _generate(self, oid):
        if any(c != 0 for c in self):  # pragma: no cover
            raise PGPError("Key is already populated!")

        self.oid = EllipticCurveOID(oid)

        if not self.oid.can_gen:
            raise ValueError("Curve not currently supported: {}".format(oid.name))

        pk = ec.generate_private_key(self.oid.curve(), default_backend())
        pubn = pk.public_key().public_numbers()
        self.x = MPI(pubn.x)
        self.y = MPI(pubn.y)
        self.s = MPI(pk.private_numbers().private_value)
        self._compute_chksum()

    def parse(self, packet):
        super(ECDSAPriv, self).parse(packet)
        self.s2k.parse(packet)

        if not self.s2k:
            self.s = MPI(packet)

            if self.s2k.usage == 0:
                self.chksum = packet[:2]
                del packet[:2]

        else:
            ##TODO: this needs to be bounded to the length of the encrypted key material
            self.encbytes = packet

    def decrypt_keyblob(self, passphrase):
        kb = super(ECDSAPriv, self).decrypt_keyblob(passphrase)
        del passphrase

        self.s = MPI(kb)

    def sign(self, sigdata, hash_alg):
        signer = self.__privkey__().signer(ec.ECDSA(hash_alg))
        signer.update(sigdata)
        return signer.finalize()


class ECDHPriv(ECDSAPriv, ECDHPub):
    def __bytearray__(self):
        _b = ECDHPub.__bytearray__(self)
        _b += self.s2k.__bytearray__()
        if not self.s2k:
            _b += self.s.to_mpibytes()

            if self.s2k.usage == 0:
                _b += self.chksum

        else:
            _b += self.encbytes

        return _b

    def __len__(self):
        # because of the inheritance used for this, ECDSAPub.__len__ is called instead of ECDHPub.__len__
        # the only real difference is self.kdf, so we can just add that
        return super(ECDHPriv, self).__len__() + len(self.kdf)

    def _generate(self, oid):
        ECDSAPriv._generate(self, oid)
        self.kdf.halg = self.oid.kdf_halg
        self.kdf.encalg = self.oid.kek_alg

    def publen(self):
        return ECDHPub.__len__(self)

    def parse(self, packet):
        ECDHPub.parse(self, packet)
        self.s2k.parse(packet)

        if not self.s2k:
            self.s = MPI(packet)

            if self.s2k.usage == 0:
                self.chksum = packet[:2]
                del packet[:2]

        else:
            ##TODO: this needs to be bounded to the length of the encrypted key material
            self.encbytes = packet


class CipherText(MPIs):
    def __init__(self):
        super(CipherText, self).__init__()
        for i in self.__mpis__:
            setattr(self, i, MPI(0))

    @classmethod
    @abc.abstractmethod
    def encrypt(cls, encfn, *args):
        """create and populate a concrete CipherText class instance"""

    @abc.abstractmethod
    def decrypt(self, decfn, *args):
        """decrypt the ciphertext contained in this CipherText instance"""

    def __bytearray__(self):
        _bytes = bytearray()
        for i in self:
            _bytes += i.to_mpibytes()
        return _bytes


class RSACipherText(CipherText):
    __mpis__ = ('me_mod_n', )

    @classmethod
    def encrypt(cls, encfn, *args):
        ct = cls()
        ct.me_mod_n = MPI(cls.bytes_to_int(encfn(*args)))
        return ct

    def decrypt(self, decfn, *args):
        return decfn(*args)

    def parse(self, packet):
        self.me_mod_n = MPI(packet)


class ElGCipherText(CipherText):
    __mpis__ = ('gk_mod_p', 'myk_mod_p')

    @classmethod
    def encrypt(cls, encfn, *args):
        raise NotImplementedError()

    def decrypt(self, decfn, *args):
        raise NotImplementedError()

    def parse(self, packet):
        self.gk_mod_p = MPI(packet)
        self.myk_mod_p = MPI(packet)


class ECDHCipherText(CipherText):
    __mpis__ = ('vX', 'vY')

    @classmethod
    def encrypt(cls, pk, *args):
        """
        For convenience, the synopsis of the encoding method is given below;
        however, this section, [NIST-SP800-56A], and [RFC3394] are the
        normative sources of the definition.

            Obtain the authenticated recipient public key R
            Generate an ephemeral key pair {v, V=vG}
            Compute the shared point S = vR;
            m = symm_alg_ID || session key || checksum || pkcs5_padding;
            curve_OID_len = (byte)len(curve_OID);
            Param = curve_OID_len || curve_OID || public_key_alg_ID || 03
            || 01 || KDF_hash_ID || KEK_alg_ID for AESKeyWrap || "Anonymous
            Sender    " || recipient_fingerprint;
            Z_len = the key size for the KEK_alg_ID used with AESKeyWrap
            Compute Z = KDF( S, Z_len, Param );
            Compute C = AESKeyWrap( Z, m ) as per [RFC3394]
            VB = convert point V to the octet string
            Output (MPI(VB) || len(C) || C).

        The decryption is the inverse of the method given.  Note that the
        recipient obtains the shared secret by calculating
        """
        # *args should be:
        # - m
        #
        _m, = args

        # m may need to be PKCS5-padded
        padder = PKCS7(64).padder()
        m = padder.update(_m) + padder.finalize()

        km = pk.keymaterial

        ct = cls()

        # generate ephemeral key pair, then store it in ct
        v = ec.generate_private_key(km.oid.curve(), default_backend())
        ct.vX = MPI(v.public_key().public_numbers().x)
        ct.vY = MPI(v.public_key().public_numbers().y)

        # compute the shared point S
        s = v.exchange(ec.ECDH(), km.__pubkey__())

        # derive the wrapping key
        z = km.kdf.derive_key(s, km.oid, PubKeyAlgorithm.ECDH, pk.fingerprint)

        # compute C
        ct.c = aes_key_wrap(z, m, default_backend())

        return ct

    def decrypt(self, pk, *args):
        km = pk.keymaterial
        # assemble the public component of ephemeral key v
        v = ec.EllipticCurvePublicNumbers(self.vX, self.vY, km.oid.curve()).public_key(default_backend())

        # compute s using the inverse of how it was derived during encryption
        s = km.__privkey__().exchange(ec.ECDH(), v)

        # derive the wrapping key
        z = km.kdf.derive_key(s, km.oid, PubKeyAlgorithm.ECDH, pk.fingerprint)

        # unwrap and unpad m
        _m = aes_key_unwrap(z, self.c, default_backend())

        padder = PKCS7(64).unpadder()
        return padder.update(_m) + padder.finalize()

    def __init__(self):
        super(ECDHCipherText, self).__init__()
        self.c = bytearray(0)

    def __bytearray__(self):
        _bytes = bytearray()
        _xy = b'\x04' + self.vX.to_mpibytes()[2:] + self.vY.to_mpibytes()[2:]
        _bytes += MPI(self.bytes_to_int(_xy, 'big')).to_mpibytes()
        _bytes.append(len(self.c))
        _bytes += self.c

        return _bytes

    def parse(self, packet):
        # self.v = MPI(packet)
        xy = bytearray(MPI(packet).to_mpibytes()[2:])
        del xy[:1]
        xylen = len(xy)
        x, y = xy[:xylen // 2], xy[xylen // 2:]
        self.vX = MPI(self.bytes_to_int(x))
        self.vY = MPI(self.bytes_to_int(y))

        clen = packet[0]
        del packet[0]

        self.c += packet[:clen]
        del packet[:clen]