This file is indexed.

/usr/lib/python3/dist-packages/optlang/interface.py is in python3-optlang 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
# Copyright 2013 Novo Nordisk Foundation Center for Biosustainability,
# Technical University of Denmark.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
Abstract solver interface definitions (:class:`Model`, :class:`Variable`,
:class:`Constraint`, :class:`Objective`) intended to be subclassed and
extended for individual solvers.

This module defines the API of optlang objects and indicates which methods need to be implemented in
subclassed solver interfaces.
The classes in this module can be used to construct and modify problems, but no optimizations can be done.
"""
import collections
import inspect
import logging
import sys
import uuid
import warnings
import sympy

import six

from optlang.exceptions import IndicatorConstraintsNotSupported

from optlang.util import parse_expr, expr_to_json, is_numeric, SolverTolerances
from optlang import symbolics

from .container import Container

log = logging.getLogger(__name__)

OPTIMAL = 'optimal'
UNDEFINED = 'undefined'
FEASIBLE = 'feasible'
INFEASIBLE = 'infeasible'
NOFEASIBLE = 'nofeasible'
UNBOUNDED = 'unbounded'
INFEASIBLE_OR_UNBOUNDED = 'infeasible_or_unbounded'
LOADED = 'loaded'
CUTOFF = 'cutoff'
ITERATION_LIMIT = 'iteration_limit'
MEMORY_LIMIT = 'memory_limit'
NODE_LIMIT = 'node_limit'
TIME_LIMIT = 'time_limit'
SOLUTION_LIMIT = 'solution_limit'
INTERRUPTED = 'interrupted'
NUMERIC = 'numeric'
SUBOPTIMAL = 'suboptimal'
INPROGRESS = 'in_progress'
ABORTED = 'aborted'
SPECIAL = 'check_original_solver_status'

statuses = {
    OPTIMAL: "An optimal solution as been found.",
    INFEASIBLE: "The problem has no feasible solutions.",
    UNBOUNDED: "The objective can be optimized infinitely.",
    SPECIAL: "The status returned by the solver could not be interpreted. Please refer to the solver's documentation to find the status.",
    UNDEFINED: "The solver determined that the problem is ill-formed. "
    # TODO Add the rest
}


# noinspection PyShadowingBuiltins
class Variable(symbolics.Symbol):
    """Optimization variables.

    Variable objects are used to represents each variable of the optimization problem. When the optimization is
    performed, the combination of variable values that optimizes the objective function, while not violating any
    constraints will be identified. The type of a variable ('continuous', 'integer' or 'binary') can be set using
    the type keyword of the constructor or it can be changed after initialization by :code:`var.type = 'binary'`.

    The variable class subclasses the :code:`sympy.Symbol` class, which means that symbolic expressions of variables
    can be constructed by using regular python syntax, e.g. :code:`my_expression = 2 * var1 + 3 * var2 ** 2`.
    Expressions like this are used when constructing Constraint and Objective objects.
    Once a problem has been optimized, the primal and dual values of a variable can be accessed from the
    primal and dual attributes, respectively.

    Attributes
    ----------
    name: str
        The variable's name.
    lb: float or None, optional
        The lower bound, if None then -inf.
    ub: float or None, optional
        The upper bound, if None then inf.
    type: str, optional
        The variable type, 'continuous' or 'integer' or 'binary'.
    problem: Model or None, optional
        A reference to the optimization model the variable belongs to.

    Examples
    --------
    >>> Variable('x', lb=-10, ub=10)
    '-10 <= x <= 10'
    """

    @staticmethod
    def __test_valid_lower_bound(type, value, name):
        if not (value is None or is_numeric(value)):
            raise TypeError("Variable bounds must be numeric or None.")
        if value is not None:
            if type == 'integer' and value % 1 != 0.:
                raise ValueError(
                    'The provided lower bound %g cannot be assigned to integer variable %s (%g mod 1 != 0).' % (
                        value, name, value))
        if type == 'binary' and (value is None or value not in (0, 1)):
            raise ValueError(
                'The provided lower bound %s cannot be assigned to binary variable %s.' % (value, name))

    @staticmethod
    def __test_valid_upper_bound(type, value, name):
        if not (value is None or is_numeric(value)):
            raise TypeError("Variable bounds must be numeric or None.")
        if value is not None:
            if type == 'integer' and value % 1 != 0.:
                raise ValueError(
                    'The provided upper bound %s cannot be assigned to integer variable %s (%s mod 1 != 0).' % (
                        value, name, value))
        if type == 'binary' and (value is None or value not in (0, 1)):
            raise ValueError(
                'The provided upper bound %s cannot be assigned to binary variable %s.' % (value, name))

    @classmethod
    def clone(cls, variable, **kwargs):
        """
        Make a copy of another variable. The variable being copied can be of the same type or belong to
        a different solver interface.

        Example
        ----------
        >>> var_copy = Variable.clone(old_var)
        """
        return cls(variable.name, lb=variable.lb, ub=variable.ub, type=variable.type, **kwargs)

    def __init__(self, name, lb=None, ub=None, type="continuous", problem=None, *args, **kwargs):

        # Ensure that name is str and not binary of unicode - some solvers only support string type in Python 2.
        if six.PY2:
            name = str(name)

        if len(name) < 1:
            raise ValueError('Variable name must not be empty string')

        for char in name:
            if char.isspace():
                raise ValueError(
                    'Variable names cannot contain whitespace characters. "%s" contains whitespace character "%s".' % (
                        name, char))
        self._name = name
        symbolics.Symbol.__init__(self, name, *args, **kwargs)
        self._lb = lb
        self._ub = ub
        if self._lb is None and type == 'binary':
            self._lb = 0.
        if self._ub is None and type == 'binary':
            self._ub = 1.
        self.__test_valid_lower_bound(type, self._lb, name)
        self.__test_valid_upper_bound(type, self._ub, name)
        self.problem = None
        self.type = type
        self.problem = problem

    @property
    def name(self):
        """Name of variable."""
        return self._name

    @name.setter
    def name(self, value):
        old_name = getattr(self, 'name', None)
        self._name = value
        if getattr(self, 'problem', None) is not None and value != old_name:
            self.problem.variables.update_key(old_name)
            self.problem._variables_to_constraints_mapping[value] = self.problem._variables_to_constraints_mapping[old_name]
            del self.problem._variables_to_constraints_mapping[old_name]

    @property
    def lb(self):
        """Lower bound of variable."""
        return self._lb

    @lb.setter
    def lb(self, value):
        if hasattr(self, 'ub') and self.ub is not None and value is not None and value > self.ub:
            raise ValueError(
                'The provided lower bound %g is larger than the upper bound %g of variable %s.' % (
                    value, self.ub, self))
        self.__test_valid_lower_bound(self.type, value, self.name)
        self._lb = value
        if self.problem is not None:
            self.problem._pending_modifications.var_lb.append((self, value))

    @property
    def ub(self):
        """Upper bound of variable."""
        return self._ub

    @ub.setter
    def ub(self, value):
        if hasattr(self, 'lb') and self.lb is not None and value is not None and value < self.lb:
            raise ValueError(
                'The provided upper bound %g is smaller than the lower bound %g of variable %s.' % (
                    value, self.lb, self))
        self.__test_valid_upper_bound(self.type, value, self.name)
        self._ub = value
        if self.problem is not None:
            self.problem._pending_modifications.var_ub.append((self, value))

    def set_bounds(self, lb, ub):
        """
        Change the lower and upper bounds of a variable.
        """
        if lb is not None and ub is not None and lb > ub:
            raise ValueError(
                "The provided lower bound {} is larger than the provided upper bound {}".format(lb, ub)
            )
        self._lb = lb
        self._ub = ub
        if self.problem is not None:
            self.problem._pending_modifications.var_lb.append((self, lb))
            self.problem._pending_modifications.var_ub.append((self, ub))

    @property
    def type(self):
        """Variable type ('either continuous, integer, or binary'.)"""
        return self._type

    @type.setter
    def type(self, value):
        if value == 'continuous':
            self._type = value
        elif value == 'integer':
            self._type = value
            try:
                self.lb = round(self.lb)
            except TypeError:
                pass
            try:
                self.ub = round(self.ub)
            except TypeError:
                pass
        elif value == 'binary':
            self._type = value
            self._lb = 0
            self._ub = 1
        else:
            raise ValueError(
                "'%s' is not a valid variable type. Choose between 'continuous, 'integer', or 'binary'." % value)

    @property
    def primal(self):
        """The primal of variable (None if no solution exists)."""
        if self.problem:
            return self._get_primal()
        else:
            return None

    def _get_primal(self):
        return None

    @property
    def dual(self):
        """The dual of variable (None if no solution exists)."""
        return None

    def __str__(self):
        """Print a string representation of variable.

        Examples
        --------
        >>> Variable('x', lb=-10, ub=10)
        '-10 <= x <= 10'
        """
        if self.lb is not None:
            lb_str = str(self.lb) + " <= "
        else:
            lb_str = ""
        if self.ub is not None:
            ub_str = " <= " + str(self.ub)
        else:
            ub_str = ""
        return ''.join((lb_str, super(Variable, self).__str__(), ub_str))

    def __repr__(self):
        """Does exactly the same as __str__ for now."""
        return self.__str__()

    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__ = state

    def __reduce__(self):
        return (type(self), (self.name, self.lb, self.ub, self.type, self.problem))

    def to_json(self):
        """
        Returns a json-compatible object from the Variable that can be saved using the json module.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json", "w") as outfile:
        >>>     json.dump(var.to_json(), outfile)
        """
        json_obj = {
            "name": self.name,
            "lb": self.lb,
            "ub": self.ub,
            "type": self.type
        }
        return json_obj

    @classmethod
    def from_json(cls, json_obj):
        """
        Constructs a Variable from the provided json-object.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json") as infile:
        >>>     var = Variable.from_json(json.load(infile))
        """
        return cls(json_obj["name"], lb=json_obj["lb"], ub=json_obj["ub"], type=json_obj["type"])

    # def _round_primal_to_bounds(self, primal, tolerance=1e-5):
    #     """Rounds primal value to lie within variables bounds.
    #
    #     Raises if exceeding threshold.
    #
    #     Parameters
    #     ----------
    #     primal : float
    #         The primal value to round.
    #     tolerance : float (optional)
    #         The tolerance threshold (default: 1e-5).
    #     """
    #     if (self.lb is None or primal >= self.lb) and (self.ub is None or primal <= self.ub):
    #         return primal
    #     else:
    #         if (primal <= self.lb) and ((self.lb - primal) <= tolerance):
    #             return self.lb
    #         elif (primal >= self.ub) and ((self.ub - primal) >= -tolerance):
    #             return self.ub
    #         else:
    #             raise AssertionError(
    #                 'The primal value %s returned by the solver is out of bounds for variable %s (lb=%s, ub=%s)' % (
    #                     primal, self.name, self.lb, self.ub))


# noinspection PyPep8Naming
class OptimizationExpression(object):
    """Abstract base class for Objective and Constraint."""

    @classmethod
    def _substitute_variables(cls, expression, model=None, **kwargs):
        """Substitutes variables in (optimization)expression (constraint/objective) with variables of the appropriate interface type.
        Attributes
        ----------
        expression: Constraint, Objective
            An optimization expression.
        model: Model or None, optional
            A reference to an optimization model that should be searched for appropriate variables first.
        """
        interface = sys.modules[cls.__module__]
        variable_substitutions = dict()
        for variable in expression.variables:
            if model is not None and variable.name in model.variables:
                # print(variable.name, id(variable.problem))
                variable_substitutions[variable] = model.variables[variable.name]
            else:
                variable_substitutions[variable] = interface.Variable.clone(variable)
        adjusted_expression = expression.expression.xreplace(variable_substitutions)
        return adjusted_expression

    def __init__(self, expression, name=None, problem=None, sloppy=False, *args, **kwargs):
        # Ensure that name is str and not binary of unicode - some solvers only support string type in Python 2.
        if six.PY2 and name is not None:
            name = str(name)

        super(OptimizationExpression, self).__init__(*args, **kwargs)
        self._problem = problem
        if sloppy:
            self._expression = expression
        else:
            self._expression = self._canonicalize(expression)
        if name is None:
            self._name = str(uuid.uuid1())
        else:
            self._name = name

    @property
    def name(self):
        """The name of the object"""
        return self._name

    @name.setter
    def name(self, value):
        self._name = value

    @property
    def problem(self):
        """A reference to the model that the object belongs to (or None)"""
        return getattr(self, '_problem', None)

    @problem.setter
    def problem(self, value):
        self._problem = value

    def _get_expression(self):
        return self._expression

    @property
    def expression(self):
        """The mathematical expression defining the objective/constraint."""
        return self._get_expression()

    @property
    def variables(self):
        """Variables in constraint/objective's expression."""
        return self.expression.atoms(Variable)

    def _canonicalize(self, expression):
        if isinstance(expression, float):
            return symbolics.Real(expression)
        elif isinstance(expression, int):
            return symbolics.Integer(expression)
        else:
            # expression = expression.expand() This would be a good way to canonicalize, but is quite slow
            return expression

    @property
    def is_Linear(self):
        """Returns True if expression is linear (a polynomial with degree 1 or 0) (read-only)."""
        coeff_dict = self.expression.as_coefficients_dict()
        for key in coeff_dict.keys():
            if len(key.free_symbols) < 2 and (key.is_Add or key.is_Mul or key.is_Atom):
                pass
            else:
                return False
            if key.is_Pow and key.args[1] != 1:
                return False
        else:
            return True

    @property
    def is_Quadratic(self):
        """Returns True if the expression is a polynomial with degree exactly 2 (read-only)."""
        if self.expression.is_Atom:
            return False
        if all((len(key.free_symbols) < 2 and (key.is_Add or key.is_Mul or key.is_Atom)
                for key in self.expression.as_coefficients_dict().keys())):
            return False
        if self.expression.is_Add:
            terms = self.expression.args
            is_quad = False
            for term in terms:
                if len(term.free_symbols) > 2:
                    return False
                if term.is_Pow:
                    if not term.args[1].is_Number or term.args[1] > 2:
                        return False
                    else:
                        is_quad = True
                elif term.is_Mul:
                    if len(term.free_symbols) == 2:
                        is_quad = True
                    if term.args[1].is_Pow:
                        if not term.args[1].args[1].is_Number or term.args[1].args[1] > 2:
                            return False
                        else:
                            is_quad = True
            return is_quad
        else:
            if isinstance(self.expression, sympy.Basic):
                sympy_expression = self.expression
            else:
                sympy_expression = sympy.sympify(self.expression)
            # TODO: Find a way to do this with symengine (Poly is not part of symengine, 23 March 2017)
            poly = sympy_expression.as_poly(*sympy_expression.atoms(sympy.Symbol))
            if poly is None:
                return False
            else:
                return poly.is_quadratic

    def __iadd__(self, other):
        self._expression += other
        return self

    def __isub__(self, other):
        self._expression -= other
        return self

    def __imul__(self, other):
        self._expression *= other
        return self

    def __idiv__(self, other):
        self._expression /= other
        return self

    def __itruediv__(self, other):
        self._expression /= other
        return self

    def set_linear_coefficients(self, coefficients):
        """Set coefficients of linear terms in constraint or objective.
        Existing coefficients for linear or non-linear terms will not be modified.

        Note: This method interacts with the low-level solver backend and can only be used on objects that are
        associated with a Model. The method is not part of optlangs basic interface and should be used mainly where
        speed is important.

        Parameters
        ----------
        coefficients : dict
            A dictionary like {variable1: coefficient1, variable2: coefficient2, ...}

        Returns
        -------
        None
        """
        raise NotImplementedError("Child classes should implement this.")

    def get_linear_coefficients(self, variables):
        """Get coefficients of linear terms in constraint or objective.

        Note: This method interacts with the low-level solver backend and can only be used on objects that are
        associated with a Model. The method is not part of optlangs basic interface and should be used mainly where
        speed is important.

        Parameters
        ----------
        variables : iterable
            An iterable of Variable objects

        Returns
        -------
        Coefficients : dict
            {var1: coefficient, var2: coefficient ...}
        """
        raise NotImplementedError("Child classes should implement this.")


class Constraint(OptimizationExpression):
    """
    Constraint objects represent the mathematical (in-)equalities that constrain an optimization problem.
    A constraint is formulated by a symbolic expression of variables and a lower and/or upper bound.
    Equality constraints can be formulated by setting the upper and lower bounds to the same value.

    Some solvers support indicator variables. This lets a binary variable act as a switch that decides whether
    the constraint should be active (cannot be violated) or inactive (can be violated).

    The constraint expression can be an arbitrary combination of variables, however the individual solvers
    have limits to the forms of constraints they allow. Most solvers only allow linear constraints, meaning that
    the expression should be of the form :code:`a * var1 + b * var2 + c * var3 ...`

    Attributes
    ----------
    expression: sympy
        The mathematical expression defining the constraint.
    name: str, optional
        The constraint's name.
    lb: float or None, optional
        The lower bound, if None then -inf.
    ub: float or None, optional
        The upper bound, if None then inf.
    indicator_variable: Variable
        The indicator variable (needs to be binary).
    active_when: 0 or 1 (default 0)
        When the constraint should
    problem: Model or None, optional
        A reference to the optimization model the variable belongs to.

    Examples
    ----------
    >>> expr = 2.4 * var1 - 3.8 * var2
    >>> c1 = Constraint(expr, lb=0, ub=10)

    >>> indicator_var = Variable("var3", type="binary") # Only possible with some solvers
    >>> c2 = Constraint(var2, lb=0, ub=0, indicator_variable=indicator_var, active_when=1) # When the indicator is 1, var2 is constrained to be 0
    """


    _INDICATOR_CONSTRAINT_SUPPORT = True

    def _check_valid_lower_bound(self, value):
        if not (value is None or is_numeric(value)):
            raise TypeError("Constraint bounds must be numeric or None, not {}".format(type(value)))
        if value is not None and getattr(self, "ub", None) is not None and value > self.ub:
            raise ValueError("Cannot set a lower bound that is greater than the upper bound.")

    def _check_valid_upper_bound(self, value):
        if not (value is None or is_numeric(value)):
            raise TypeError("Constraint bounds must be numeric or None, not {}".format(type(value)))
        if value is not None and getattr(self, "lb", None) is not None and value < self.lb:
            raise ValueError("Cannot set an upper bound that is less than the lower bound.")

    @classmethod
    def __check_valid_indicator_variable(cls, variable):
        if variable is not None and not cls._INDICATOR_CONSTRAINT_SUPPORT:
            raise IndicatorConstraintsNotSupported(
                'Solver interface %s does not support indicator constraints' % cls.__module__)
        if variable is not None and variable.type != 'binary':
            raise ValueError('Provided indicator variable %s is not binary.' % variable)

    @staticmethod
    def __check_valid_active_when(active_when):
        if active_when != 0 and active_when != 1:
            raise ValueError('Provided active_when argument %s needs to be either 1 or 0' % active_when)

    @classmethod
    def clone(cls, constraint, model=None, **kwargs):
        """
        Make a copy of another constraint. The constraint being copied can be of the same type or belong to
        a different solver interface.

        Parameters
        ----------
        constraint: interface.Constraint (or subclass)
            The constraint to copy
        model: Model or None
            The variables of the new constraint will be taken from this model. If None, new variables will be
            constructed.

        Example
        ----------
        >>> const_copy = Constraint.clone(old_constraint)
        """
        return cls(cls._substitute_variables(constraint, model=model), lb=constraint.lb, ub=constraint.ub,
                   indicator_variable=constraint.indicator_variable, active_when=constraint.active_when,
                   name=constraint.name, sloppy=True, **kwargs)

    def __init__(self, expression, lb=None, ub=None, indicator_variable=None, active_when=1, *args, **kwargs):
        self._problem = None
        self.lb = lb
        self.ub = ub
        super(Constraint, self).__init__(expression, *args, **kwargs)
        self.__check_valid_indicator_variable(indicator_variable)
        self.__check_valid_active_when(active_when)
        self._indicator_variable = indicator_variable
        self._active_when = active_when

    @property
    def lb(self):
        """Lower bound of constraint."""
        return self._lb

    @lb.setter
    def lb(self, value):
        self._check_valid_lower_bound(value)
        self._lb = value

    @property
    def ub(self):
        """Upper bound of constraint."""
        return self._ub

    @ub.setter
    def ub(self, value):
        self._check_valid_upper_bound(value)
        self._ub = value

    @property
    def indicator_variable(self):
        """The indicator variable of constraint (if available)."""
        return self._indicator_variable

    # @indicator_variable.setter
    # def indicator_variable(self, value):
    #     self.__check_valid_indicator_variable(value)
    #     self._indicator_variable = value

    @property
    def active_when(self):
        """Activity relation of constraint to indicator variable (if supported)."""
        return self._active_when

    def __str__(self):
        if self.lb is not None:
            lhs = str(self.lb) + ' <= '
        else:
            lhs = ''
        if self.ub is not None:
            rhs = ' <= ' + str(self.ub)
        else:
            rhs = ''
        if self.indicator_variable is not None:
            lhs = self.indicator_variable.name + ' = ' + str(self.active_when) + ' -> ' + lhs
        return str(self.name) + ": " + lhs + self.expression.__str__() + rhs

    def _canonicalize(self, expression):
        expression = super(Constraint, self)._canonicalize(expression)
        if expression.is_Atom or expression.is_Mul:
            return expression
        lonely_coeffs = [arg for arg in expression.args if arg.is_Number]
        if not lonely_coeffs:
            return expression
        assert len(lonely_coeffs) == 1
        coeff = lonely_coeffs[0]
        expression = expression - coeff
        if self.lb is not None and self.ub is not None:
            oldub = self.ub
            self.ub = None
            self.lb = self.lb - float(coeff)
            self.ub = oldub - float(coeff)
        elif self.lb is not None:
            self.lb = self.lb - float(coeff)
        elif self.ub is not None:
            self.ub = self.ub - float(coeff)
        else:
            raise ValueError(
                "%s cannot be shaped into canonical form if neither lower or upper constraint bounds are set."
                % expression
            )
        return expression

    @property
    def primal(self):
        """Primal of constraint (None if no solution exists)."""
        return None

    @property
    def dual(self):
        """Dual of constraint (None if no solution exists)."""
        return None

    def _round_primal_to_bounds(self, primal, tolerance=1e-5):
        if (self.lb is None or primal >= self.lb) and (self.ub is None or primal <= self.ub):
            return primal
        else:
            if (primal <= self.lb) and ((self.lb - primal) <= tolerance):
                return self.lb
            elif (primal >= self.ub) and ((self.ub - primal) >= -tolerance):
                return self.ub
            else:
                raise AssertionError(
                    'The primal value %s returned by the solver is out of bounds for variable %s (lb=%s, ub=%s)' % (
                        primal, self.name, self.lb, self.ub))

    def to_json(self):
        """
        Returns a json-compatible object from the constraint that can be saved using the json module.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json", "w") as outfile:
        >>>     json.dump(constraint.to_json(), outfile)
        """
        if self.indicator_variable is None:
            indicator = None
        else:
            indicator = self.indicator_variable.name
        json_obj = {
            "name": self.name,
            "expression": expr_to_json(self.expression),
            "lb": self.lb,
            "ub": self.ub,
            "indicator_variable": indicator,
            "active_when": self.active_when
        }
        return json_obj

    @classmethod
    def from_json(cls, json_obj, variables=None):
        """
        Constructs a Variable from the provided json-object.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json") as infile:
        >>>     constraint = Constraint.from_json(json.load(infile))
        """
        if variables is None:
            variables = {}
        expression = parse_expr(json_obj["expression"], variables)
        if json_obj["indicator_variable"] is None:
            indicator = None
        else:
            indicator = variables[json_obj["indicator_variable"]]
        return cls(
            expression,
            name=json_obj["name"],
            lb=json_obj["lb"],
            ub=json_obj["ub"],
            indicator_variable=indicator,
            active_when=json_obj["active_when"]
        )


class Objective(OptimizationExpression):
    """
    Objective objects are used to represent the objective function of an optimization problem.
    An objective consists of a symbolic expression of variables in the problem and a direction. The direction
    can be either 'min' or 'max' and specifies whether the problem is a minimization or a maximization problem.

    After a problem has been optimized, the optimal objective value can be accessed from the 'value' attribute
    of the model's objective, i.e. :code:`obj_val = model.objective.value`.

    Attributes
    ----------
    expression: sympy
        The mathematical expression defining the objective.
    name: str, optional
        The name of the constraint.
    direction: 'max' or 'min'
        The optimization direction.
    value: float, read-only
        The current objective value.
    problem: solver
        The low-level solver object.

    """

    @classmethod
    def clone(cls, objective, model=None, **kwargs):
        """
        Make a copy of an objective. The objective being copied can be of the same type or belong to
        a different solver interface.

        Example
        ----------
        >>> new_objective = Objective.clone(old_objective)
        """
        return cls(cls._substitute_variables(objective, model=model), name=objective.name,
                   direction=objective.direction, sloppy=True, **kwargs)

    def __init__(self, expression, value=None, direction='max', *args, **kwargs):
        self._value = value
        self._direction = direction
        super(Objective, self).__init__(expression, *args, **kwargs)

    @property
    def value(self):
        """The objective value."""
        return self._value

    def __str__(self):
        return {'max': 'Maximize', 'min': 'Minimize'}[self.direction] + '\n' + str(self.expression)
        # return ' '.join((self.direction, str(self.expression)))

    def __eq__(self, other):
        """Tests *mathematical* equality for two Objectives. Solver specific type does NOT have to match.
        Expression and direction must be the same.
        Name does not have to match"""
        if isinstance(other, Objective):
            return self.expression == other.expression and self.direction == other.direction
        else:
            return False
            #

    def _canonicalize(self, expression):
        """For example, changes x + y to 1.*x + 1.*y"""
        expression = super(Objective, self)._canonicalize(expression)
        if isinstance(expression, sympy.Basic):
            expression *= 1.
        else:  # pragma: no cover   # symengine
            expression = (1. * expression).expand()
        return expression

    @property
    def direction(self):
        """The direction of optimization. Either 'min' or 'max'."""
        return self._direction

    @direction.setter
    def direction(self, value):
        if value not in ['max', 'min']:
            raise ValueError("Provided optimization direction %s is neither 'min' or 'max'." % value)
        self._direction = value

    def set_linear_coefficients(self, coefficients):
        """Set linear coefficients in objective.

        coefficients : dict
            A dictionary of the form {variable1: coefficient1, variable2: coefficient2, ...}
        """
        raise NotImplementedError("Child class should implement this.")

    def to_json(self):
        """
        Returns a json-compatible object from the objective that can be saved using the json module.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json", "w") as outfile:
        >>>     json.dump(obj.to_json(), outfile)
        """
        json_obj = {
            "name": self.name,
            "expression": expr_to_json(self.expression),
            "direction": self.direction
        }
        return json_obj

    @classmethod
    def from_json(cls, json_obj, variables=None):
        """
        Constructs an Objective from the provided json-object.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json") as infile:
        >>>     obj = Objective.from_json(json.load(infile))
        """
        if variables is None:
            variables = {}
        expression = parse_expr(json_obj["expression"], variables)
        return cls(
            expression,
            direction=json_obj["direction"],
            name=json_obj["name"]
        )


class Configuration(object):
    """
    Optimization solver configuration.
    This object allows the user to change certain parameters and settings in the solver.
    It is meant to allow easy access to a few common and important parameters. For information on changing
    other solver parameters, please consult the documentation from the solver provider.
    Some changeable parameters are listed below. Note that some solvers might not implement all of these
    and might also implement additional parameters.

    Attributes
    ----------
    verbosity: int from 0 to 3
        Changes the level of output.
    timeout: int or None
        The time limit in second the solver will use to optimize the problem.
    presolve: Boolean or 'auto'
        Tells the solver whether to use (solver-specific) pre-processing to simplify the problem.
        This can decrease solution time, but also introduces overhead. If set to 'auto' the solver will
        first try to solve without pre-processing, and only turn in on in case no optimal solution can be found.
    lp_method: str
        Select which algorithm the LP solver uses, e.g. simplex, barrier, etc.

    """

    @classmethod
    def clone(cls, config, problem=None, **kwargs):
        properties = (k for k, v in inspect.getmembers(cls, predicate=inspect.isdatadescriptor) if
                      not k.startswith('__'))
        parameters = {property: getattr(config, property) for property in properties if hasattr(config, property)}
        return cls(problem=problem, **parameters)

    def __init__(self, problem=None, *args, **kwargs):
        self.problem = problem
        self._add_tolerances()

    @property
    def verbosity(self):
        """Verbosity level.

        0: no output
        1: error and warning messages only
        2: normal output
        3: full output
        """
        raise NotImplementedError

    @verbosity.setter
    def verbosity(self, value):
        raise NotImplementedError

    @property
    def timeout(self):
        """Timeout parameter (seconds)."""
        raise NotImplementedError

    @timeout.setter
    def timeout(self):
        raise NotImplementedError

    @property
    def presolve(self):
        """
        Turn pre-processing on or off. Set to 'auto' to only use presolve if no optimal solution can be found.
        """
        raise NotImplementedError

    @presolve.setter
    def presolve(self):
        raise NotImplementedError

    def _add_tolerances(self):
        self.tolerances = SolverTolerances(self._tolerance_functions())

    def _tolerance_functions(self):
        """
        This should be implemented in child classes. Must return a dict, where keys are available tolerance parameters
        and values are tuples of (getter_function, setter_function).
        The getter functions must be callable with no arguments and the setter functions must be callable with the
        new value as the only argument
        """
        return {}

    def __setstate__(self, state):
        self.__init__()


class MathematicalProgrammingConfiguration(Configuration):
    def __init__(self, *args, **kwargs):
        super(MathematicalProgrammingConfiguration, self).__init__(*args, **kwargs)

    @property
    def presolve(self):
        """If the presolver should be used (if available)."""
        raise NotImplementedError

    @presolve.setter
    def presolve(self, value):
        raise NotImplementedError


class EvolutionaryOptimizationConfiguration(Configuration):
    """docstring for HeuristicOptimization"""

    def __init__(self, *args, **kwargs):
        super(EvolutionaryOptimizationConfiguration, self).__init__(*args, **kwargs)


class Model(object):
    """
    The model object represents an optimization problem and contains the variables, constraints an objective that
    make up the problem. Variables and constraints can be added and removed using the :code:`.add` and :code:`.remove` methods,
    while the objective can be changed by setting the objective attribute,
    e.g. :code:`model.objective = Objective(expr, direction="max")`.

    Once the problem has been formulated the optimization can be performed by calling the :code:`.optimize` method.
    This will return the status of the optimization, most commonly 'optimal', 'infeasible' or 'unbounded'.

    Attributes
    ----------
    objective: str
        The objective function.
    name: str, optional
        The name of the optimization problem.
    variables: Container, read-only
        Contains the variables of the optimization problem.
        The keys are the variable names and values are the actual variables.
    constraints: Container, read-only
         Contains the variables of the optimization problem.
         The keys are the constraint names and values are the actual constraints.
    status: str, read-only
        The status of the optimization problem.

    Examples
    --------
    >>> model = Model(name="my_model")
    >>> x1 = Variable("x1", lb=0, ub=20)
    >>> x2 = Variable("x2", lb=0, ub=10)
    >>> c1 = Constraint(2 * x1 - x2, lb=0, ub=0) # Equality constraint
    >>> model.add([x1, x2, c1])
    >>> model.objective = Objective(x1 + x2, direction="max")
    >>> model.optimize()
    'optimal'
    >>> x1.primal, x2.primal
    '(5.0, 10.0)'

    """

    @classmethod
    def clone(cls, model, use_json=True, use_lp=False):
        """
        Make a copy of a model. The model being copied can be of the same type or belong to
        a different solver interface. This is the preferred way of copying models.

        Example
        ----------
        >>> new_model = Model.clone(old_model)
        """
        model.update()
        interface = sys.modules[cls.__module__]

        if use_lp:
            warnings.warn("Cloning with LP formats can change variable and constraint ID's.")
            new_model = cls.from_lp(model.to_lp())
            new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
            return new_model

        if use_json:
            new_model = cls.from_json(model.to_json())
            new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
            return new_model

        new_model = cls()
        for variable in model.variables:
            new_variable = interface.Variable.clone(variable)
            new_model._add_variable(new_variable)
        for constraint in model.constraints:
            new_constraint = interface.Constraint.clone(constraint, model=new_model)
            new_model._add_constraint(new_constraint)
        if model.objective is not None:
            new_model.objective = interface.Objective.clone(model.objective, model=new_model)
        new_model.configuration = interface.Configuration.clone(model.configuration, problem=new_model)
        return new_model

    def __init__(self, name=None, objective=None, variables=None, constraints=None, *args, **kwargs):
        super(Model, self).__init__(*args, **kwargs)
        if objective is None:
            objective = self.interface.Objective(0)
        self._objective = objective
        self._objective.problem = self
        self._variables = Container()
        self._constraints = Container()
        self._variables_to_constraints_mapping = dict()
        self._status = None

        class Modifications():

            def __init__(self):
                self.add_var = []
                self.add_constr = []
                self.add_constr_sloppy = []
                self.rm_var = []
                self.rm_constr = []
                self.var_lb = []
                self.var_ub = []
                self.toggle = 'add'

            def __str__(self):
                return str(self.__dict__)

        self._pending_modifications = Modifications()
        self.name = name
        if variables is not None:
            self.add(variables)
        if constraints is not None:
            self.add(constraints)

    @property
    def interface(self):
        """Provides access to the solver interface the model belongs to

        Returns a Python module, for example optlang.glpk_interface
        """
        return sys.modules[self.__module__]

    @property
    def objective(self):
        """The model's objective function."""
        return self._objective

    @objective.setter
    def objective(self, value):
        self.update()
        for atom in sorted(value.expression.atoms(Variable), key=lambda v: v.name):
            if isinstance(atom, Variable) and (atom.problem is None or atom.problem != self):
                self._pending_modifications.add_var.append(atom)
        self.update()
        if self._objective is not None:
            self._objective.problem = None
        self._objective = value
        self._objective.problem = self

    @property
    def variables(self):
        """The model variables."""
        self.update()
        return self._variables

    @property
    def constraints(self):
        """The model constraints."""
        self.update()
        return self._constraints

    @property
    def status(self):
        """The solver status of the model."""
        return self._status

    def _get_variables_names(self):
        """The names of model variables.

        Returns
        -------
        list
        """
        return [variable.name for variable in self.variables]

    @property
    def primal_values(self):
        """The primal values of model variables.

        The primal values are rounded to the bounds.
        Returns
        -------
        collections.OrderedDict
        """
        return collections.OrderedDict(
            zip(self._get_variables_names(), self._get_primal_values())
        )

    def _get_primal_values(self):
        """The primal values of model variables.

        Returns
        -------
        list
        """
        # Fallback, if nothing faster is available
        return [variable.primal for variable in self.variables]

    @property
    def reduced_costs(self):
        """The reduced costs/dual values of all variables.

        Returns
        -------
        collections.OrderedDict
        """
        return collections.OrderedDict(
            zip(self._get_variables_names(), self._get_reduced_costs())
        )

    def _get_reduced_costs(self):
        """The reduced costs/dual values of all variables.

        Returns
        -------
        list
        """
        # Fallback, if nothing faster is available
        return [variable.dual for variable in self.variables]

    def _get_constraint_names(self):
        """The names of model constraints.

        Returns
        -------
        list
        """
        return [constraint.name for constraint in self.constraints]

    @property
    def constraint_values(self):
        """The primal values of all constraints.

        Returns
        -------
        collections.OrderedDict
        """
        return collections.OrderedDict(
            zip(self._get_constraint_names(), self._get_constraint_values())
        )

    def _get_constraint_values(self):
        """The primal values of all constraints.

        Returns
        -------
        list
        """
        # Fallback, if nothing faster is available
        return [constraint.primal for constraint in self.constraints]

    @property
    def shadow_prices(self):
        """The shadow prices of model (dual values of all constraints).

        Returns
        -------
        collections.OrderedDict
        """
        return collections.OrderedDict(
            zip(self._get_constraint_names(), self._get_shadow_prices())
        )

    def _get_shadow_prices(self):
        """The shadow prices of model (dual values of all constraints).

        Returns
        -------
        collections.OrderedDict
        """
        # Fallback, if nothing faster is available
        return [constraint.dual for constraint in self.constraints]

    @property
    def is_integer(self):
        return any(var.type in ("integer", "binary") for var in self.variables)

    def __str__(self):  # pragma: no cover
        if hasattr(self, "to_lp"):
            return self.to_lp()
        self.update()
        return '\n'.join((
            str(self.objective),
            "subject to",
            '\n'.join([str(constr) for constr in self.constraints]),
            'Bounds',
            '\n'.join([str(var) for var in self.variables])
        ))

    def add(self, stuff, sloppy=False):
        """Add variables and constraints.

        Parameters
        ----------
        stuff : iterable, Variable, Constraint
            Either an iterable containing variables and constraints or a single variable or constraint.

        sloppy : bool
            Check constraints for variables that are not part of the model yet.

        Returns
        -------
        None
        """
        if self._pending_modifications.toggle == 'remove':
            self.update()
            self._pending_modifications.toggle = 'add'
        if isinstance(stuff, collections.Iterable):
            for elem in stuff:
                self.add(elem, sloppy=sloppy)
        elif isinstance(stuff, Variable):
            if stuff.__module__ != self.__module__:
                raise TypeError("Cannot add Variable %s of interface type %s to model of type %s." % (
                    stuff, stuff.__module__, self.__module__))
            self._pending_modifications.add_var.append(stuff)
        elif isinstance(stuff, Constraint):
            if stuff.__module__ != self.__module__:
                raise TypeError("Cannot add Constraint %s of interface type %s to model of type %s." % (
                    stuff, stuff.__module__, self.__module__))
            if sloppy is True:
                self._pending_modifications.add_constr_sloppy.append(stuff)
            else:
                self._pending_modifications.add_constr.append(stuff)
        else:
            raise TypeError("Cannot add %s. It is neither a Variable, or Constraint." % stuff)

    def remove(self, stuff):
        """Remove variables and constraints.

        Parameters
        ----------
        stuff : iterable, str, Variable, Constraint
            Either an iterable containing variables and constraints to be removed from the model or a single variable or contstraint (or their names).

        Returns
        -------
        None
        """
        if self._pending_modifications.toggle == 'add':
            self.update()
            self._pending_modifications.toggle = 'remove'
        if isinstance(stuff, str):
            try:
                variable = self.variables[stuff]
                self._pending_modifications.rm_var.append(variable)
            except KeyError:
                try:
                    constraint = self.constraints[stuff]
                    self._pending_modifications.rm_constr.append(constraint)
                except KeyError:
                    raise LookupError(
                        "%s is neither a variable nor a constraint in the current solver instance." % stuff)
        elif isinstance(stuff, Variable):
            self._pending_modifications.rm_var.append(stuff)
        elif isinstance(stuff, Constraint):
            self._pending_modifications.rm_constr.append(stuff)
        elif isinstance(stuff, collections.Iterable):
            for elem in stuff:
                self.remove(elem)
        elif isinstance(stuff, Objective):
            raise TypeError(
                "Cannot remove objective %s. Use model.objective = Objective(...) to change the current objective." % stuff)
        else:
            raise TypeError(
                "Cannot remove %s. It neither a variable or constraint." % stuff)

    def update(self, callback=int):
        """Process all pending model modifications."""
        # print(self._pending_modifications)
        add_var = self._pending_modifications.add_var
        if len(add_var) > 0:
            self._add_variables(add_var)
            self._pending_modifications.add_var = []
        callback()

        add_constr = self._pending_modifications.add_constr
        if len(add_constr) > 0:
            self._add_constraints(add_constr)
            self._pending_modifications.add_constr = []

        add_constr_sloppy = self._pending_modifications.add_constr_sloppy
        if len(add_constr_sloppy) > 0:
            self._add_constraints(add_constr_sloppy, sloppy=True)
            self._pending_modifications.add_constr_sloppy = []

        var_lb = self._pending_modifications.var_lb
        var_ub = self._pending_modifications.var_ub
        if len(var_lb) > 0 or len(var_ub) > 0:
            self._set_variable_bounds_on_problem(var_lb, var_ub)
            self._pending_modifications.var_lb = []
            self._pending_modifications.var_ub = []

        rm_var = self._pending_modifications.rm_var
        if len(rm_var) > 0:
            self._remove_variables(rm_var)
            self._pending_modifications.rm_var = []
        callback()

        rm_constr = self._pending_modifications.rm_constr
        if len(rm_constr) > 0:
            self._remove_constraints(rm_constr)
            self._pending_modifications.rm_constr = []

    def optimize(self):
        """
        Solve the optimization problem using the relevant solver back-end.
        The status returned by this method tells whether an optimal solution was found,
        if the problem is infeasible etc. Consult optlang.statuses for more elaborate explanations
        of each status.

        The objective value can be accessed from 'model.objective.value', while the solution can be
        retrieved by 'model.primal_values'.

        Returns
        -------
        status: str
            Solution status.
        """
        self.update()
        status = self._optimize()
        if status != OPTIMAL and self.configuration.presolve == "auto":
            self.configuration.presolve = True
            status = self._optimize()
            self.configuration.presolve = "auto"
        self._status = status
        return status

    def _optimize(self):
        raise NotImplementedError(
            "You're using the high level interface to optlang. Problems cannot be optimized in this mode. Choose from one of the solver specific interfaces.")

    def _set_variable_bounds_on_problem(self, var_lb, var_ub):
        """"""
        pass

    def _add_variable(self, variable):
        self._add_variables([variable])

    def _add_variables(self, variables):
        for variable in variables:
            self._variables.append(variable)
            self._variables_to_constraints_mapping[variable.name] = set([])
            variable.problem = self

    def _remove_variables(self, variables):
        for variable in variables:
            try:
                self._variables[variable.name]
            except KeyError:
                raise LookupError("Variable %s not in solver" % variable.name)

        constraint_ids = set()
        for variable in variables:
            constraint_ids.update(self._variables_to_constraints_mapping[variable.name])
            del self._variables_to_constraints_mapping[variable.name]
            variable.problem = None
            del self._variables[variable.name]

        replacements = dict([(variable, 0) for variable in variables])
        for constraint_id in constraint_ids:
            constraint = self._constraints[constraint_id]
            constraint._expression = constraint._expression.xreplace(replacements)
        if self.objective is not None:
            self.objective._expression = self.objective._expression.xreplace(replacements)

    def _remove_variable(self, variable):
        self._remove_variables([variable])

    def _add_constraint(self, constraint, sloppy=False):
        self._add_constraints([constraint], sloppy=sloppy)

    def _add_constraints(self, constraints, sloppy=False):
        for constraint in constraints:
            constraint_id = constraint.name
            if sloppy is False:
                variables = constraint.variables
                if constraint.indicator_variable is not None:
                    variables.add(constraint.indicator_variable)
                missing_vars = [var for var in variables if var.problem is not self]
                if len(missing_vars) > 0:
                    self._add_variables(missing_vars)
                for var in variables:
                    try:
                        self._variables_to_constraints_mapping[var.name].add(constraint_id)
                    except KeyError:
                        self._variables_to_constraints_mapping[var.name] = set([constraint_id])
            self._constraints.append(constraint)
            constraint._problem = self

    def _remove_constraints(self, constraints):
        keys = [constraint.name for constraint in constraints]
        if len(constraints) > 350:  # Need to figure out a good threshold here
            self._constraints = self._constraints.fromkeys(set(self._constraints.keys()).difference(set(keys)))
        else:
            for constraint in constraints:
                try:
                    del self._constraints[constraint.name]
                except KeyError:
                    raise LookupError("Constraint %s not in solver" % constraint)
                else:
                    constraint.problem = None

    def _remove_constraint(self, constraint):
        self._remove_constraints([constraint])

    def to_json(self):
        """
        Returns a json-compatible object from the model that can be saved using the json module.
        Variables, constraints and objective contained in the model will be saved. Configurations
        will not be saved.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json", "w") as outfile:
        >>>     json.dump(model.to_json(), outfile)
        """
        json_obj = {
            "name": self.name,
            "variables": [var.to_json() for var in self.variables],
            "constraints": [const.to_json() for const in self.constraints],
            "objective": self.objective.to_json()
        }
        return json_obj

    @classmethod
    def from_json(cls, json_obj):
        """
        Constructs a Model from the provided json-object.

        Example
        --------
        >>> import json
        >>> with open("path_to_file.json") as infile:
        >>>     model = Model.from_json(json.load(infile))
        """
        model = cls()
        model._init_from_json(json_obj)
        return model

    def _init_from_json(self, json_obj):
        self.name = json_obj["name"]
        interface = self.interface
        variables = [interface.Variable.from_json(var_json) for var_json in json_obj["variables"]]
        var_dict = {var.name: var for var in variables}
        constraints = [interface.Constraint.from_json(constraint_json, var_dict) for constraint_json in json_obj["constraints"]]
        objective = interface.Objective.from_json(json_obj["objective"], var_dict)
        self.add(variables)
        self.add(constraints)
        self.objective = objective
        self.update()

    def __getstate__(self):
        return self.to_json()

    def __setstate__(self, state):
        self.__init__()
        self._init_from_json(state)


if __name__ == '__main__':
    # Example workflow

    x1 = Variable('x1', lb=0)
    x2 = Variable('x2', lb=0)
    x3 = Variable('x3', lb=0)
    c1 = Constraint(x1 + x2 + x3, ub=100)
    c2 = Constraint(10 * x1 + 4 * x2 + 5 * x3, ub=600)
    c3 = Constraint(2 * x1 + 2 * x2 + 6 * x3, ub=300)
    obj = Objective(10 * x1 + 6 * x2 + 4 * x3, direction='max')
    model = Model(name='Simple model')
    model.objective = obj
    model.add([c1, c2, c3])

    try:
        sol = model.optimize()
    except NotImplementedError as e:
        print(e)

    print(model)
    print(model.variables)

    # model.remove(x1)

    import optlang

    model.interface = optlang.glpk_interface