This file is indexed.

/usr/lib/python3/dist-packages/keras/optimizers.py is in python3-keras 2.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
from __future__ import absolute_import
import six
import copy
from six.moves import zip

from . import backend as K
from .utils.generic_utils import serialize_keras_object
from .utils.generic_utils import deserialize_keras_object
from .legacy import interfaces

if K.backend() == 'tensorflow':
    import tensorflow as tf


def clip_norm(g, c, n):
    if c <= 0:  # if clipnorm == 0 no need to add ops to the graph
        return g

    # tf require using a special op to multiply IndexedSliced by scalar
    if K.backend() == 'tensorflow':
        condition = n >= c
        then_expression = tf.scalar_mul(c / n, g)
        else_expression = g

        # saving the shape to avoid converting sparse tensor to dense
        if isinstance(then_expression, tf.Tensor):
            g_shape = copy.copy(then_expression.get_shape())
        elif isinstance(then_expression, tf.IndexedSlices):
            g_shape = copy.copy(then_expression.dense_shape)
        if condition.dtype != tf.bool:
            condition = tf.cast(condition, 'bool')
        g = tf.cond(condition,
                    lambda: then_expression,
                    lambda: else_expression)
        if isinstance(then_expression, tf.Tensor):
            g.set_shape(g_shape)
        elif isinstance(then_expression, tf.IndexedSlices):
            g._dense_shape = g_shape
    else:
        g = K.switch(K.greater_equal(n, c), g * c / n, g)
    return g


class Optimizer(object):
    """Abstract optimizer base class.

    Note: this is the parent class of all optimizers, not an actual optimizer
    that can be used for training models.

    All Keras optimizers support the following keyword arguments:

        clipnorm: float >= 0. Gradients will be clipped
            when their L2 norm exceeds this value.
        clipvalue: float >= 0. Gradients will be clipped
            when their absolute value exceeds this value.
    """

    def __init__(self, **kwargs):
        allowed_kwargs = {'clipnorm', 'clipvalue'}
        for k in kwargs:
            if k not in allowed_kwargs:
                raise TypeError('Unexpected keyword argument '
                                'passed to optimizer: ' + str(k))
        self.__dict__.update(kwargs)
        self.updates = []
        self.weights = []

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        raise NotImplementedError

    def get_gradients(self, loss, params):
        grads = K.gradients(loss, params)
        if hasattr(self, 'clipnorm') and self.clipnorm > 0:
            norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
            grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
        if hasattr(self, 'clipvalue') and self.clipvalue > 0:
            grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
        return grads

    def set_weights(self, weights):
        """Sets the weights of the optimizer, from Numpy arrays.

        Should only be called after computing the gradients
        (otherwise the optimizer has no weights).

        # Arguments
            weights: a list of Numpy arrays. The number
                of arrays and their shape must match
                number of the dimensions of the weights
                of the optimizer (i.e. it should match the
                output of `get_weights`).

        # Raises
            ValueError: in case of incompatible weight shapes.
        """
        params = self.weights
        weight_value_tuples = []
        param_values = K.batch_get_value(params)
        for pv, p, w in zip(param_values, params, weights):
            if pv.shape != w.shape:
                raise ValueError('Optimizer weight shape ' +
                                 str(pv.shape) +
                                 ' not compatible with '
                                 'provided weight shape ' + str(w.shape))
            weight_value_tuples.append((p, w))
        K.batch_set_value(weight_value_tuples)

    def get_weights(self):
        """Returns the current value of the weights of the optimizer.

        # Returns
            A list of numpy arrays.
        """
        return K.batch_get_value(self.weights)

    def get_config(self):
        config = {}
        if hasattr(self, 'clipnorm'):
            config['clipnorm'] = self.clipnorm
        if hasattr(self, 'clipvalue'):
            config['clipvalue'] = self.clipvalue
        return config

    @classmethod
    def from_config(cls, config):
        return cls(**config)


class SGD(Optimizer):
    """Stochastic gradient descent optimizer.

    Includes support for momentum,
    learning rate decay, and Nesterov momentum.

    # Arguments
        lr: float >= 0. Learning rate.
        momentum: float >= 0. Parameter updates momentum.
        decay: float >= 0. Learning rate decay over each update.
        nesterov: boolean. Whether to apply Nesterov momentum.
    """

    def __init__(self, lr=0.01, momentum=0., decay=0.,
                 nesterov=False, **kwargs):
        super(SGD, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.momentum = K.variable(momentum, name='momentum')
            self.decay = K.variable(decay, name='decay')
        self.initial_decay = decay
        self.nesterov = nesterov

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))
        # momentum
        shapes = [K.int_shape(p) for p in params]
        moments = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + moments
        for p, g, m in zip(params, grads, moments):
            v = self.momentum * m - lr * g  # velocity
            self.updates.append(K.update(m, v))

            if self.nesterov:
                new_p = p + self.momentum * v - lr * g
            else:
                new_p = p + v

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'momentum': float(K.get_value(self.momentum)),
                  'decay': float(K.get_value(self.decay)),
                  'nesterov': self.nesterov}
        base_config = super(SGD, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class RMSprop(Optimizer):
    """RMSProp optimizer.

    It is recommended to leave the parameters of this optimizer
    at their default values
    (except the learning rate, which can be freely tuned).

    This optimizer is usually a good choice for recurrent
    neural networks.

    # Arguments
        lr: float >= 0. Learning rate.
        rho: float >= 0.
        epsilon: float >= 0. Fuzz factor.
        decay: float >= 0. Learning rate decay over each update.

    # References
        - [rmsprop: Divide the gradient by a running average of its recent magnitude](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
    """

    def __init__(self, lr=0.001, rho=0.9, epsilon=1e-8, decay=0.,
                 **kwargs):
        super(RMSprop, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.lr = K.variable(lr, name='lr')
            self.rho = K.variable(rho, name='rho')
            self.decay = K.variable(decay, name='decay')
            self.iterations = K.variable(0, dtype='int64', name='iterations')
        self.epsilon = epsilon
        self.initial_decay = decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = accumulators
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        for p, g, a in zip(params, grads, accumulators):
            # update accumulator
            new_a = self.rho * a + (1. - self.rho) * K.square(g)
            self.updates.append(K.update(a, new_a))
            new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'rho': float(K.get_value(self.rho)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon}
        base_config = super(RMSprop, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class Adagrad(Optimizer):
    """Adagrad optimizer.

    It is recommended to leave the parameters of this optimizer
    at their default values.

    # Arguments
        lr: float >= 0. Learning rate.
        epsilon: float >= 0.
        decay: float >= 0. Learning rate decay over each update.

    # References
        - [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    """

    def __init__(self, lr=0.01, epsilon=1e-8, decay=0., **kwargs):
        super(Adagrad, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.lr = K.variable(lr, name='lr')
            self.decay = K.variable(decay, name='decay')
            self.iterations = K.variable(0, dtype='int64', name='iterations')
        self.epsilon = epsilon
        self.initial_decay = decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        shapes = [K.int_shape(p) for p in params]
        accumulators = [K.zeros(shape) for shape in shapes]
        self.weights = accumulators
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        for p, g, a in zip(params, grads, accumulators):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append(K.update(a, new_a))
            new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon)

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon}
        base_config = super(Adagrad, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class Adadelta(Optimizer):
    """Adadelta optimizer.

    It is recommended to leave the parameters of this optimizer
    at their default values.

    # Arguments
        lr: float >= 0. Learning rate.
            It is recommended to leave it at the default value.
        rho: float >= 0.
        epsilon: float >= 0. Fuzz factor.
        decay: float >= 0. Learning rate decay over each update.

    # References
        - [Adadelta - an adaptive learning rate method](http://arxiv.org/abs/1212.5701)
    """

    def __init__(self, lr=1.0, rho=0.95, epsilon=1e-8, decay=0.,
                 **kwargs):
        super(Adadelta, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.lr = K.variable(lr, name='lr')
            self.decay = K.variable(decay, name='decay')
            self.iterations = K.variable(0, dtype='int64', name='iterations')
        self.rho = rho
        self.epsilon = epsilon
        self.initial_decay = decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        shapes = [K.int_shape(p) for p in params]
        accumulators = [K.zeros(shape) for shape in shapes]
        delta_accumulators = [K.zeros(shape) for shape in shapes]
        self.weights = accumulators + delta_accumulators
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
            # update accumulator
            new_a = self.rho * a + (1. - self.rho) * K.square(g)
            self.updates.append(K.update(a, new_a))

            # use the new accumulator and the *old* delta_accumulator
            update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)
            new_p = p - lr * update

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))

            # update delta_accumulator
            new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
            self.updates.append(K.update(d_a, new_d_a))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'rho': self.rho,
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon}
        base_config = super(Adadelta, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class Adam(Optimizer):
    """Adam optimizer.

    Default parameters follow those provided in the original paper.

    # Arguments
        lr: float >= 0. Learning rate.
        beta_1: float, 0 < beta < 1. Generally close to 1.
        beta_2: float, 0 < beta < 1. Generally close to 1.
        epsilon: float >= 0. Fuzz factor.
        decay: float >= 0. Learning rate decay over each update.

    # References
        - [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
    """

    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, decay=0., **kwargs):
        super(Adam, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        self.epsilon = epsilon
        self.initial_decay = decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon}
        base_config = super(Adam, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class Adamax(Optimizer):
    """Adamax optimizer from Adam paper's Section 7.

    It is a variant of Adam based on the infinity norm.
    Default parameters follow those provided in the paper.

    # Arguments
        lr: float >= 0. Learning rate.
        beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
        epsilon: float >= 0. Fuzz factor.
        decay: float >= 0. Learning rate decay over each update.

    # References
        - [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
    """

    def __init__(self, lr=0.002, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, decay=0., **kwargs):
        super(Adamax, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        self.epsilon = epsilon
        self.initial_decay = decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.initial_decay > 0:
            lr *= (1. / (1. + self.decay * K.cast(self.iterations,
                                                  K.dtype(self.decay))))

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = lr / (1. - K.pow(self.beta_1, t))

        shapes = [K.int_shape(p) for p in params]
        # zero init of 1st moment
        ms = [K.zeros(shape) for shape in shapes]
        # zero init of exponentially weighted infinity norm
        us = [K.zeros(shape) for shape in shapes]
        self.weights = [self.iterations] + ms + us

        for p, g, m, u in zip(params, grads, ms, us):

            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            u_t = K.maximum(self.beta_2 * u, K.abs(g))
            p_t = p - lr_t * m_t / (u_t + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(u, u_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon}
        base_config = super(Adamax, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class Nadam(Optimizer):
    """Nesterov Adam optimizer.

    Much like Adam is essentially RMSprop with momentum,
    Nadam is Adam RMSprop with Nesterov momentum.

    Default parameters follow those provided in the paper.
    It is recommended to leave the parameters of this optimizer
    at their default values.

    # Arguments
        lr: float >= 0. Learning rate.
        beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
        epsilon: float >= 0. Fuzz factor.

    # References
        - [Nadam report](http://cs229.stanford.edu/proj2015/054_report.pdf)
        - [On the importance of initialization and momentum in deep learning](http://www.cs.toronto.edu/~fritz/absps/momentum.pdf)
    """

    def __init__(self, lr=0.002, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, schedule_decay=0.004, **kwargs):
        super(Nadam, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.m_schedule = K.variable(1., name='m_schedule')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
        self.epsilon = epsilon
        self.schedule_decay = schedule_decay

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1

        # Due to the recommendations in [2], i.e. warming momentum schedule
        momentum_cache_t = self.beta_1 * (1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay)))
        momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * (K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay)))
        m_schedule_new = self.m_schedule * momentum_cache_t
        m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
        self.updates.append((self.m_schedule, m_schedule_new))

        shapes = [K.int_shape(p) for p in params]
        ms = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]

        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            # the following equations given in [1]
            g_prime = g / (1. - m_schedule_new)
            m_t = self.beta_1 * m + (1. - self.beta_1) * g
            m_t_prime = m_t / (1. - m_schedule_next)
            v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
            v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
            m_t_bar = (1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))

            p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates

    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'epsilon': self.epsilon,
                  'schedule_decay': self.schedule_decay}
        base_config = super(Nadam, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


class TFOptimizer(Optimizer):
    """Wrapper class for native TensorFlow optimizers.
    """

    def __init__(self, optimizer):
        self.optimizer = optimizer
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.optimizer.compute_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]
        opt_update = self.optimizer.apply_gradients(
            grads, global_step=self.iterations)
        self.updates.append(opt_update)
        return self.updates

    @property
    def weights(self):
        raise NotImplementedError

    def get_config(self):
        raise NotImplementedError

    def from_config(self, config):
        raise NotImplementedError


# Aliases.

sgd = SGD
rmsprop = RMSprop
adagrad = Adagrad
adadelta = Adadelta
adam = Adam
adamax = Adamax
nadam = Nadam


def serialize(optimizer):
    return serialize_keras_object(optimizer)


def deserialize(config, custom_objects=None):
    """Inverse of the `serialize` function.

    # Arguments
        config: Optimizer configuration dictionary.
        custom_objects: Optional dictionary mapping
            names (strings) to custom objects
            (classes and functions)
            to be considered during deserialization.

    # Returns
        A Keras Optimizer instance.
    """
    all_classes = {
        'sgd': SGD,
        'rmsprop': RMSprop,
        'adagrad': Adagrad,
        'adadelta': Adadelta,
        'adam': Adam,
        'adamax': Adamax,
        'nadam': Nadam,
        'tfoptimizer': TFOptimizer,
    }
    # Make deserialization case-insensitive for built-in optimizers.
    if config['class_name'].lower() in all_classes:
        config['class_name'] = config['class_name'].lower()
    return deserialize_keras_object(config,
                                    module_objects=all_classes,
                                    custom_objects=custom_objects,
                                    printable_module_name='optimizer')


def get(identifier):
    """Retrieves a Keras Optimizer instance.

    # Arguments
        identifier: Optimizer identifier, one of
            - String: name of an optimizer
            - Dictionary: configuration dictionary.
            - Keras Optimizer instance (it will be returned unchanged).
            - TensorFlow Optimizer instance
                (it will be wrapped as a Keras Optimizer).

    # Returns
        A Keras Optimizer instance.

    # Raises
        ValueError: If `identifier` cannot be interpreted.
    """
    if K.backend() == 'tensorflow':
        # Wrap TF optimizer instances
        if isinstance(identifier, tf.train.Optimizer):
            return TFOptimizer(identifier)
    if isinstance(identifier, dict):
        return deserialize(identifier)
    elif isinstance(identifier, six.string_types):
        config = {'class_name': str(identifier), 'config': {}}
        return deserialize(config)
    if isinstance(identifier, Optimizer):
        return identifier
    else:
        raise ValueError('Could not interpret optimizer identifier:',
                         identifier)