/usr/lib/python3/dist-packages/nibabel/fileslice.py is in python3-nibabel 2.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | """ Utilities for getting array slices out of file-like objects
"""
from __future__ import division
import operator
from numbers import Integral
from mmap import mmap
from six.moves import reduce
import numpy as np
# Threshold for memory gap above which we always skip, to save memory
# This value came from trying various values and looking at the timing with
# ``bench_fileslice``
SKIP_THRESH = 2 ** 8
class _NullLock(object):
"""Can be used as no-function dummy object in place of ``threading.lock``.
The ``_NullLock`` is an object which can be used in place of a
``threading.Lock`` object, but doesn't actually do anything.
It is used by the ``read_segments`` function in the event that a
``Lock`` is not provided by the caller.
"""
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
return False
def is_fancy(sliceobj):
""" Returns True if sliceobj is attempting fancy indexing
Parameters
----------
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
Returns
-------
tf: bool
True if sliceobj represents fancy indexing, False for basic indexing
"""
if not isinstance(sliceobj, tuple):
sliceobj = (sliceobj,)
for slicer in sliceobj:
if hasattr(slicer, 'dtype'): # ndarray always fancy
return True
# slice or Ellipsis or None OK for basic
if isinstance(slicer, slice) or slicer in (None, Ellipsis):
continue
try:
int(slicer)
except TypeError:
return True
return False
def canonical_slicers(sliceobj, shape, check_inds=True):
""" Return canonical version of `sliceobj` for array shape `shape`
`sliceobj` is a slicer for an array ``A`` implied by `shape`.
* Expand `sliceobj` with ``slice(None)`` to add any missing (implied) axes
in `sliceobj`
* Find any slicers in `sliceobj` that do a full axis slice and replace by
``slice(None)``
* Replace any floating point values for slicing with integers
* Replace negative integer slice values with equivalent positive integers.
Does not handle fancy indexing (indexing with arrays or array-like indices)
Parameters
----------
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
shape : sequence
shape of array that will be indexed by `sliceobj`
check_inds : {True, False}, optional
Whether to check if integer indices are out of bounds
Returns
-------
can_slicers : tuple
version of `sliceobj` for which Ellipses have been expanded, missing
(implied) dimensions have been appended, and slice objects equivalent
to ``slice(None)`` have been replaced by ``slice(None)``, integer axes
have been checked, and negative indices set to positive equivalent
"""
if not isinstance(sliceobj, tuple):
sliceobj = (sliceobj,)
if is_fancy(sliceobj):
raise ValueError("Cannot handle fancy indexing")
can_slicers = []
n_dim = len(shape)
n_real = 0
for i, slicer in enumerate(sliceobj):
if slicer is None:
can_slicers.append(None)
continue
if slicer == Ellipsis:
remaining = sliceobj[i + 1:]
if Ellipsis in remaining:
raise ValueError("More than one Ellipsis in slicing "
"expression")
real_remaining = [r for r in remaining if r is not None]
n_ellided = n_dim - n_real - len(real_remaining)
can_slicers.extend((slice(None),) * n_ellided)
n_real += n_ellided
continue
# int / slice indexing cases
dim_len = shape[n_real]
n_real += 1
try: # test for integer indexing
slicer = int(slicer)
except TypeError: # should be slice object
if slicer != slice(None):
# Could this be full slice?
if slicer.stop == dim_len and slicer.start in (None, 0) and \
slicer.step in (None, 1):
slicer = slice(None)
else:
if slicer < 0:
slicer = dim_len + slicer
elif check_inds and slicer >= dim_len:
raise ValueError('Integer index %d to large' % slicer)
can_slicers.append(slicer)
# Fill out any missing dimensions
if n_real < n_dim:
can_slicers.extend((slice(None),) * (n_dim - n_real))
return tuple(can_slicers)
def slice2outax(ndim, sliceobj):
""" Matching output axes for input array ndim `ndim` and slice `sliceobj`
Parameters
----------
ndim : int
number of axes in input array
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
Returns
-------
out_ax_inds : tuple
Say ``A` is a (pretend) input array of `ndim` dimensions. Say ``B =
A[sliceobj]``. `out_ax_inds` has one value per axis in ``A`` giving
corresponding axis in ``B``.
"""
sliceobj = canonical_slicers(sliceobj, [1] * ndim, check_inds=False)
out_ax_no = 0
out_ax_inds = []
for obj in sliceobj:
if isinstance(obj, Integral):
out_ax_inds.append(None)
continue
if obj is not None:
out_ax_inds.append(out_ax_no)
out_ax_no += 1
return tuple(out_ax_inds)
def slice2len(slicer, in_len):
""" Output length after slicing original length `in_len` with `slicer`
Parameters
----------
slicer : slice object
in_len : int
Returns
-------
out_len : int
Length after slicing
Notes
-----
Returns same as ``len(np.arange(in_len)[slicer])``
"""
if slicer == slice(None):
return in_len
full_slicer = fill_slicer(slicer, in_len)
return _full_slicer_len(full_slicer)
def _full_slicer_len(full_slicer):
""" Return length of slicer processed by ``fill_slicer``
"""
start, stop, step = full_slicer.start, full_slicer.stop, full_slicer.step
if stop is None: # case of negative step
stop = -1
gap = stop - start
if (step > 0 and gap <= 0) or (step < 0 and gap >= 0):
return 0
return int(np.ceil(gap / step))
def fill_slicer(slicer, in_len):
""" Return slice object with Nones filled out to match `in_len`
Also fixes too large stop / start values according to slice() slicing
rules.
The returned slicer can have a None as `slicer.stop` if `slicer.step` is
negative and the input `slicer.stop` is None. This is because we can't
represent the ``stop`` as an integer, because -1 has a different meaning.
Parameters
----------
slicer : slice object
in_len : int
length of axis on which `slicer` will be applied
Returns
-------
can_slicer : slice object
slice with start, stop, step set to explicit values, with the exception
of ``stop`` for negative step, which is None for the case of slicing
down through the first element
"""
start, stop, step = slicer.start, slicer.stop, slicer.step
if step is None:
step = 1
if start is not None and start < 0:
start = in_len + start
if stop is not None and stop < 0:
stop = in_len + stop
if step > 0:
if start is None:
start = 0
if stop is None:
stop = in_len
else:
stop = min(stop, in_len)
else: # step < 0
if start is None:
start = in_len - 1
else:
start = min(start, in_len - 1)
return slice(start, stop, step)
def predict_shape(sliceobj, in_shape):
""" Predict shape of array from slicing array shape `shape` with `sliceobj`
Parameters
----------
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
in_shape : sequence
shape of array that could be sliced by `sliceobj`
Returns
-------
out_shape : tuple
predicted shape arising from slicing array shape `in_shape` with
`sliceobj`
"""
if not isinstance(sliceobj, tuple):
sliceobj = (sliceobj,)
sliceobj = canonical_slicers(sliceobj, in_shape)
out_shape = []
real_no = 0
for slicer in sliceobj:
if slicer is None:
out_shape.append(1)
continue
real_no += 1
try: # if int - we drop a dim (no append)
slicer = int(slicer)
except TypeError:
out_shape.append(slice2len(slicer, in_shape[real_no - 1]))
return tuple(out_shape)
def _positive_slice(slicer):
""" Return full slice `slicer` enforcing positive step size
`slicer` assumed full in the sense of :func:`fill_slicer`
"""
start, stop, step = slicer.start, slicer.stop, slicer.step
if step > 0:
return slicer
if stop is None:
stop = -1
gap = stop - start
n = gap / step
n = int(n) - 1 if int(n) == n else int(n)
end = start + n * step
return slice(end, start + 1, -step)
def threshold_heuristic(slicer,
dim_len,
stride,
skip_thresh=SKIP_THRESH):
""" Whether to force full axis read or contiguous read of stepped slice
Allows :func:`fileslice` to sometimes read memory that it will throw away
in order to get maximum speed. In other words, trade memory for fewer disk
reads.
Parameters
----------
slicer : slice object, or int
If slice, can be assumed to be full as in ``fill_slicer``
dim_len : int
length of axis being sliced
stride : int
memory distance between elements on this axis
skip_thresh : int, optional
Memory gap threshold in bytes above which to prefer skipping memory
rather than reading it and later discarding.
Returns
-------
action : {'full', 'contiguous', None}
Gives the suggested optimization for reading the data
* 'full' - read whole axis
* 'contiguous' - read all elements between start and stop
* None - read only memory needed for output
Notes
-----
Let's say we are in the middle of reading a file at the start of some
memory length $B$ bytes. We don't need the memory, and we are considering
whether to read it anyway (then throw it away) (READ) or stop reading, skip
$B$ bytes and restart reading from there (SKIP).
After trying some more fancy algorithms, a hard threshold (`skip_thresh`)
for the maximum skip distance seemed to work well, as measured by times on
``nibabel.benchmarks.bench_fileslice``
"""
if isinstance(slicer, Integral):
gap_size = (dim_len - 1) * stride
return 'full' if gap_size <= skip_thresh else None
step_size = abs(slicer.step) * stride
if step_size > skip_thresh:
return None # Prefer skip
# At least contiguous - also full?
slicer = _positive_slice(slicer)
start, stop = slicer.start, slicer.stop
read_len = stop - start
gap_size = (dim_len - read_len) * stride
return 'full' if gap_size <= skip_thresh else 'contiguous'
def optimize_slicer(slicer, dim_len, all_full, is_slowest, stride,
heuristic=threshold_heuristic):
""" Return maybe modified slice and post-slice slicing for `slicer`
Parameters
----------
slicer : slice object or int
dim_len : int
length of axis along which to slice
all_full : bool
Whether dimensions up until now have been full (all elements)
is_slowest : bool
Whether this dimension is the slowest changing in memory / on disk
stride : int
size of one step along this axis
heuristic : callable, optional
function taking slice object, dim_len, stride length as arguments,
returning one of 'full', 'contiguous', None. See
:func:`threshold_heuristic` for an example.
Returns
-------
to_read : slice object or int
maybe modified slice based on `slicer` expressing what data should be
read from an underlying file or buffer. `to_read` must always have
positive ``step`` (because we don't want to go backwards in the buffer
/ file)
post_slice : slice object
slice to be applied after array has been read. Applies any
transformations in `slicer` that have not been applied in `to_read`. If
axis will be dropped by `to_read` slicing, so no slicing would make
sense, return string ``dropped``
Notes
-----
This is the heart of the algorithm for making segments from slice objects.
A contiguous slice is a slice with ``slice.step in (1, -1)``
A full slice is a continuous slice returning all elements.
The main question we have to ask is whether we should transform `to_read`,
`post_slice` to prefer a full read and partial slice. We only do this in
the case of all_full==True. In this case we might benefit from reading a
continuous chunk of data even if the slice is not continuous, or reading
all the data even if the slice is not full. Apply a heuristic `heuristic`
to decide whether to do this, and adapt `to_read` and `post_slice` slice
accordingly.
Otherwise (apart from constraint to be positive) return `to_read` unaltered
and `post_slice` as ``slice(None)``
"""
# int or slice as input?
try: # if int - we drop a dim (no append)
slicer = int(slicer) # casts float to int as well
except TypeError: # slice
# Deal with full cases first
if slicer == slice(None):
return slicer, slicer
slicer = fill_slicer(slicer, dim_len)
# actually equivalent to slice(None)
if slicer == slice(0, dim_len, 1):
return slice(None), slice(None)
# full, but reversed
if slicer == slice(dim_len - 1, None, -1):
return slice(None), slice(None, None, -1)
# Not full, mabye continuous
is_int = False
else: # int
if slicer < 0: # make negative offsets positive
slicer = dim_len + slicer
is_int = True
if all_full:
action = heuristic(slicer, dim_len, stride)
# Check return values (we may be using a custom function)
if action not in ('full', 'contiguous', None):
raise ValueError('Unexpected return %s from heuristic' % action)
if is_int and action == 'contiguous':
raise ValueError("int index cannot be contiguous")
# If this is the slowest changing dimension, never upgrade None or
# contiguous beyond contiguous (we've already covered the already-full
# case)
if is_slowest and action == 'full':
action = None if is_int else 'contiguous'
if action == 'full':
return slice(None), slicer
elif action == 'contiguous': # Cannot be int
# If this is already contiguous, default None behavior handles it
step = slicer.step
if step not in (-1, 1):
if step < 0:
slicer = _positive_slice(slicer)
return (slice(slicer.start, slicer.stop, 1),
slice(None, None, step))
# We only need to be positive
if is_int:
return slicer, 'dropped'
if slicer.step > 0:
return slicer, slice(None)
return _positive_slice(slicer), slice(None, None, -1)
def calc_slicedefs(sliceobj, in_shape, itemsize, offset, order,
heuristic=threshold_heuristic):
""" Return parameters for slicing array with `sliceobj` given memory layout
Calculate the best combination of skips / (read + discard) to use for
reading the data from disk / memory, then generate corresponding
`segments`, the disk offsets and read lengths to read the memory. If we
have chosen some (read + discard) optimization, then we need to discard the
surplus values from the read array using `post_slicers`, a slicing tuple
that takes the array as read from a file-like object, and returns the array
we want.
Parameters
----------
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
in_shape : sequence
shape of underlying array to be sliced
itemsize : int
element size in array (in bytes)
offset : int
offset of array data in underlying file or memory buffer
order : {'C', 'F'}
memory layout of underlying array
heuristic : callable, optional
function taking slice object, dim_len, stride length as arguments,
returning one of 'full', 'contiguous', None. See
:func:`optimize_slicer` and :func:`threshold_heuristic`
Returns
-------
segments : list
list of 2 element lists where lists are (offset, length), giving
absolute memory offset in bytes and number of bytes to read
read_shape : tuple
shape with which to interpret memory as read from `segments`.
Interpreting the memory read from `segments` with this shape, and a
dtype, gives an intermediate array - call this ``R``
post_slicers : tuple
Any new slicing to be applied to the array ``R`` after reading via
`segments` and reshaping via `read_shape`. Slices are in terms of
`read_shape`. If empty, no new slicing to apply
"""
if order not in "CF":
raise ValueError("order should be one of 'CF'")
sliceobj = canonical_slicers(sliceobj, in_shape)
# order fastest changing first (record reordering)
if order == 'C':
sliceobj = sliceobj[::-1]
in_shape = in_shape[::-1]
# Analyze sliceobj for new read_slicers and fixup post_slicers
# read_slicers are the virtual slices; we don't slice with these, but use
# the slice definitions to read the relevant memory from disk
read_slicers, post_slicers = optimize_read_slicers(
sliceobj, in_shape, itemsize, heuristic)
# work out segments corresponding to read_slicers
segments = slicers2segments(read_slicers, in_shape, offset, itemsize)
# Make post_slicers empty if it is the slicing identity operation
if all(s == slice(None) for s in post_slicers):
post_slicers = []
read_shape = predict_shape(read_slicers, in_shape)
# If reordered, order shape, post_slicers
if order == 'C':
read_shape = read_shape[::-1]
post_slicers = post_slicers[::-1]
return list(segments), tuple(read_shape), tuple(post_slicers)
def optimize_read_slicers(sliceobj, in_shape, itemsize, heuristic):
""" Calculates slices to read from disk, and apply after reading
Parameters
----------
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``.
Can be assumed to be canonical in the sense of ``canonical_slicers``
in_shape : sequence
shape of underlying array to be sliced. Array for `in_shape` assumed
to be already in 'F' order. Reorder shape / sliceobj for slicing a 'C'
array before passing to this function.
itemsize : int
element size in array (bytes)
heuristic : callable
function taking slice object, axis length, and stride length as
arguments, returning one of 'full', 'contiguous', None. See
:func:`optimize_slicer`; see :func:`threshold_heuristic` for an
example.
Returns
-------
read_slicers : tuple
`sliceobj` maybe rephrased to fill out dimensions that are better read
from disk and later trimmed to their original size with `post_slicers`.
`read_slicers` implies a block of memory to be read from disk. The
actual disk positions come from `slicers2segments` run over
`read_slicers`. Includes any ``newaxis`` dimensions in `sliceobj`
post_slicers : tuple
Any new slicing to be applied to the read array after reading. The
`post_slicers` discard any memory that we read to save time, but that
we don't need for the slice. Include any ``newaxis`` dimension added
by `sliceobj`
"""
read_slicers = []
post_slicers = []
real_no = 0
stride = itemsize
all_full = True
for slicer in sliceobj:
if slicer is None:
read_slicers.append(None)
post_slicers.append(slice(None))
continue
dim_len = in_shape[real_no]
real_no += 1
is_last = real_no == len(in_shape)
# make modified sliceobj (to_read, post_slice)
read_slicer, post_slicer = optimize_slicer(
slicer, dim_len, all_full, is_last, stride, heuristic)
read_slicers.append(read_slicer)
all_full = all_full and read_slicer == slice(None)
if not isinstance(read_slicer, Integral):
post_slicers.append(post_slicer)
stride *= dim_len
return tuple(read_slicers), tuple(post_slicers)
def slicers2segments(read_slicers, in_shape, offset, itemsize):
""" Get segments from `read_slicers` given `in_shape` and memory steps
Parameters
----------
read_slicers : object
something that can be used to slice an array as in ``arr[sliceobj]``
Slice objects can by be assumed canonical as in ``canonical_slicers``,
and positive as in ``_positive_slice``
in_shape : sequence
shape of underlying array on disk before reading
offset : int
offset of array data in underlying file or memory buffer
itemsize : int
element size in array (in bytes)
Returns
-------
segments : list
list of 2 element lists where lists are [offset, length], giving
absolute memory offset in bytes and number of bytes to read
"""
all_full = True
all_segments = [[offset, itemsize]]
stride = itemsize
real_no = 0
for read_slicer in read_slicers:
if read_slicer is None:
continue
dim_len = in_shape[real_no]
real_no += 1
is_int = isinstance(read_slicer, Integral)
if not is_int: # slicer is (now) a slice
# make slice full (it will always be positive)
read_slicer = fill_slicer(read_slicer, dim_len)
slice_len = _full_slicer_len(read_slicer)
is_full = read_slicer == slice(0, dim_len, 1)
is_contiguous = not is_int and read_slicer.step == 1
if all_full and is_contiguous: # full or contiguous
if read_slicer.start != 0:
all_segments[0][0] += stride * read_slicer.start
all_segments[0][1] *= slice_len
else: # Previous or current stuff is not contiguous
if is_int:
for segment in all_segments:
segment[0] += stride * read_slicer
else: # slice object
segments = all_segments
all_segments = []
for i in range(read_slicer.start,
read_slicer.stop,
read_slicer.step):
for s in segments:
all_segments.append([s[0] + stride * i, s[1]])
all_full = all_full and is_full
stride *= dim_len
return all_segments
def read_segments(fileobj, segments, n_bytes, lock=None):
""" Read `n_bytes` byte data implied by `segments` from `fileobj`
Parameters
----------
fileobj : file-like object
Implements `seek` and `read`
segments : sequence
list of 2 sequences where sequences are (offset, length), giving
absolute file offset in bytes and number of bytes to read
n_bytes : int
total number of bytes that will be read
lock : {None, threading.Lock, lock-like} optional
If provided, used to ensure that paired calls to ``seek`` and ``read``
cannot be interrupted by another thread accessing the same ``fileobj``.
Each thread which accesses the same file via ``read_segments`` must
share a lock in order to ensure that the file access is thread-safe.
A lock does not need to be provided for single-threaded access. The
default value (``None``) results in a lock-like object (a
``_NullLock``) which does not do anything.
Returns
-------
buffer : buffer object
object implementing buffer protocol, such as byte string or ndarray or
mmap or ctypes ``c_char_array``
"""
# Make a lock-like thing to make the code below a bit nicer
if lock is None:
lock = _NullLock()
if len(segments) == 0:
if n_bytes != 0:
raise ValueError("No segments, but non-zero n_bytes")
return b''
if len(segments) == 1:
offset, length = segments[0]
with lock:
fileobj.seek(offset)
bytes = fileobj.read(length)
if len(bytes) != n_bytes:
raise ValueError("Whoops, not enough data in file")
return bytes
# More than one segment
bytes = mmap(-1, n_bytes)
for offset, length in segments:
with lock:
fileobj.seek(offset)
bytes.write(fileobj.read(length))
if bytes.tell() != n_bytes:
raise ValueError("Oh dear, n_bytes does not look right")
return bytes
def _simple_fileslice(fileobj, sliceobj, shape, dtype, offset=0, order='C',
heuristic=None):
""" Read all data from `fileobj` into array, then slice with `sliceobj`
The simplest possible thing; read all the data into the full array, then
slice the full array.
Parameters
----------
fileobj : file-like object
implements ``read`` and ``seek``
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``
shape : sequence
shape of full array inside `fileobj`
dtype : dtype object
dtype of array inside `fileobj`
offset : int, optional
offset of array data within `fileobj`
order : {'C', 'F'}, optional
memory layout of array in `fileobj`
heuristic : optional
The routine doesn't use `heuristic`; the parameter is for API
compatibility with :func:`fileslice`
Returns
-------
sliced_arr : array
Array in `fileobj` as sliced with `sliceobj`
"""
fileobj.seek(offset)
nbytes = reduce(operator.mul, shape) * dtype.itemsize
bytes = fileobj.read(nbytes)
new_arr = np.ndarray(shape, dtype, buffer=bytes, order=order)
return new_arr[sliceobj]
def fileslice(fileobj, sliceobj, shape, dtype, offset=0, order='C',
heuristic=threshold_heuristic, lock=None):
""" Slice array in `fileobj` using `sliceobj` slicer and array definitions
`fileobj` contains the contiguous binary data for an array ``A`` of shape,
dtype, memory layout `shape`, `dtype`, `order`, with the binary data
starting at file offset `offset`.
Our job is to return the sliced array ``A[sliceobj]`` in the most efficient
way in terms of memory and time.
Sometimes it will be quicker to read memory that we will later throw away,
to save time we might lose doing short seeks on `fileobj`. Call these
alternatives: (read + discard); and skip. This routine guesses when to
(read+discard) or skip using the callable `heuristic`, with a default using
a hard threshold for the memory gap large enough to prefer a skip.
Parameters
----------
fileobj : file-like object
file-like object, opened for reading in binary mode. Implements
``read`` and ``seek``.
sliceobj : object
something that can be used to slice an array as in ``arr[sliceobj]``.
shape : sequence
shape of full array inside `fileobj`.
dtype : dtype specifier
dtype of array inside `fileobj`, or input to ``numpy.dtype`` to specify
array dtype.
offset : int, optional
offset of array data within `fileobj`
order : {'C', 'F'}, optional
memory layout of array in `fileobj`.
heuristic : callable, optional
function taking slice object, axis length, stride length as arguments,
returning one of 'full', 'contiguous', None. See
:func:`optimize_slicer` and see :func:`threshold_heuristic` for an
example.
lock : {None, threading.Lock, lock-like} optional
If provided, used to ensure that paired calls to ``seek`` and ``read``
cannot be interrupted by another thread accessing the same ``fileobj``.
Each thread which accesses the same file via ``read_segments`` must
share a lock in order to ensure that the file access is thread-safe.
A lock does not need to be provided for single-threaded access. The
default value (``None``) results in a lock-like object (a
``_NullLock``) which does not do anything.
Returns
-------
sliced_arr : array
Array in `fileobj` as sliced with `sliceobj`
"""
if is_fancy(sliceobj):
raise ValueError("Cannot handle fancy indexing")
dtype = np.dtype(dtype)
itemsize = int(dtype.itemsize)
segments, sliced_shape, post_slicers = calc_slicedefs(
sliceobj, shape, itemsize, offset, order)
n_bytes = reduce(operator.mul, sliced_shape, 1) * itemsize
arr_data = read_segments(fileobj, segments, n_bytes, lock)
sliced = np.ndarray(sliced_shape, dtype, buffer=arr_data, order=order)
return sliced[post_slicers]
def strided_scalar(shape, scalar=0.):
""" Return array shape `shape` where all entries point to value `scalar`
Parameters
----------
shape : sequence
Shape of output array.
scalar : scalar
Scalar value with which to fill array.
Returns
-------
strided_arr : array
Array of shape `shape` for which all values == `scalar`, built by
setting all strides of `strided_arr` to 0, so the scalar is broadcast
out to the full array `shape`. `strided_arr` is flagged as not
`writeable`.
The array is set read-only to avoid a numpy error when broadcasting -
see https://github.com/numpy/numpy/issues/6491
"""
shape = tuple(shape)
scalar = np.array(scalar)
strides = [0] * len(shape)
strided_scalar = np.lib.stride_tricks.as_strided(scalar, shape, strides)
strided_scalar.flags.writeable = False
return strided_scalar
|