/usr/lib/python3/dist-packages/mpmath/math2.py is in python3-mpmath 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | """
This module complements the math and cmath builtin modules by providing
fast machine precision versions of some additional functions (gamma, ...)
and wrapping math/cmath functions so that they can be called with either
real or complex arguments.
"""
import operator
import math
import cmath
# Irrational (?) constants
pi = 3.1415926535897932385
e = 2.7182818284590452354
sqrt2 = 1.4142135623730950488
sqrt5 = 2.2360679774997896964
phi = 1.6180339887498948482
ln2 = 0.69314718055994530942
ln10 = 2.302585092994045684
euler = 0.57721566490153286061
catalan = 0.91596559417721901505
khinchin = 2.6854520010653064453
apery = 1.2020569031595942854
logpi = 1.1447298858494001741
def _mathfun_real(f_real, f_complex):
def f(x, **kwargs):
if type(x) is float:
return f_real(x)
if type(x) is complex:
return f_complex(x)
try:
x = float(x)
return f_real(x)
except (TypeError, ValueError):
x = complex(x)
return f_complex(x)
f.__name__ = f_real.__name__
return f
def _mathfun(f_real, f_complex):
def f(x, **kwargs):
if type(x) is complex:
return f_complex(x)
try:
return f_real(float(x))
except (TypeError, ValueError):
return f_complex(complex(x))
f.__name__ = f_real.__name__
return f
def _mathfun_n(f_real, f_complex):
def f(*args, **kwargs):
try:
return f_real(*(float(x) for x in args))
except (TypeError, ValueError):
return f_complex(*(complex(x) for x in args))
f.__name__ = f_real.__name__
return f
# Workaround for non-raising log and sqrt in Python 2.5 and 2.4
# on Unix system
try:
math.log(-2.0)
def math_log(x):
if x <= 0.0:
raise ValueError("math domain error")
return math.log(x)
def math_sqrt(x):
if x < 0.0:
raise ValueError("math domain error")
return math.sqrt(x)
except (ValueError, TypeError):
math_log = math.log
math_sqrt = math.sqrt
pow = _mathfun_n(operator.pow, lambda x, y: complex(x)**y)
log = _mathfun_n(math_log, cmath.log)
sqrt = _mathfun(math_sqrt, cmath.sqrt)
exp = _mathfun_real(math.exp, cmath.exp)
cos = _mathfun_real(math.cos, cmath.cos)
sin = _mathfun_real(math.sin, cmath.sin)
tan = _mathfun_real(math.tan, cmath.tan)
acos = _mathfun(math.acos, cmath.acos)
asin = _mathfun(math.asin, cmath.asin)
atan = _mathfun_real(math.atan, cmath.atan)
cosh = _mathfun_real(math.cosh, cmath.cosh)
sinh = _mathfun_real(math.sinh, cmath.sinh)
tanh = _mathfun_real(math.tanh, cmath.tanh)
floor = _mathfun_real(math.floor,
lambda z: complex(math.floor(z.real), math.floor(z.imag)))
ceil = _mathfun_real(math.ceil,
lambda z: complex(math.ceil(z.real), math.ceil(z.imag)))
cos_sin = _mathfun_real(lambda x: (math.cos(x), math.sin(x)),
lambda z: (cmath.cos(z), cmath.sin(z)))
cbrt = _mathfun(lambda x: x**(1./3), lambda z: z**(1./3))
def nthroot(x, n):
r = 1./n
try:
return float(x) ** r
except (ValueError, TypeError):
return complex(x) ** r
def _sinpi_real(x):
if x < 0:
return -_sinpi_real(-x)
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.sin(r)
if n == 1: return math.cos(r)
if n == 2: return -math.sin(r)
if n == 3: return -math.cos(r)
def _cospi_real(x):
if x < 0:
x = -x
n, r = divmod(x, 0.5)
r *= pi
n %= 4
if n == 0: return math.cos(r)
if n == 1: return -math.sin(r)
if n == 2: return -math.cos(r)
if n == 3: return math.sin(r)
def _sinpi_complex(z):
if z.real < 0:
return -_sinpi_complex(-z)
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.sin(z)
if n == 1: return cmath.cos(z)
if n == 2: return -cmath.sin(z)
if n == 3: return -cmath.cos(z)
def _cospi_complex(z):
if z.real < 0:
z = -z
n, r = divmod(z.real, 0.5)
z = pi*complex(r, z.imag)
n %= 4
if n == 0: return cmath.cos(z)
if n == 1: return -cmath.sin(z)
if n == 2: return -cmath.cos(z)
if n == 3: return cmath.sin(z)
cospi = _mathfun_real(_cospi_real, _cospi_complex)
sinpi = _mathfun_real(_sinpi_real, _sinpi_complex)
def tanpi(x):
try:
return sinpi(x) / cospi(x)
except OverflowError:
if complex(x).imag > 10:
return 1j
if complex(x).imag < 10:
return -1j
raise
def cotpi(x):
try:
return cospi(x) / sinpi(x)
except OverflowError:
if complex(x).imag > 10:
return -1j
if complex(x).imag < 10:
return 1j
raise
INF = 1e300*1e300
NINF = -INF
NAN = INF-INF
EPS = 2.2204460492503131e-16
_exact_gamma = (INF, 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0,
362880.0, 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
1307674368000.0, 20922789888000.0, 355687428096000.0, 6402373705728000.0,
121645100408832000.0, 2432902008176640000.0)
_max_exact_gamma = len(_exact_gamma)-1
# Lanczos coefficients used by the GNU Scientific Library
_lanczos_g = 7
_lanczos_p = (0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7)
def _gamma_real(x):
_intx = int(x)
if _intx == x:
if _intx <= 0:
#return (-1)**_intx * INF
raise ZeroDivisionError("gamma function pole")
if _intx <= _max_exact_gamma:
return _exact_gamma[_intx]
if x < 0.5:
# TODO: sinpi
return pi / (_sinpi_real(x)*_gamma_real(1-x))
else:
x -= 1.0
r = _lanczos_p[0]
for i in range(1, _lanczos_g+2):
r += _lanczos_p[i]/(x+i)
t = x + _lanczos_g + 0.5
return 2.506628274631000502417 * t**(x+0.5) * math.exp(-t) * r
def _gamma_complex(x):
if not x.imag:
return complex(_gamma_real(x.real))
if x.real < 0.5:
# TODO: sinpi
return pi / (_sinpi_complex(x)*_gamma_complex(1-x))
else:
x -= 1.0
r = _lanczos_p[0]
for i in range(1, _lanczos_g+2):
r += _lanczos_p[i]/(x+i)
t = x + _lanczos_g + 0.5
return 2.506628274631000502417 * t**(x+0.5) * cmath.exp(-t) * r
gamma = _mathfun_real(_gamma_real, _gamma_complex)
def rgamma(x):
try:
return 1./gamma(x)
except ZeroDivisionError:
return x*0.0
def factorial(x):
return gamma(x+1.0)
def arg(x):
if type(x) is float:
return math.atan2(0.0,x)
return math.atan2(x.imag,x.real)
# XXX: broken for negatives
def loggamma(x):
if type(x) not in (float, complex):
try:
x = float(x)
except (ValueError, TypeError):
x = complex(x)
try:
xreal = x.real
ximag = x.imag
except AttributeError: # py2.5
xreal = x
ximag = 0.0
# Reflection formula
# http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0003/
if xreal < 0.0:
if abs(x) < 0.5:
v = log(gamma(x))
if ximag == 0:
v = v.conjugate()
return v
z = 1-x
try:
re = z.real
im = z.imag
except AttributeError: # py2.5
re = z
im = 0.0
refloor = floor(re)
if im == 0.0:
imsign = 0
elif im < 0.0:
imsign = -1
else:
imsign = 1
return (-pi*1j)*abs(refloor)*(1-abs(imsign)) + logpi - \
log(sinpi(z-refloor)) - loggamma(z) + 1j*pi*refloor*imsign
if x == 1.0 or x == 2.0:
return x*0
p = 0.
while abs(x) < 11:
p -= log(x)
x += 1.0
s = 0.918938533204672742 + (x-0.5)*log(x) - x
r = 1./x
r2 = r*r
s += 0.083333333333333333333*r; r *= r2
s += -0.0027777777777777777778*r; r *= r2
s += 0.00079365079365079365079*r; r *= r2
s += -0.0005952380952380952381*r; r *= r2
s += 0.00084175084175084175084*r; r *= r2
s += -0.0019175269175269175269*r; r *= r2
s += 0.0064102564102564102564*r; r *= r2
s += -0.02955065359477124183*r
return s + p
_psi_coeff = [
0.083333333333333333333,
-0.0083333333333333333333,
0.003968253968253968254,
-0.0041666666666666666667,
0.0075757575757575757576,
-0.021092796092796092796,
0.083333333333333333333,
-0.44325980392156862745,
3.0539543302701197438,
-26.456212121212121212]
def _digamma_real(x):
_intx = int(x)
if _intx == x:
if _intx <= 0:
raise ZeroDivisionError("polygamma pole")
if x < 0.5:
x = 1.0-x
s = pi*cotpi(x)
else:
s = 0.0
while x < 10.0:
s -= 1.0/x
x += 1.0
x2 = x**-2
t = x2
for c in _psi_coeff:
s -= c*t
if t < 1e-20:
break
t *= x2
return s + math_log(x) - 0.5/x
def _digamma_complex(x):
if not x.imag:
return complex(_digamma_real(x.real))
if x.real < 0.5:
x = 1.0-x
s = pi*cotpi(x)
else:
s = 0.0
while abs(x) < 10.0:
s -= 1.0/x
x += 1.0
x2 = x**-2
t = x2
for c in _psi_coeff:
s -= c*t
if abs(t) < 1e-20:
break
t *= x2
return s + cmath.log(x) - 0.5/x
digamma = _mathfun_real(_digamma_real, _digamma_complex)
# TODO: could implement complex erf and erfc here. Need
# to find an accurate method (avoiding cancellation)
# for approx. 1 < abs(x) < 9.
_erfc_coeff_P = [
1.0000000161203922312,
2.1275306946297962644,
2.2280433377390253297,
1.4695509105618423961,
0.66275911699770787537,
0.20924776504163751585,
0.045459713768411264339,
0.0063065951710717791934,
0.00044560259661560421715][::-1]
_erfc_coeff_Q = [
1.0000000000000000000,
3.2559100272784894318,
4.9019435608903239131,
4.4971472894498014205,
2.7845640601891186528,
1.2146026030046904138,
0.37647108453729465912,
0.080970149639040548613,
0.011178148899483545902,
0.00078981003831980423513][::-1]
def _polyval(coeffs, x):
p = coeffs[0]
for c in coeffs[1:]:
p = c + x*p
return p
def _erf_taylor(x):
# Taylor series assuming 0 <= x <= 1
x2 = x*x
s = t = x
n = 1
while abs(t) > 1e-17:
t *= x2/n
s -= t/(n+n+1)
n += 1
t *= x2/n
s += t/(n+n+1)
n += 1
return 1.1283791670955125739*s
def _erfc_mid(x):
# Rational approximation assuming 0 <= x <= 9
return exp(-x*x)*_polyval(_erfc_coeff_P,x)/_polyval(_erfc_coeff_Q,x)
def _erfc_asymp(x):
# Asymptotic expansion assuming x >= 9
x2 = x*x
v = exp(-x2)/x*0.56418958354775628695
r = t = 0.5 / x2
s = 1.0
for n in range(1,22,4):
s -= t
t *= r * (n+2)
s += t
t *= r * (n+4)
if abs(t) < 1e-17:
break
return s * v
def erf(x):
"""
erf of a real number.
"""
x = float(x)
if x != x:
return x
if x < 0.0:
return -erf(-x)
if x >= 1.0:
if x >= 6.0:
return 1.0
return 1.0 - _erfc_mid(x)
return _erf_taylor(x)
def erfc(x):
"""
erfc of a real number.
"""
x = float(x)
if x != x:
return x
if x < 0.0:
if x < -6.0:
return 2.0
return 2.0-erfc(-x)
if x > 9.0:
return _erfc_asymp(x)
if x >= 1.0:
return _erfc_mid(x)
return 1.0 - _erf_taylor(x)
gauss42 = [\
(0.99839961899006235, 0.0041059986046490839),
(-0.99839961899006235, 0.0041059986046490839),
(0.9915772883408609, 0.009536220301748501),
(-0.9915772883408609,0.009536220301748501),
(0.97934250806374812, 0.014922443697357493),
(-0.97934250806374812, 0.014922443697357493),
(0.96175936533820439,0.020227869569052644),
(-0.96175936533820439, 0.020227869569052644),
(0.93892355735498811, 0.025422959526113047),
(-0.93892355735498811,0.025422959526113047),
(0.91095972490412735, 0.030479240699603467),
(-0.91095972490412735, 0.030479240699603467),
(0.87802056981217269,0.03536907109759211),
(-0.87802056981217269, 0.03536907109759211),
(0.8402859832618168, 0.040065735180692258),
(-0.8402859832618168,0.040065735180692258),
(0.7979620532554873, 0.044543577771965874),
(-0.7979620532554873, 0.044543577771965874),
(0.75127993568948048,0.048778140792803244),
(-0.75127993568948048, 0.048778140792803244),
(0.70049459055617114, 0.052746295699174064),
(-0.70049459055617114,0.052746295699174064),
(0.64588338886924779, 0.056426369358018376),
(-0.64588338886924779, 0.056426369358018376),
(0.58774459748510932, 0.059798262227586649),
(-0.58774459748510932, 0.059798262227586649),
(0.5263957499311922, 0.062843558045002565),
(-0.5263957499311922, 0.062843558045002565),
(0.46217191207042191, 0.065545624364908975),
(-0.46217191207042191, 0.065545624364908975),
(0.39542385204297503, 0.067889703376521934),
(-0.39542385204297503, 0.067889703376521934),
(0.32651612446541151, 0.069862992492594159),
(-0.32651612446541151, 0.069862992492594159),
(0.25582507934287907, 0.071454714265170971),
(-0.25582507934287907, 0.071454714265170971),
(0.18373680656485453, 0.072656175243804091),
(-0.18373680656485453, 0.072656175243804091),
(0.11064502720851986, 0.073460813453467527),
(-0.11064502720851986, 0.073460813453467527),
(0.036948943165351772, 0.073864234232172879),
(-0.036948943165351772, 0.073864234232172879)]
EI_ASYMP_CONVERGENCE_RADIUS = 40.0
def ei_asymp(z, _e1=False):
r = 1./z
s = t = 1.0
k = 1
while 1:
t *= k*r
s += t
if abs(t) < 1e-16:
break
k += 1
v = s*exp(z)/z
if _e1:
if type(z) is complex:
zreal = z.real
zimag = z.imag
else:
zreal = z
zimag = 0.0
if zimag == 0.0 and zreal > 0.0:
v += pi*1j
else:
if type(z) is complex:
if z.imag > 0:
v += pi*1j
if z.imag < 0:
v -= pi*1j
return v
def ei_taylor(z, _e1=False):
s = t = z
k = 2
while 1:
t = t*z/k
term = t/k
if abs(term) < 1e-17:
break
s += term
k += 1
s += euler
if _e1:
s += log(-z)
else:
if type(z) is float or z.imag == 0.0:
s += math_log(abs(z))
else:
s += cmath.log(z)
return s
def ei(z, _e1=False):
typez = type(z)
if typez not in (float, complex):
try:
z = float(z)
typez = float
except (TypeError, ValueError):
z = complex(z)
typez = complex
if not z:
return -INF
absz = abs(z)
if absz > EI_ASYMP_CONVERGENCE_RADIUS:
return ei_asymp(z, _e1)
elif absz <= 2.0 or (typez is float and z > 0.0):
return ei_taylor(z, _e1)
# Integrate, starting from whichever is smaller of a Taylor
# series value or an asymptotic series value
if typez is complex and z.real > 0.0:
zref = z / absz
ref = ei_taylor(zref, _e1)
else:
zref = EI_ASYMP_CONVERGENCE_RADIUS * z / absz
ref = ei_asymp(zref, _e1)
C = (zref-z)*0.5
D = (zref+z)*0.5
s = 0.0
if type(z) is complex:
_exp = cmath.exp
else:
_exp = math.exp
for x,w in gauss42:
t = C*x+D
s += w*_exp(t)/t
ref -= C*s
return ref
def e1(z):
# hack to get consistent signs if the imaginary part if 0
# and signed
typez = type(z)
if type(z) not in (float, complex):
try:
z = float(z)
typez = float
except (TypeError, ValueError):
z = complex(z)
typez = complex
if typez is complex and not z.imag:
z = complex(z.real, 0.0)
# end hack
return -ei(-z, _e1=True)
_zeta_int = [\
-0.5,
0.0,
1.6449340668482264365,1.2020569031595942854,1.0823232337111381915,
1.0369277551433699263,1.0173430619844491397,1.0083492773819228268,
1.0040773561979443394,1.0020083928260822144,1.0009945751278180853,
1.0004941886041194646,1.0002460865533080483,1.0001227133475784891,
1.0000612481350587048,1.0000305882363070205,1.0000152822594086519,
1.0000076371976378998,1.0000038172932649998,1.0000019082127165539,
1.0000009539620338728,1.0000004769329867878,1.0000002384505027277,
1.0000001192199259653,1.0000000596081890513,1.0000000298035035147,
1.0000000149015548284]
_zeta_P = [-3.50000000087575873, -0.701274355654678147,
-0.0672313458590012612, -0.00398731457954257841,
-0.000160948723019303141, -4.67633010038383371e-6,
-1.02078104417700585e-7, -1.68030037095896287e-9,
-1.85231868742346722e-11][::-1]
_zeta_Q = [1.00000000000000000, -0.936552848762465319,
-0.0588835413263763741, -0.00441498861482948666,
-0.000143416758067432622, -5.10691659585090782e-6,
-9.58813053268913799e-8, -1.72963791443181972e-9,
-1.83527919681474132e-11][::-1]
_zeta_1 = [3.03768838606128127e-10, -1.21924525236601262e-8,
2.01201845887608893e-7, -1.53917240683468381e-6,
-5.09890411005967954e-7, 0.000122464707271619326,
-0.000905721539353130232, -0.00239315326074843037,
0.084239750013159168, 0.418938517907442414, 0.500000001921884009]
_zeta_0 = [-3.46092485016748794e-10, -6.42610089468292485e-9,
1.76409071536679773e-7, -1.47141263991560698e-6, -6.38880222546167613e-7,
0.000122641099800668209, -0.000905894913516772796, -0.00239303348507992713,
0.0842396947501199816, 0.418938533204660256, 0.500000000000000052]
def zeta(s):
"""
Riemann zeta function, real argument
"""
if not isinstance(s, (float, int)):
try:
s = float(s)
except (ValueError, TypeError):
try:
s = complex(s)
if not s.imag:
return complex(zeta(s.real))
except (ValueError, TypeError):
pass
raise NotImplementedError
if s == 1:
raise ValueError("zeta(1) pole")
if s >= 27:
return 1.0 + 2.0**(-s) + 3.0**(-s)
n = int(s)
if n == s:
if n >= 0:
return _zeta_int[n]
if not (n % 2):
return 0.0
if s <= 0.0:
return 2.**s*pi**(s-1)*_sinpi_real(0.5*s)*_gamma_real(1-s)*zeta(1-s)
if s <= 2.0:
if s <= 1.0:
return _polyval(_zeta_0,s)/(s-1)
return _polyval(_zeta_1,s)/(s-1)
z = _polyval(_zeta_P,s) / _polyval(_zeta_Q,s)
return 1.0 + 2.0**(-s) + 3.0**(-s) + 4.0**(-s)*z
|