This file is indexed.

/usr/lib/python3/dist-packages/networkx/generators/nonisomorphic_trees.py is in python3-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
algorithm for the enumeration of all non-isomorphic free trees of a
given order.  Rooted trees are represented by level sequences, i.e.,
lists in which the i-th element specifies the distance of vertex i to
the root.

"""
#    Copyright (C) 2013 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = "\n".join(["Aric Hagberg (hagberg@lanl.gov)",
                        "Mridul Seth (seth.mridul@gmail.com)"])

__all__ = ['nonisomorphic_trees',
           'number_of_nonisomorphic_trees']

import networkx as nx


def nonisomorphic_trees(order, create="graph"):
    """Returns a list of nonisomporphic trees

    Parameters
    ----------
    order : int
      order of the desired tree(s)

    create : graph or matrix (default="Graph)
      If graph is selected a list of trees will be returned,
      if matrix is selected a list of adjancency matrix will
      be returned

    Returns
    -------
    G : List of NetworkX Graphs

    M : List of Adjacency matrices

    References
    ----------

    """

    if order < 2:
        raise ValueError
    # start at the path graph rooted at its center
    layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2))

    while layout is not None:
        layout = _next_tree(layout)
        if layout is not None:
            if create == "graph":
                yield _layout_to_graph(layout)
            elif create == "matrix":
                yield _layout_to_matrix(layout)
            layout = _next_rooted_tree(layout)


def number_of_nonisomorphic_trees(order):
    """Returns the number of nonisomorphic trees

    Parameters
    ----------
    order : int
      order of the desired tree(s)

    Returns
    -------
    length : Number of nonisomorphic graphs for the given order

    References
    ----------

    """
    length = sum(1 for _ in nonisomorphic_trees(order))
    return length


def _next_rooted_tree(predecessor, p=None):
    """One iteration of the Beyer-Hedetniemi algorithm."""

    if p is None:
        p = len(predecessor) - 1
        while predecessor[p] == 1:
            p -= 1
    if p == 0:
        return None

    q = p - 1
    while predecessor[q] != predecessor[p] - 1:
        q -= 1
    result = list(predecessor)
    for i in range(p, len(result)):
        result[i] = result[i - p + q]
    return result


def _next_tree(candidate):
    """One iteration of the Wright, Richmond, Odlyzko and McKay
    algorithm."""

    # valid representation of a free tree if:
    # there are at least two vertices at layer 1
    # (this is always the case because we start at the path graph)
    left, rest = _split_tree(candidate)

    # and the left subtree of the root
    # is less high than the tree with the left subtree removed
    left_height = max(left)
    rest_height = max(rest)
    valid = rest_height >= left_height

    if valid and rest_height == left_height:
        # and, if left and rest are of the same height,
        # if left does not encompass more vertices
        if len(left) > len(rest):
            valid = False
        # and, if they have the same number or vertices,
        # if left does not come after rest lexicographically
        elif len(left) == len(rest) and left > rest:
            valid = False

    if valid:
        return candidate
    else:
        # jump to the next valid free tree
        p = len(left)
        new_candidate = _next_rooted_tree(candidate, p)
        if candidate[p] > 2:
            new_left, new_rest = _split_tree(new_candidate)
            new_left_height = max(new_left)
            suffix = range(1, new_left_height + 2)
            new_candidate[-len(suffix):] = suffix
        return new_candidate


def _split_tree(layout):
    """Return a tuple of two layouts, one containing the left
    subtree of the root vertex, and one containing the original tree
    with the left subtree removed."""

    one_found = False
    m = None
    for i in range(len(layout)):
        if layout[i] == 1:
            if one_found:
                m = i
                break
            else:
                one_found = True

    if m is None:
        m = len(layout)

    left = [layout[i] - 1 for i in range(1, m)]
    rest = [0] + [layout[i] for i in range(m, len(layout))]
    return (left, rest)


def _layout_to_matrix(layout):
    """Create the adjacency matrix for the tree specified by the
    given layout (level sequence)."""

    result = [[0] * len(layout) for i in range(len(layout))]
    stack = []
    for i in range(len(layout)):
        i_level = layout[i]
        if stack:
            j = stack[-1]
            j_level = layout[j]
            while j_level >= i_level:
                stack.pop()
                j = stack[-1]
                j_level = layout[j]
            result[i][j] = result[j][i] = 1
        stack.append(i)
    return result


def _layout_to_graph(layout):
    """Create a NetworkX Graph for the tree specified by the
    given layout(level sequence)"""
    result = [[0] * len(layout) for i in range(len(layout))]
    G = nx.Graph()
    stack = []
    for i in range(len(layout)):
        i_level = layout[i]
        if stack:
            j = stack[-1]
            j_level = layout[j]
            while j_level >= i_level:
                stack.pop()
                j = stack[-1]
                j_level = layout[j]
            G.add_edge(i, j)
        stack.append(i)
    return G