This file is indexed.

/usr/lib/python3/dist-packages/networkx/classes/function.py is in python3-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
"""Functional interface to graph methods and assorted utilities.
"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
#
import networkx as nx
from networkx.utils import not_implemented_for
import itertools
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                           'Pieter Swart (swart@lanl.gov)',
                           'Dan Schult(dschult@colgate.edu)'])
__all__ = ['nodes', 'edges', 'degree', 'degree_histogram', 'neighbors',
           'number_of_nodes', 'number_of_edges', 'density',
           'nodes_iter', 'edges_iter', 'is_directed','info',
           'freeze','is_frozen','subgraph','create_empty_copy',
           'set_node_attributes','get_node_attributes',
           'set_edge_attributes','get_edge_attributes',
           'all_neighbors','non_neighbors', 'non_edges',
           'common_neighbors', 'is_weighted','is_negatively_weighted',
           'is_empty']


def nodes(G):
    """Return a copy of the graph nodes in a list."""
    return G.nodes()


def nodes_iter(G):
    """Return an iterator over the graph nodes."""
    return G.nodes_iter()


def edges(G,nbunch=None):
    """Return list of edges incident to nodes in nbunch.

    Return all edges if nbunch is unspecified or nbunch=None.

    For digraphs, edges=out_edges
    """
    return G.edges(nbunch)


def edges_iter(G,nbunch=None):
    """Return iterator over edges incident to nodes in nbunch.

    Return all edges if nbunch is unspecified or nbunch=None.

    For digraphs, edges=out_edges
    """
    return G.edges_iter(nbunch)


def degree(G,nbunch=None,weight=None):
    """Return degree of single node or of nbunch of nodes.
    If nbunch is ommitted, then return degrees of *all* nodes.
    """
    return G.degree(nbunch,weight)


def neighbors(G,n):
    """Return a list of nodes connected to node n. """
    return G.neighbors(n)


def number_of_nodes(G):
    """Return the number of nodes in the graph."""
    return G.number_of_nodes()


def number_of_edges(G):
    """Return the number of edges in the graph. """
    return G.number_of_edges()


def density(G):
    r"""Return the density of a graph.

    The density for undirected graphs is

    .. math::

       d = \frac{2m}{n(n-1)},

    and for directed graphs is

    .. math::

       d = \frac{m}{n(n-1)},

    where `n` is the number of nodes and `m`  is the number of edges in `G`.

    Notes
    -----
    The density is 0 for a graph without edges and 1 for a complete graph.
    The density of multigraphs can be higher than 1.

    Self loops are counted in the total number of edges so graphs with self
    loops can have density higher than 1.
    """
    n=number_of_nodes(G)
    m=number_of_edges(G)
    if m==0 or n <= 1:
        d=0.0
    else:
        if G.is_directed():
            d=m/float(n*(n-1))
        else:
            d= m*2.0/float(n*(n-1))
    return d


def degree_histogram(G):
    """Return a list of the frequency of each degree value.

    Parameters
    ----------
    G : Networkx graph
       A graph

    Returns
    -------
    hist : list
       A list of frequencies of degrees.
       The degree values are the index in the list.

    Notes
    -----
    Note: the bins are width one, hence len(list) can be large
    (Order(number_of_edges))
    """
    degseq=list(G.degree().values())
    dmax=max(degseq)+1
    freq= [ 0 for d in range(dmax) ]
    for d in degseq:
        freq[d] += 1
    return freq


def is_directed(G):
    """ Return True if graph is directed."""
    return G.is_directed()


def frozen(*args):
    """Dummy method for raising errors when trying to modify frozen graphs"""
    raise nx.NetworkXError("Frozen graph can't be modified")


def freeze(G):
    """Modify graph to prevent further change by adding or removing
    nodes or edges.

    Node and edge data can still be modified.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_path([0,1,2,3])
    >>> G=nx.freeze(G)
    >>> try:
    ...    G.add_edge(4,5)
    ... except nx.NetworkXError as e:
    ...    print(str(e))
    Frozen graph can't be modified

    Notes
    -----
    To "unfreeze" a graph you must make a copy by creating a new graph object:

    >>> graph = nx.path_graph(4)
    >>> frozen_graph = nx.freeze(graph)
    >>> unfrozen_graph = nx.Graph(frozen_graph)
    >>> nx.is_frozen(unfrozen_graph)
    False

    See Also
    --------
    is_frozen
    """
    G.add_node=frozen
    G.add_nodes_from=frozen
    G.remove_node=frozen
    G.remove_nodes_from=frozen
    G.add_edge=frozen
    G.add_edges_from=frozen
    G.remove_edge=frozen
    G.remove_edges_from=frozen
    G.clear=frozen
    G.frozen=True
    return G


def is_frozen(G):
    """Return True if graph is frozen.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    See Also
    --------
    freeze
    """
    try:
        return G.frozen
    except AttributeError:
        return False


def subgraph(G, nbunch):
    """Return the subgraph induced on nodes in nbunch.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nbunch : list, iterable
       A container of nodes that will be iterated through once (thus
       it should be an iterator or be iterable).  Each element of the
       container should be a valid node type: any hashable type except
       None.  If nbunch is None, return all edges data in the graph.
       Nodes in nbunch that are not in the graph will be (quietly)
       ignored.

    Notes
    -----
    subgraph(G) calls G.subgraph()
    """
    return G.subgraph(nbunch)


def create_empty_copy(G,with_nodes=True):
    """Return a copy of the graph G with all of the edges removed.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    with_nodes :  bool (default=True)
       Include nodes.

    Notes
    -----
    Graph, node, and edge data is not propagated to the new graph.
    """
    H=G.__class__()
    if with_nodes:
        H.add_nodes_from(G)
    return H


def info(G, n=None):
    """Print short summary of information for the graph G or the node n.

    Parameters
    ----------
    G : Networkx graph
       A graph
    n : node (any hashable)
       A node in the graph G
    """
    info='' # append this all to a string
    if n is None:
        info+="Name: %s\n"%G.name
        type_name = [type(G).__name__]
        info+="Type: %s\n"%",".join(type_name)
        info+="Number of nodes: %d\n"%G.number_of_nodes()
        info+="Number of edges: %d\n"%G.number_of_edges()
        nnodes=G.number_of_nodes()
        if len(G) > 0:
            if G.is_directed():
                info+="Average in degree: %8.4f\n"%\
                    (sum(G.in_degree().values())/float(nnodes))
                info+="Average out degree: %8.4f"%\
                    (sum(G.out_degree().values())/float(nnodes))
            else:
                s=sum(G.degree().values())
                info+="Average degree: %8.4f"%\
                    (float(s)/float(nnodes))

    else:
        if n not in G:
            raise nx.NetworkXError("node %s not in graph"%(n,))
        info+="Node % s has the following properties:\n"%n
        info+="Degree: %d\n"%G.degree(n)
        info+="Neighbors: "
        info+=' '.join(str(nbr) for nbr in G.neighbors(n))
    return info


def set_node_attributes(G, name, values):
    """Set node attributes from dictionary of nodes and values

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    values: dict
       Dictionary of attribute values keyed by node. If `values` is not a
       dictionary, then it is treated as a single attribute value that is then
       applied to every node in `G`.

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> bb = nx.betweenness_centrality(G)
    >>> nx.set_node_attributes(G, 'betweenness', bb)
    >>> G.node[1]['betweenness']
    1.0
    """
    try:
        values.items
    except AttributeError:
        # Treat `value` as the attribute value for each node.
        values = dict(zip(G.nodes(), [values] * len(G)))

    for node, value in values.items():
        G.node[node][name] = value


def get_node_attributes(G, name):
    """Get node attributes from graph

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    Returns
    -------
    Dictionary of attributes keyed by node.

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_nodes_from([1,2,3],color='red')
    >>> color=nx.get_node_attributes(G,'color')
    >>> color[1]
    'red'
    """
    return dict( (n,d[name]) for n,d in G.node.items() if name in d)


def set_edge_attributes(G, name, values):
    """Set edge attributes from dictionary of edge tuples and values.

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    values : dict
       Dictionary of attribute values keyed by edge (tuple). For multigraphs,
       the keys tuples must be of the form (u, v, key). For non-multigraphs,
       the keys must be tuples of the form (u, v). If `values` is not a
       dictionary, then it is treated as a single attribute value that is then
       applied to every edge in `G`.

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> bb = nx.edge_betweenness_centrality(G, normalized=False)
    >>> nx.set_edge_attributes(G, 'betweenness', bb)
    >>> G[1][2]['betweenness']
    2.0

    """
    try:
        values.items
    except AttributeError:
        # Treat `value` as the attribute value for each edge.
        if G.is_multigraph():
            edges = G.edges(keys=True)
        else:
            edges = G.edges()
        values = dict(zip(edges, [values] * len(edges)))

    if G.is_multigraph():
        for (u, v, key), value in values.items():
            G[u][v][key][name] = value
    else:
        for (u, v), value in values.items():
            G[u][v][name] = value


def get_edge_attributes(G, name):
    """Get edge attributes from graph

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    Returns
    -------
    Dictionary of attributes keyed by edge. For (di)graphs, the keys are
    2-tuples of the form: (u,v). For multi(di)graphs, the keys are 3-tuples of
    the form: (u, v, key).

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_path([1,2,3],color='red')
    >>> color=nx.get_edge_attributes(G,'color')
    >>> color[(1,2)]
    'red'
    """
    if G.is_multigraph():
        edges = G.edges(keys=True, data=True)
    else:
        edges = G.edges(data=True)
    return dict( (x[:-1], x[-1][name]) for x in edges if name in x[-1] )



def all_neighbors(graph, node):
    """ Returns all of the neighbors of a node in the graph.

    If the graph is directed returns predecessors as well as successors.

    Parameters
    ----------
    graph : NetworkX graph
        Graph to find neighbors.

    node : node
        The node whose neighbors will be returned.

    Returns
    -------
    neighbors : iterator
        Iterator of neighbors
    """
    if graph.is_directed():
        values = itertools.chain.from_iterable([graph.predecessors_iter(node),
                                                graph.successors_iter(node)])
    else:
        values = graph.neighbors_iter(node)

    return values


def non_neighbors(graph, node):
    """Returns the non-neighbors of the node in the graph.

    Parameters
    ----------
    graph : NetworkX graph
        Graph to find neighbors.

    node : node
        The node whose neighbors will be returned.

    Returns
    -------
    non_neighbors : iterator
        Iterator of nodes in the graph that are not neighbors of the node.
    """
    nbors = set(neighbors(graph, node)) | set([node])
    return (nnode for nnode in graph if nnode not in nbors)


def non_edges(graph):
    """Returns the non-existent edges in the graph.

    Parameters
    ----------
    graph : NetworkX graph.
        Graph to find non-existent edges.

    Returns
    -------
    non_edges : iterator
        Iterator of edges that are not in the graph.
    """
    if graph.is_directed():
        for u in graph.nodes_iter():
            for v in non_neighbors(graph, u):
                yield (u, v)
    else:
        nodes = set(graph)
        while nodes:
            u = nodes.pop()
            for v in nodes - set(graph[u]):
                yield (u, v)


@not_implemented_for('directed')
def common_neighbors(G, u, v):
    """Return the common neighbors of two nodes in a graph.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    u, v : nodes
        Nodes in the graph.

    Returns
    -------
    cnbors : iterator
        Iterator of common neighbors of u and v in the graph.

    Raises
    ------
    NetworkXError
        If u or v is not a node in the graph.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> sorted(nx.common_neighbors(G, 0, 1))
    [2, 3, 4]
    """
    if u not in G:
        raise nx.NetworkXError('u is not in the graph.')
    if v not in G:
        raise nx.NetworkXError('v is not in the graph.')

    # Return a generator explicitly instead of yielding so that the above
    # checks are executed eagerly.
    return (w for w in G[u] if w in G[v] and w not in (u, v))


def is_weighted(G, edge=None, weight='weight'):
    """Returns ``True`` if ``G`` has weighted edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    edge : tuple, optional
        A 2-tuple specifying the only edge in ``G`` that will be tested. If
        ``None``, then every edge in ``G`` is tested.

    weight: string, optional
        The attribute name used to query for edge weights.

    Returns
    -------
    bool
        A boolean signifying if ``G``, or the specified edge, is weighted.

    Raises
    ------
    NetworkXError
        If the specified edge does not exist.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> nx.is_weighted(G)
    False
    >>> nx.is_weighted(G, (2, 3))
    False

    >>> G = nx.DiGraph()
    >>> G.add_edge(1, 2, weight=1)
    >>> nx.is_weighted(G)
    True

    """
    if edge is not None:
        data = G.get_edge_data(*edge)
        if data is None:
            msg = 'Edge {!r} does not exist.'.format(edge)
            raise nx.NetworkXError(msg)
        return weight in data

    if is_empty(G):
        # Special handling required since: all([]) == True
        return False

    return all(weight in data for u, v, data in G.edges(data=True))


def is_negatively_weighted(G, edge=None, weight='weight'):
    """Returns ``True`` if ``G`` has negatively weighted edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    edge : tuple, optional
        A 2-tuple specifying the only edge in ``G`` that will be tested. If
        ``None``, then every edge in ``G`` is tested.

    weight: string, optional
        The attribute name used to query for edge weights.

    Returns
    -------
    bool
        A boolean signifying if ``G``, or the specified edge, is negatively
        weighted.

    Raises
    ------
    NetworkXError
        If the specified edge does not exist.

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_edges_from([(1, 3), (2, 4), (2, 6)])
    >>> G.add_edge(1, 2, weight=4)
    >>> nx.is_negatively_weighted(G, (1, 2))
    False
    >>> G[2][4]['weight'] = -2
    >>> nx.is_negatively_weighted(G)
    True
    >>> G = nx.DiGraph()
    >>> G.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5), ('1', '0', -2)])
    >>> nx.is_negatively_weighted(G)
    True

    """
    if edge is not None:
        data = G.get_edge_data(*edge)
        if data is None:
            msg = 'Edge {!r} does not exist.'.format(edge)
            raise nx.NetworkXError(msg)
        return weight in data and data[weight] < 0

    return any(weight in data and data[weight] < 0
               for u, v, data in G.edges(data=True))


def is_empty(G):
    """Returns ``True`` if ``G`` has no edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    Returns
    -------
    bool
        ``True`` if ``G`` has no edges, and ``False`` otherwise.

    Notes
    -----
    An empty graph can have nodes but not edges. The empty graph with zero
    nodes is known as the null graph. This is an O(n) operation where n is the
    number of nodes in the graph.

    """
    return not any(G.adj.values())