This file is indexed.

/usr/lib/python3/dist-packages/mapbox_vector_tile-0.5.0.egg-info/PKG-INFO is in python3-mapbox-vector-tile 0.5.0+ds-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
Metadata-Version: 1.0
Name: mapbox-vector-tile
Version: 0.5.0
Summary: Mapbox Vector Tile
Home-page: https://github.com/tilezen/mapbox-vector-tile
Author: Harish Krishna
Author-email: harish.krsn@gmail.com
License: MIT
Description: Mapbox Vector Tile
        ==================
        
        [![Build Status](https://travis-ci.org/tilezen/mapbox-vector-tile.svg?branch=master)](https://travis-ci.org/tilezen/mapbox-vector-tile)
        [![Coverage Status](https://coveralls.io/repos/github/tilezen/mapbox-vector-tile/badge.svg?branch=master)](https://coveralls.io/github/tilezen/mapbox-vector-tile?branch=master)
        
        Installation
        ------------
        
        mapbox-vector-tile is compatible with Python 2.6, 2.7 and 3.5. It is listed on PyPi as `mapbox-vector-tile`. The recommended way to install is via `pip`:
        
        ```shell
        pip install mapbox-vector-tile
        ```
        
        Note that `mapbox-vector-tile` depends on [Shapely](https://pypi.python.org/pypi/Shapely), a Python library for computational geometry which requires a library called [GEOS](https://trac.osgeo.org/geos/). Please see [Shapely's instructions](https://pypi.python.org/pypi/Shapely#installing-shapely) for information on how to install its prerequisites.
        
        Encoding
        --------
        
        Encode method expects an array of layers or atleast a single valid layer. A valid layer is a dictionary with the following keys
        
        * `name`: layer name
        * `features`: an array of features. A feature is a dictionary with the following keys:
        
          * `geometry`: representation of the feature geometry in WKT, WKB, or a shapely geometry. Coordinates are relative to the tile, scaled in the range `[0, 4096)`. See below for example code to perform the necessary transformation. *Note* that `GeometryCollection` types are not supported, and will trigger a `ValueError`.
          * `properties`: a dictionary with a few keys and their corresponding values.
        
        ```python
        
          >>> import mapbox_vector_tile
        
          # Using WKT
          >>> mapbox_vector_tile.encode([
              {
                "name": "water",
                "features": [
                  {
                    "geometry":"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
                    "properties":{
                      "uid":123,
                      "foo":"bar",
                      "cat":"flew"
                    }
                  }
                ]
              },
              {
                "name": "air",
                "features": [
                  {
                    "geometry":"LINESTRING(159 3877, -1570 3877)",
                    "properties":{
                      "uid":1234,
                      "foo":"bar",
                      "cat":"flew"
                    }
                  }
                ]
              }
            ])
        
          '\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aD\n\x03air\x12\x15\x12\x06\x00\x00\x01\x01\x02\x02\x18\x02"\t\t\xbe\x02\xb6\x03\n\x81\x1b\x00\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x06\n\x04flew(\x80 x\x02'
        
        
          # Using WKB
          >>> mapbox_vector_tile.encode([
              {
                "name": "water",
                "features": [
                  {
                    "geometry":"\001\003\000\000\000\001\000\000\000\005\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000",
                    "properties":{
                      "uid":123,
                      "foo":"bar",
                      "cat":"flew"
                    }
                  }
                ]
              },
              {
                "name": "air",
                "features": [
                  {
                    "geometry":"\001\003\000\000\000\001\000\000\000\005\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000",
                    "properties":{
                      "uid":1234,
                      "foo":"bar",
                      "cat":"flew"
                    }
                  }
                ]
              }
              ])
        
          '\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02'
        ```
        
        ### Coordinate transformations for encoding
        
        The encoder expects geometries either:
        
        1. In tile-relative coordinates, where the lower left corner is origin and values grow up and to the right, and the tile is 4096 pixels square. For example, `POINT(0 0)` is the lower left corner of the tile and `POINT(4096, 4096)` is the upper right corner of the tile. In this case, the library does no projection, and coordinates are encoded as-is.
        2. In another coordinate system, with the tile bounds given by the `quantize_bounds` parameter. In this case, the library will scale coordinates so that the `quantize_bounds` fit within the range (0, 4096) in both `x` and `y` directions. Aside than the affine transformation, the library does no other projection.
        
        It is possible to control whether the tile is in a "y down" coordinate system by setting the parameter `y_coord_down=True` on the call to `encode()`. The default is "y up".
        
        It is possible to control the tile extents (by default, 4096 as used in the examples above), by setting the `extents` parameter on the call to `encode()`. The default is 4096.
        
        If you have geometries in longitude and latitude (EPSG:4326), you can convert to tile-based coordinates by first projecting to Spherical Mercator (EPSG:3857) and then computing the pixel location within the tile. This example code uses Django's included GEOS library to do the transformation for `LineString` objects:
        
        ```python
          SRID_SPHERICAL_MERCATOR = 3857
        
          def linestring_in_tile(tile_bounds, line):
              # `mapbox-vector-tile` has a hardcoded tile extent of 4096 units.
              MVT_EXTENT = 4096
              from django.contrib.gis.geos import LineString
        
              # We need tile bounds in spherical mercator
              assert tile_bounds.srid == SRID_SPHERICAL_MERCATOR
        
              # And we need the line to be in a known projection so we can re-project
              assert line.srid is not None
              line.transform(SRID_SPHERICAL_MERCATOR)
        
              (x0, y0, x_max, y_max) = tile_bounds.extent
              x_span = x_max - x0
              y_span = y_max - y0
              def xy_pairs():
                  for x_merc, y_merc in line:
                      yield (
                          int((x_merc - x0) * MVT_EXTENT / x_span),
                          int((y_merc - y0) * MVT_EXTENT / y_span),
        ```
        
        The tile bounds can be found with `mercantile`, so a complete usage example might look like this:
        
        ```python
          from django.contrib.gis.geos import LineString, Polygon
          import mercantile
          import mapbox_vector_tile
        
          SRID_LNGLAT = 4326
          SRID_SPHERICAL_MERCATOR = 3857
        
          tile_xyz = (2452, 3422, 18)
          tile_bounds = Polygon.from_bbox(mercantile.bounds(*tile_xyz))
          tile_bounds.srid = SRID_LNGLAT
          tile_bounds.transform(SRID_SPHERICAL_MERCATOR)
        
          lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)), srid=SRID_LNGLAT)
          tile_line = linestring_in_tile(tile_bounds, lnglat_line)
          tile_pbf = mapbox_vector_tile.encode({
            "name": "my-layer",
            "features": [ {
              "geometry": tile_line.wkt,
              "properties": { "stuff": "things" },
            } ]
          })
        ```
        
        Note that this example may not have anything visible within the tile when rendered. It's up to you to make sure you put the right data in the tile!
        
        Also note that the spec allows the extents to be modified, even though they are often set to 4096 by convention. `mapbox-vector-tile` assumes an extent of 4096.
        
        ### Quantization
        
        The encoder also has options to quantize the data for you via the `quantize_bounds` option. When encoding, pass in the bounds in the form (minx, miny, maxx, maxy) and the coordinates will be scaled appropriately during encoding.
        
        ```python
        mapbox_vector_tile.encode([
              {
                "name": "water",
                "features": [
                  {
                    "geometry":"POINT(15 15)",
                    "properties":{
                      "foo":"bar",
                    }
                  }
                ]
              }
            ], quantize_bounds=(10.0, 10.0, 20.0, 20.0))
        ```
        
        In this example, the coordinate that would get encoded would be (2048, 2048)
        
        Additionally, if the data is already in a cooridnate system with y values going down, the encoder supports an option, `y_coord_down`, that can be set to True. This will suppress flipping the y coordinate values during encoding.
        
        ### Custom extents
        
        The encoder also supports passing in custom extents. These will be passed through to the layer in the pbf, and honored during any quantization or y coordinate flipping.
        
        ```python
        mapbox_vector_tile.encode([
              {
                "name": "water",
                "features": [
                  {
                    "geometry":"POINT(15 15)",
                    "properties":{
                      "foo":"bar",
                    }
                  }
                ]
              }
            ], quantize_bounds=(0.0, 0.0, 10.0, 10.0), extents=50)
        ```
        
        ### Custom rounding functions
        
        In order to maintain consistency between Python 2 and 3, the `decimal` module is used to explictly define `ROUND_HALF_EVEN` as the rounding method. This can be slower than the built-in `round()` function. Encode takes an optional `round_fn` where you can specify the round function to be used.
        
         ```python
        mapbox_vector_tile.encode([
              {
                "name": "water",
                "features": [
                  {
                    "geometry":"POINT(15 15)",
                    "properties":{
                      "foo":"bar",
                    }
                  }
                ]
              }
            ], quantize_bounds=(0.0, 0.0, 10.0, 10.0), round_fn=round)
        ```
        
        Decoding
        --------
        
        Decode method takes in a valid google.protobuf.message Tile and returns decoded string in the following format:
        
        ```python
          {
            layername: {
                'extent': 'integer layer extent'
                'version': 'integer'
                'features': [{
                  'geometry': 'list of points',
                  'properties': 'dictionary of key/value pairs',
                  'id': 'unique id for the given feature within the layer '
                  }, ...
                ]
            },
            layername2: {
              # ...
            }
          }
        ```
        
        ```python
          >>> import mapbox_vector_tile
        
          >>> mapbox_vector_tile.decode('\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02')
        
          {
            'water': {
              'extent': 4096,
              'version': 2,
              'features': [{
                  'geometry': [[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]],
                  'properties': {
                    'foo': 'bar',
                    'uid': 123,
                    'cat': 'flew'
                  },
                  'type': 3,
                  'id': 1
                }
              ]
            },
            'air': {
              'extent': 4096,
              'version': 2,
              'features': [{
                  'geometry': [[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]],
                  'properties': {
                    'foo': 'bar',
                    'uid': 1234,
                    'balls': 'foo',
                    'cat': 'flew'
                  },
                  'type': 3,
                  'id': 1
                }
              ]
            }
          }
        ```
        
        Here's how you might decode a tile from a file.
        
        ```python
          >>> import mapbox_vector_tile
          >>> with open('tile.mvt', 'rb') as f:
          >>>     data = f.read()
          >>> decoded_data = mapbox_vector_tile.decode(data)
          >>> with open('out.txt', 'w') as f:
          >>>     f.write(repr(decoded_data))
        ```
        
        Changelog
        ---------
        
        Click [here](https://github.com/tilezen/mapbox-vector-tile/blob/master/CHANGELOG.md) to see what changed over time in various versions.
        
Platform: UNKNOWN