/usr/lib/python3/dist-packages/nibabel/spatialimages.py is in python3-nibabel 2.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' A simple spatial image class
The image class maintains the association between a 3D (or greater)
array, and an affine transform that maps voxel coordinates to some world space.
It also has a ``header`` - some standard set of meta-data that is specific to
the image format, and ``extra`` - a dictionary container for any other
metadata.
It has attributes:
* extra
methods:
* .get_data()
* .get_affine() (deprecated, use affine property instead)
* .get_header() (deprecated, use header property instead)
* .to_filename(fname) - writes data to filename(s) derived from
``fname``, where the derivation may differ between formats.
* to_file_map() - save image to files with which the image is already
associated.
* .get_shape() (deprecated)
properties:
* shape
* affine
* header
* dataobj
classmethods:
* from_filename(fname) - make instance by loading from filename
* from_file_map(fmap) - make instance from file map
* instance_to_filename(img, fname) - save ``img`` instance to
filename ``fname``.
You cannot slice an image, and trying to slice an image generates an
informative TypeError.
There are several ways of writing data.
=======================================
There is the usual way, which is the default::
img.to_filename(fname)
and that is, to take the data encapsulated by the image and cast it to
the datatype the header expects, setting any available header scaling
into the header to help the data match.
You can load the data into an image from file with::
img.from_filename(fname)
The image stores its associated files in its ``file_map`` attribute. In order
to just save an image, for which you know there is an associated filename, or
other storage, you can do::
img.to_file_map()
You can get the data out again with::
img.get_data()
Less commonly, for some image types that support it, you might want to
fetch out the unscaled array via the object containing the data::
unscaled_data = img.dataoobj.get_unscaled()
Analyze-type images (including nifti) support this, but others may not
(MINC, for example).
Sometimes you might to avoid any loss of precision by making the
data type the same as the input::
hdr = img.header
hdr.set_data_dtype(data.dtype)
img.to_filename(fname)
Files interface
===============
The image has an attribute ``file_map``. This is a mapping, that has keys
corresponding to the file types that an image needs for storage. For
example, the Analyze data format needs an ``image`` and a ``header``
file type for storage:
>>> import nibabel as nib
>>> data = np.arange(24, dtype='f4').reshape((2,3,4))
>>> img = nib.AnalyzeImage(data, np.eye(4))
>>> sorted(img.file_map)
['header', 'image']
The values of ``file_map`` are not in fact files but objects with
attributes ``filename``, ``fileobj`` and ``pos``.
The reason for this interface, is that the contents of files has to
contain enough information so that an existing image instance can save
itself back to the files pointed to in ``file_map``. When a file holder
holds active file-like objects, then these may be affected by the
initial file read; in this case, the contains file-like objects need to
carry the position at which a write (with ``to_files``) should place the
data. The ``file_map`` contents should therefore be such, that this will
work:
>>> # write an image to files
>>> from io import BytesIO
>>> import nibabel as nib
>>> file_map = nib.AnalyzeImage.make_file_map()
>>> file_map['image'].fileobj = BytesIO()
>>> file_map['header'].fileobj = BytesIO()
>>> img = nib.AnalyzeImage(data, np.eye(4))
>>> img.file_map = file_map
>>> img.to_file_map()
>>> # read it back again from the written files
>>> img2 = nib.AnalyzeImage.from_file_map(file_map)
>>> np.all(img2.get_data() == data)
True
>>> # write, read it again
>>> img2.to_file_map()
>>> img3 = nib.AnalyzeImage.from_file_map(file_map)
>>> np.all(img3.get_data() == data)
True
'''
import numpy as np
from .filebasedimages import FileBasedHeader
from .dataobj_images import DataobjImage
from .filebasedimages import ImageFileError # flake8: noqa; for back-compat
from .viewers import OrthoSlicer3D
from .volumeutils import shape_zoom_affine
from .deprecated import deprecate_with_version
from .orientations import apply_orientation, inv_ornt_aff
class HeaderDataError(Exception):
''' Class to indicate error in getting or setting header data '''
class HeaderTypeError(Exception):
''' Class to indicate error in parameters into header functions '''
class SpatialHeader(FileBasedHeader):
''' Template class to implement header protocol '''
default_x_flip = True
data_layout = 'F'
def __init__(self,
data_dtype=np.float32,
shape=(0,),
zooms=None):
self.set_data_dtype(data_dtype)
self._zooms = ()
self.set_data_shape(shape)
if not zooms is None:
self.set_zooms(zooms)
@classmethod
def from_header(klass, header=None):
if header is None:
return klass()
# I can't do isinstance here because it is not necessarily true
# that a subclass has exactly the same interface as its parent
# - for example Nifti1Images inherit from Analyze, but have
# different field names
if type(header) == klass:
return header.copy()
return klass(header.get_data_dtype(),
header.get_data_shape(),
header.get_zooms())
@classmethod
def from_fileobj(klass, fileobj):
raise NotImplementedError
def write_to(self, fileobj):
raise NotImplementedError
def __eq__(self, other):
return ((self.get_data_dtype(),
self.get_data_shape(),
self.get_zooms()) ==
(other.get_data_dtype(),
other.get_data_shape(),
other.get_zooms()))
def __ne__(self, other):
return not self == other
def copy(self):
''' Copy object to independent representation
The copy should not be affected by any changes to the original
object.
'''
return self.__class__(self._dtype, self._shape, self._zooms)
def get_data_dtype(self):
return self._dtype
def set_data_dtype(self, dtype):
self._dtype = np.dtype(dtype)
def get_data_shape(self):
return self._shape
def set_data_shape(self, shape):
ndim = len(shape)
if ndim == 0:
self._shape = (0,)
self._zooms = (1.0,)
return
self._shape = tuple([int(s) for s in shape])
# set any unset zooms to 1.0
nzs = min(len(self._zooms), ndim)
self._zooms = self._zooms[:nzs] + (1.0,) * (ndim - nzs)
def get_zooms(self):
return self._zooms
def set_zooms(self, zooms):
zooms = tuple([float(z) for z in zooms])
shape = self.get_data_shape()
ndim = len(shape)
if len(zooms) != ndim:
raise HeaderDataError('Expecting %d zoom values for ndim %d'
% (ndim, ndim))
if len([z for z in zooms if z < 0]):
raise HeaderDataError('zooms must be positive')
self._zooms = zooms
def get_base_affine(self):
shape = self.get_data_shape()
zooms = self.get_zooms()
return shape_zoom_affine(shape, zooms,
self.default_x_flip)
get_best_affine = get_base_affine
def data_to_fileobj(self, data, fileobj, rescale=True):
''' Write array data `data` as binary to `fileobj`
Parameters
----------
data : array-like
data to write
fileobj : file-like object
file-like object implementing 'write'
rescale : {True, False}, optional
Whether to try and rescale data to match output dtype specified by
header. For this minimal header, `rescale` has no effect
'''
data = np.asarray(data)
dtype = self.get_data_dtype()
fileobj.write(data.astype(dtype).tostring(order=self.data_layout))
def data_from_fileobj(self, fileobj):
''' Read binary image data from `fileobj` '''
dtype = self.get_data_dtype()
shape = self.get_data_shape()
data_size = int(np.prod(shape) * dtype.itemsize)
data_bytes = fileobj.read(data_size)
return np.ndarray(shape, dtype, data_bytes, order=self.data_layout)
def supported_np_types(obj):
""" Numpy data types that instance `obj` supports
Parameters
----------
obj : object
Object implementing `get_data_dtype` and `set_data_dtype`. The object
should raise ``HeaderDataError`` for setting unsupported dtypes. The
object will likely be a header or a :class:`SpatialImage`
Returns
-------
np_types : set
set of numpy types that `obj` supports
"""
dt = obj.get_data_dtype()
supported = []
for name, np_types in np.sctypes.items():
for np_type in np_types:
try:
obj.set_data_dtype(np_type)
except HeaderDataError:
continue
# Did set work?
if np.dtype(obj.get_data_dtype()) == np.dtype(np_type):
supported.append(np_type)
# Reset original header dtype
obj.set_data_dtype(dt)
return set(supported)
class Header(SpatialHeader):
'''Alias for SpatialHeader; kept for backwards compatibility.'''
@deprecate_with_version('Header class is deprecated.\n'
'Please use SpatialHeader instead.'
'instead.',
'2.1', '4.0')
def __init__(self, *args, **kwargs):
super(Header, self).__init__(*args, **kwargs)
class ImageDataError(Exception):
pass
class SpatialImage(DataobjImage):
''' Template class for volumetric (3D/4D) images '''
header_class = SpatialHeader
def __init__(self, dataobj, affine, header=None,
extra=None, file_map=None):
''' Initialize image
The image is a combination of (array-like, affine matrix, header), with
optional metadata in `extra`, and filename / file-like objects
contained in the `file_map` mapping.
Parameters
----------
dataobj : object
Object containg image data. It should be some object that retuns an
array from ``np.asanyarray``. It should have a ``shape`` attribute
or property
affine : None or (4,4) array-like
homogenous affine giving relationship between voxel coordinates and
world coordinates. Affine can also be None. In this case,
``obj.affine`` also returns None, and the affine as written to disk
will depend on the file format.
header : None or mapping or header instance, optional
metadata for this image format
extra : None or mapping, optional
metadata to associate with image that cannot be stored in the
metadata of this image type
file_map : mapping, optional
mapping giving file information for this image format
'''
super(SpatialImage, self).__init__(dataobj, header=header, extra=extra,
file_map=file_map)
if not affine is None:
# Check that affine is array-like 4,4. Maybe this is too strict at
# this abstract level, but so far I think all image formats we know
# do need 4,4.
# Copy affine to isolate from environment. Specify float type to
# avoid surprising integer rounding when setting values into affine
affine = np.array(affine, dtype=np.float64, copy=True)
if not affine.shape == (4, 4):
raise ValueError('Affine should be shape 4,4')
self._affine = affine
# if header not specified, get data type from input array
if header is None:
if hasattr(dataobj, 'dtype'):
self._header.set_data_dtype(dataobj.dtype)
# make header correspond with image and affine
self.update_header()
self._data_cache = None
@property
def affine(self):
return self._affine
def update_header(self):
''' Harmonize header with image data and affine
>>> data = np.zeros((2,3,4))
>>> affine = np.diag([1.0,2.0,3.0,1.0])
>>> img = SpatialImage(data, affine)
>>> img.shape == (2, 3, 4)
True
>>> img.update_header()
>>> img.header.get_data_shape() == (2, 3, 4)
True
>>> img.header.get_zooms()
(1.0, 2.0, 3.0)
'''
hdr = self._header
shape = self._dataobj.shape
# We need to update the header if the data shape has changed. It's a
# bit difficult to change the data shape using the standard API, but
# maybe it happened
if hdr.get_data_shape() != shape:
hdr.set_data_shape(shape)
# If the affine is not None, and it is different from the main affine
# in the header, update the header
if self._affine is None:
return
if np.allclose(self._affine, hdr.get_best_affine()):
return
self._affine2header()
def _affine2header(self):
""" Unconditionally set affine into the header """
RZS = self._affine[:3, :3]
vox = np.sqrt(np.sum(RZS * RZS, axis=0))
hdr = self._header
zooms = list(hdr.get_zooms())
n_to_set = min(len(zooms), 3)
zooms[:n_to_set] = vox[:n_to_set]
hdr.set_zooms(zooms)
def __str__(self):
shape = self.shape
affine = self.affine
return '\n'.join((str(self.__class__),
'data shape %s' % (shape,),
'affine: ',
'%s' % affine,
'metadata:',
'%s' % self._header))
def get_data_dtype(self):
return self._header.get_data_dtype()
def set_data_dtype(self, dtype):
self._header.set_data_dtype(dtype)
@deprecate_with_version('get_affine method is deprecated.\n'
'Please use the ``img.affine`` property '
'instead.',
'2.1', '4.0')
def get_affine(self):
""" Get affine from image
"""
return self.affine
@classmethod
def from_image(klass, img):
''' Class method to create new instance of own class from `img`
Parameters
----------
img : ``spatialimage`` instance
In fact, an object with the API of ``spatialimage`` -
specifically ``dataobj``, ``affine``, ``header`` and ``extra``.
Returns
-------
cimg : ``spatialimage`` instance
Image, of our own class
'''
return klass(img.dataobj,
img.affine,
klass.header_class.from_header(img.header),
extra=img.extra.copy())
def __getitem__(self, idx):
''' No slicing or dictionary interface for images
'''
raise TypeError("Cannot slice image objects; consider slicing image "
"array data with `img.dataobj[slice]` or "
"`img.get_data()[slice]`")
def orthoview(self):
"""Plot the image using OrthoSlicer3D
Returns
-------
viewer : instance of OrthoSlicer3D
The viewer.
Notes
-----
This requires matplotlib. If a non-interactive backend is used,
consider using viewer.show() (equivalently plt.show()) to show
the figure.
"""
return OrthoSlicer3D(self.dataobj, self.affine,
title=self.get_filename())
def as_reoriented(self, ornt):
"""Apply an orientation change and return a new image
If ornt is identity transform, return the original image, unchanged
Parameters
----------
ornt : (n,2) orientation array
orientation transform. ``ornt[N,1]` is flip of axis N of the
array implied by `shape`, where 1 means no flip and -1 means
flip. For example, if ``N==0`` and ``ornt[0,1] == -1``, and
there's an array ``arr`` of shape `shape`, the flip would
correspond to the effect of ``np.flipud(arr)``. ``ornt[:,0]`` is
the transpose that needs to be done to the implied array, as in
``arr.transpose(ornt[:,0])``
Notes
-----
Subclasses should override this if they have additional requirements
when re-orienting an image.
"""
if np.array_equal(ornt, [[0, 1], [1, 1], [2, 1]]):
return self
t_arr = apply_orientation(self.get_data(), ornt)
new_aff = self.affine.dot(inv_ornt_aff(ornt, self.shape))
return self.__class__(t_arr, new_aff, self.header)
|