/usr/lib/python3/dist-packages/keras/models.py is in python3-keras 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 | # -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
import warnings
import copy
import json
import os
import yaml
import numpy as np
from . import backend as K
from . import optimizers
from . import layers as layer_module
from .utils.io_utils import ask_to_proceed_with_overwrite
from .utils.generic_utils import has_arg
from .engine.training import Model
from .engine import topology
from .engine.topology import Layer
from .engine.topology import Input
from .engine.topology import InputLayer
from .legacy import layers as legacy_layers
from .legacy import models as legacy_models
from .legacy import interfaces
try:
import h5py
except ImportError:
h5py = None
def save_model(model, filepath, overwrite=True, include_optimizer=True):
"""Save a model to a HDF5 file.
The saved model contains:
- the model's configuration (topology)
- the model's weights
- the model's optimizer's state (if any)
Thus the saved model can be reinstantiated in
the exact same state, without any of the code
used for model definition or training.
# Arguments
model: Keras model instance to be saved.
filepath: String, path where to save the model.
overwrite: Whether we should overwrite any existing
model at the target location, or instead
ask the user with a manual prompt.
include_optimizer: If True, save optimizer's state together.
# Raises
ImportError: if h5py is not available.
"""
if h5py is None:
raise ImportError('`save_model` requires h5py.')
def get_json_type(obj):
"""Serialize any object to a JSON-serializable structure.
# Arguments
obj: the object to serialize
# Returns
JSON-serializable structure representing `obj`.
# Raises
TypeError: if `obj` cannot be serialized.
"""
# if obj is a serializable Keras class instance
# e.g. optimizer, layer
if hasattr(obj, 'get_config'):
return {'class_name': obj.__class__.__name__,
'config': obj.get_config()}
# if obj is any numpy type
if type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return {'type': type(obj),
'value': obj.tolist()}
else:
return obj.item()
# misc functions (e.g. loss function)
if callable(obj):
return obj.__name__
# if obj is a python 'type'
if type(obj).__name__ == type.__name__:
return obj.__name__
raise TypeError('Not JSON Serializable:', obj)
from . import __version__ as keras_version
# If file exists and should not be overwritten.
if not overwrite and os.path.isfile(filepath):
proceed = ask_to_proceed_with_overwrite(filepath)
if not proceed:
return
with h5py.File(filepath, mode='w') as f:
f.attrs['keras_version'] = str(keras_version).encode('utf8')
f.attrs['backend'] = K.backend().encode('utf8')
f.attrs['model_config'] = json.dumps({
'class_name': model.__class__.__name__,
'config': model.get_config()
}, default=get_json_type).encode('utf8')
model_weights_group = f.create_group('model_weights')
if legacy_models.needs_legacy_support(model):
model_layers = legacy_models.legacy_sequential_layers(model)
else:
model_layers = model.layers
topology.save_weights_to_hdf5_group(model_weights_group, model_layers)
if include_optimizer and hasattr(model, 'optimizer'):
if isinstance(model.optimizer, optimizers.TFOptimizer):
warnings.warn(
'TensorFlow optimizers do not '
'make it possible to access '
'optimizer attributes or optimizer state '
'after instantiation. '
'As a result, we cannot save the optimizer '
'as part of the model save file.'
'You will have to compile your model again '
'after loading it. '
'Prefer using a Keras optimizer instead '
'(see keras.io/optimizers).')
else:
f.attrs['training_config'] = json.dumps({
'optimizer_config': {
'class_name': model.optimizer.__class__.__name__,
'config': model.optimizer.get_config()
},
'loss': model.loss,
'metrics': model.metrics,
'sample_weight_mode': model.sample_weight_mode,
'loss_weights': model.loss_weights,
}, default=get_json_type).encode('utf8')
# Save optimizer weights.
symbolic_weights = getattr(model.optimizer, 'weights')
if symbolic_weights:
optimizer_weights_group = f.create_group('optimizer_weights')
weight_values = K.batch_get_value(symbolic_weights)
weight_names = []
for i, (w, val) in enumerate(zip(symbolic_weights,
weight_values)):
# Default values of symbolic_weights is /variable
# for theano and cntk
if K.backend() == 'theano' or K.backend() == 'cntk':
if hasattr(w, 'name'):
if w.name.split('/')[-1] == 'variable':
name = str(w.name) + '_' + str(i)
else:
name = str(w.name)
else:
name = 'param_' + str(i)
else:
if hasattr(w, 'name') and w.name:
name = str(w.name)
else:
name = 'param_' + str(i)
weight_names.append(name.encode('utf8'))
optimizer_weights_group.attrs['weight_names'] = weight_names
for name, val in zip(weight_names, weight_values):
param_dset = optimizer_weights_group.create_dataset(
name,
val.shape,
dtype=val.dtype)
if not val.shape:
# scalar
param_dset[()] = val
else:
param_dset[:] = val
f.flush()
def load_model(filepath, custom_objects=None, compile=True):
"""Loads a model saved via `save_model`.
# Arguments
filepath: String, path to the saved model.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
compile: Boolean, whether to compile the model
after loading.
# Returns
A Keras model instance. If an optimizer was found
as part of the saved model, the model is already
compiled. Otherwise, the model is uncompiled and
a warning will be displayed. When `compile` is set
to False, the compilation is omitted without any
warning.
# Raises
ImportError: if h5py is not available.
ValueError: In case of an invalid savefile.
"""
if h5py is None:
raise ImportError('`load_model` requires h5py.')
if not custom_objects:
custom_objects = {}
def convert_custom_objects(obj):
"""Handles custom object lookup.
# Arguments
obj: object, dict, or list.
# Returns
The same structure, where occurrences
of a custom object name have been replaced
with the custom object.
"""
if isinstance(obj, list):
deserialized = []
for value in obj:
deserialized.append(convert_custom_objects(value))
return deserialized
if isinstance(obj, dict):
deserialized = {}
for key, value in obj.items():
deserialized[key] = convert_custom_objects(value)
return deserialized
if obj in custom_objects:
return custom_objects[obj]
return obj
with h5py.File(filepath, mode='r') as f:
# instantiate model
model_config = f.attrs.get('model_config')
if model_config is None:
raise ValueError('No model found in config file.')
model_config = json.loads(model_config.decode('utf-8'))
model = model_from_config(model_config, custom_objects=custom_objects)
# set weights
topology.load_weights_from_hdf5_group(f['model_weights'], model.layers)
# Early return if compilation is not required.
if not compile:
return model
# instantiate optimizer
training_config = f.attrs.get('training_config')
if training_config is None:
warnings.warn('No training configuration found in save file: '
'the model was *not* compiled. Compile it manually.')
return model
training_config = json.loads(training_config.decode('utf-8'))
optimizer_config = training_config['optimizer_config']
optimizer = optimizers.deserialize(optimizer_config,
custom_objects=custom_objects)
# Recover loss functions and metrics.
loss = convert_custom_objects(training_config['loss'])
metrics = convert_custom_objects(training_config['metrics'])
sample_weight_mode = training_config['sample_weight_mode']
loss_weights = training_config['loss_weights']
# Compile model.
model.compile(optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
sample_weight_mode=sample_weight_mode)
# Set optimizer weights.
if 'optimizer_weights' in f:
# Build train function (to get weight updates).
if isinstance(model, Sequential):
model.model._make_train_function()
else:
model._make_train_function()
optimizer_weights_group = f['optimizer_weights']
optimizer_weight_names = [n.decode('utf8') for n in
optimizer_weights_group.attrs['weight_names']]
optimizer_weight_values = [optimizer_weights_group[n] for n in
optimizer_weight_names]
try:
model.optimizer.set_weights(optimizer_weight_values)
except ValueError:
warnings.warn('Error in loading the saved optimizer '
'state. As a result, your model is '
'starting with a freshly initialized '
'optimizer.')
return model
def model_from_config(config, custom_objects=None):
"""Instantiates a Keras model from its config.
# Arguments
config: Configuration dictionary.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
# Raises
TypeError: if `config` is not a dictionary.
"""
if isinstance(config, list):
raise TypeError('`model_from_config` expects a dictionary, not a list. '
'Maybe you meant to use '
'`Sequential.from_config(config)`?')
return layer_module.deserialize(config, custom_objects=custom_objects)
def model_from_yaml(yaml_string, custom_objects=None):
"""Parses a yaml model configuration file and returns a model instance.
# Arguments
yaml_string: YAML string encoding a model configuration.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
"""
config = yaml.load(yaml_string)
return layer_module.deserialize(config, custom_objects=custom_objects)
def model_from_json(json_string, custom_objects=None):
"""Parses a JSON model configuration file and returns a model instance.
# Arguments
json_string: JSON string encoding a model configuration.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
# Returns
A Keras model instance (uncompiled).
"""
config = json.loads(json_string)
return layer_module.deserialize(config, custom_objects=custom_objects)
class Sequential(Model):
"""Linear stack of layers.
# Arguments
layers: list of layers to add to the model.
# Note
The first layer passed to a Sequential model
should have a defined input shape. What that
means is that it should have received an `input_shape`
or `batch_input_shape` argument,
or for some type of layers (recurrent, Dense...)
an `input_dim` argument.
# Example
```python
model = Sequential()
# first layer must have a defined input shape
model.add(Dense(32, input_dim=500))
# afterwards, Keras does automatic shape inference
model.add(Dense(32))
# also possible (equivalent to the above):
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(32))
# also possible (equivalent to the above):
model = Sequential()
# here the batch dimension is None,
# which means any batch size will be accepted by the model.
model.add(Dense(32, batch_input_shape=(None, 500)))
model.add(Dense(32))
```
"""
def __init__(self, layers=None, name=None):
self.layers = [] # Stack of layers.
self.model = None # Internal Model instance.
self.inputs = [] # List of input tensors
self.outputs = [] # List of length 1: the output tensor (unique).
self._trainable = True
self._initial_weights = None
# Model attributes.
self.inbound_nodes = []
self.outbound_nodes = []
self.built = False
# Set model name.
if not name:
prefix = 'sequential_'
name = prefix + str(K.get_uid(prefix))
self.name = name
# Add to the model any layers passed to the constructor.
if layers:
for layer in layers:
self.add(layer)
def add(self, layer):
"""Adds a layer instance on top of the layer stack.
# Arguments
layer: layer instance.
# Raises
TypeError: If `layer` is not a layer instance.
ValueError: In case the `layer` argument does not
know its input shape.
ValueError: In case the `layer` argument has
multiple output tensors, or is already connected
somewhere else (forbidden in `Sequential` models).
"""
if not isinstance(layer, Layer):
raise TypeError('The added layer must be '
'an instance of class Layer. '
'Found: ' + str(layer))
if not self.outputs:
# First layer in model: check that it is an input layer.
if not isinstance(layer, (InputLayer, legacy_layers.Merge)):
# Create an input layer.
# First, we need to infer its expected input shape and dtype.
if isinstance(layer, (Model, Sequential)):
# We were passed a model as first layer.
# This requires a specific way to figure out the
# input shape and dtype.
if not layer.layers:
raise ValueError('Cannot add an empty model '
'to a `Sequential` model.')
# In case of nested models: recover the first layer
# of the deepest model to infer input shape and dtype.
first_layer = layer.layers[0]
while isinstance(first_layer, (Model, Sequential)):
first_layer = first_layer.layers[0]
batch_shape = first_layer.batch_input_shape
dtype = first_layer.dtype
else:
# We were passed a regular layer, and it should
# know about its input shape. Otherwise, that's an error.
if not hasattr(layer, 'batch_input_shape'):
raise ValueError('The first layer in a '
'Sequential model must '
'get an `input_shape` or '
'`batch_input_shape` argument.')
batch_shape = layer.batch_input_shape
dtype = layer.dtype
# Instantiate the input layer.
x = Input(batch_shape=batch_shape,
dtype=dtype,
name=layer.name + '_input')
# This will build the current layer
# and create the node connecting the current layer
# to the input layer we just created.
layer(x)
if len(layer.inbound_nodes[-1].output_tensors) != 1:
raise ValueError('All layers in a Sequential model '
'should have a single output tensor. '
'For multi-output layers, '
'use the functional API.')
self.outputs = [layer.inbound_nodes[-1].output_tensors[0]]
self.inputs = topology.get_source_inputs(self.outputs[0])
# We create an input node, which we will keep updated
# as we add more layers
topology.Node(outbound_layer=self,
inbound_layers=[],
node_indices=[],
tensor_indices=[],
input_tensors=self.inputs,
output_tensors=self.outputs,
# no model-level masking for now
input_masks=[None for _ in self.inputs],
output_masks=[None],
input_shapes=[x._keras_shape for x in self.inputs],
output_shapes=[self.outputs[0]._keras_shape])
else:
output_tensor = layer(self.outputs[0])
if isinstance(output_tensor, list):
raise TypeError('All layers in a Sequential model '
'should have a single output tensor. '
'For multi-output layers, '
'use the functional API.')
self.outputs = [output_tensor]
# update self.inbound_nodes
self.inbound_nodes[0].output_tensors = self.outputs
self.inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]
self.layers.append(layer)
self.built = False
def pop(self):
"""Removes the last layer in the model.
# Raises
TypeError: if there are no layers in the model.
"""
if not self.layers:
raise TypeError('There are no layers in the model.')
self.layers.pop()
if not self.layers:
self.outputs = []
self.inbound_nodes = []
self.outbound_nodes = []
else:
self.layers[-1].outbound_nodes = []
self.outputs = [self.layers[-1].output]
# update self.inbound_nodes
self.inbound_nodes[0].output_tensors = self.outputs
self.inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]
self.built = False
def get_layer(self, name=None, index=None):
"""Retrieve a layer that is part of the model.
Returns a layer based on either its name (unique)
or its index in the graph. Indices are based on
order of horizontal graph traversal (bottom-up).
# Arguments
name: string, name of layer.
index: integer, index of layer.
# Returns
A layer instance.
"""
if not self.built:
self.build()
return self.model.get_layer(name, index)
def call(self, inputs, mask=None):
if not self.built:
self.build()
return self.model.call(inputs, mask)
def build(self, input_shape=None):
if not self.inputs or not self.outputs:
raise TypeError('Sequential model cannot be built: model is empty.'
' Add some layers first.')
# actually create the model
self.model = Model(self.inputs, self.outputs[0],
name=self.name + '_model')
self.model.trainable = self.trainable
# mirror model attributes
self.supports_masking = self.model.supports_masking
self._output_mask_cache = self.model._output_mask_cache
self._output_tensor_cache = self.model._output_tensor_cache
self._output_shape_cache = self.model._output_shape_cache
self.input_layers = self.model.input_layers
self.input_layers_node_indices = self.model.input_layers_node_indices
self.input_layers_tensor_indices = self.model.input_layers_tensor_indices
self.output_layers = self.model.output_layers
self.output_layers_node_indices = self.model.output_layers_node_indices
self.output_layers_tensor_indices = self.model.output_layers_tensor_indices
self.nodes_by_depth = self.model.nodes_by_depth
self.container_nodes = self.model.container_nodes
self.output_names = self.model.output_names
self.input_names = self.model.input_names
self._feed_input_names = self.model._feed_input_names
self._feed_inputs = self.model._feed_inputs
# Make sure child model callbacks
# will call the parent Sequential model.
self.model.callback_model = self
self.built = True
@property
def uses_learning_phase(self):
if not self.built:
self.build()
return self.model.uses_learning_phase
@property
def _flattened_layers(self):
layers = []
if self.layers:
# Support for legacy models
if isinstance(self.layers[0], legacy_layers.Merge):
merge = self.layers[0]
for layer in merge.layers:
if hasattr(layer, '_flattened_layers'):
for sublayer in layer._flattened_layers:
if sublayer not in layers:
layers.append(sublayer)
elif hasattr(layer, 'layers'):
for sublayer in layer.layers:
if sublayer not in layers:
layers.append(sublayer)
else:
if layer not in layers:
layers.append(layer)
else:
if self.layers[0] not in layers:
layers.append(self.layers[0])
for layer in self.layers[1:]:
if layer not in layers:
layers.append(layer)
return layers
def _gather_list_attr(self, attr):
all_attrs = []
for layer in self._flattened_layers:
all_attrs += getattr(layer, attr, [])
return all_attrs
@property
def trainable(self):
return self._trainable
@trainable.setter
def trainable(self, value):
if self.model:
self.model.trainable = value
self._trainable = value
@property
def trainable_weights(self):
if not self.trainable:
return []
# Support for legacy behavior
return self._gather_list_attr('trainable_weights')
@property
def non_trainable_weights(self):
# Support for legacy behavior
weights = self._gather_list_attr('non_trainable_weights')
if not self.trainable:
trainable_weights = self._gather_list_attr('trainable_weights')
return trainable_weights + weights
return weights
@property
def updates(self):
if not self.built:
self.build()
return self.model.updates
@property
def state_updates(self):
if not self.built:
self.build()
return self.model.state_updates
def get_updates_for(self, inputs):
if not self.built:
self.build()
return self.model.get_updates_for(inputs)
@property
def losses(self):
if not self.built:
self.build()
return self.model.losses
def get_losses_for(self, inputs):
if not self.built:
self.build()
return self.model.get_losses_for(inputs)
@property
def regularizers(self):
if not self.built:
self.build()
return self.model.regularizers
def get_weights(self):
"""Retrieves the weights of the model.
# Returns
A flat list of Numpy arrays
(one array per model weight).
"""
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
weights = []
for layer in layers:
weights.append(layer.get_weights())
return weights
if not self.built:
self.build()
return self.model.get_weights()
def set_weights(self, weights):
"""Sets the weights of the model.
# Arguments
weights: Should be a list
of Numpy arrays with shapes and types matching
the output of `model.get_weights()`.
"""
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
for layer in layers:
nb_param = len(layer.weights)
layer.set_weights(weights[:nb_param])
weights = weights[nb_param:]
if not self.built:
self.build()
self.model.set_weights(weights)
def load_weights(self, filepath, by_name=False):
if h5py is None:
raise ImportError('`load_weights` requires h5py.')
f = h5py.File(filepath, mode='r')
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
else:
layers = self.layers
if by_name:
topology.load_weights_from_hdf5_group_by_name(f, layers)
else:
topology.load_weights_from_hdf5_group(f, layers)
if hasattr(f, 'close'):
f.close()
def save_weights(self, filepath, overwrite=True):
if h5py is None:
raise ImportError('`save_weights` requires h5py.')
# If file exists and should not be overwritten:
if not overwrite and os.path.isfile(filepath):
proceed = ask_to_proceed_with_overwrite(filepath)
if not proceed:
return
# Legacy support
if legacy_models.needs_legacy_support(self):
layers = legacy_models.legacy_sequential_layers(self)
else:
layers = self.layers
f = h5py.File(filepath, 'w')
topology.save_weights_to_hdf5_group(f, layers)
f.flush()
f.close()
def compile(self, optimizer, loss,
metrics=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
"""Configures the model for training.
# Arguments
optimizer: String (name of optimizer) or optimizer object.
See [optimizers](/optimizers).
loss: String (name of objective function) or objective function.
See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
metrics: List of metrics to be evaluated by the model
during training and testing.
Typically you will use `metrics=['accuracy']`.
To specify different metrics for different outputs of a
multi-output model, you could also pass a dictionary,
such as `metrics={'output_a': 'accuracy'}`.
sample_weight_mode: If you need to do timestep-wise
sample weighting (2D weights), set this to `"temporal"`.
`None` defaults to sample-wise weights (1D).
If the model has multiple outputs, you can use a different
`sample_weight_mode` on each output by passing a
dictionary or a list of modes.
weighted_metrics: List of metrics to be evaluated and weighted
by sample_weight or class_weight during training and testing.
target_tensors: By default, Keras will create a placeholder for the
model's target, which will be fed with the target data during
training. If instead you would like to use your own
target tensor (in turn, Keras will not expect external
Numpy data for these targets at training time), you
can specify them via the `target_tensors` argument.
It should be a single tensor
(for a single-output `Sequential` model).
**kwargs: When using the Theano/CNTK backends, these arguments
are passed into `K.function`.
When using the TensorFlow backend,
these arguments are passed into `tf.Session.run`.
# Raises
ValueError: In case of invalid arguments for
# Example
```python
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
```
"""
# create the underlying model
self.build()
# call compile method of Model class
self.model.compile(optimizer, loss,
metrics=metrics,
sample_weight_mode=sample_weight_mode,
weighted_metrics=weighted_metrics,
target_tensors=target_tensors,
**kwargs)
self.optimizer = self.model.optimizer
self.loss = self.model.loss
self.metrics = self.model.metrics
self.loss_weights = self.model.loss_weights
self.sample_weight_mode = self.model.sample_weight_mode
self.weighted_metrics = self.model.weighted_metrics
self.targets = self.model.targets
self.metrics_tensors = self.model.metrics_tensors
self.metrics_names = self.model.metrics_names
self.sample_weights = self.model.sample_weights
self.total_loss = self.model.total_loss
def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
**kwargs):
"""Trains the model for a fixed number of epochs (iterations on a dataset).
# Arguments
x: Numpy array of training data.
If the input layer in the model is named, you can also pass a
dictionary mapping the input name to a Numpy array.
`x` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
y: Numpy array of target (label) data.
If the output layer in the model is named, you can also pass a
dictionary mapping the output name to a Numpy array.
`y` can be `None` (default) if feeding from
framework-native tensors (e.g. TensorFlow data tensors).
batch_size: Integer or `None`.
Number of samples per gradient update.
If unspecified, it will default to 32.
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached.
verbose: 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during training.
See [callbacks](/callbacks).
validation_split: Float between 0 and 1.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling.
validation_data: tuple `(x_val, y_val)` or tuple
`(x_val, y_val, val_sample_weights)` on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.
This will override `validation_split`.
shuffle: Boolean (whether to shuffle the training data
before each epoch) or str (for 'batch').
'batch' is a special option for dealing with the
limitations of HDF5 data; it shuffles in batch-sized chunks.
Has no effect when `steps_per_epoch` is not `None`.
class_weight: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only).
This can be useful to tell the model to
"pay more attention" to samples from
an under-represented class.
sample_weight: Optional Numpy array of weights for
the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
`(samples, sequence_length)`,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
`sample_weight_mode="temporal"` in `compile()`.
initial_epoch: Epoch at which to start training
(useful for resuming a previous training run).
steps_per_epoch: Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. When training with input tensors such as
TensorFlow data tensors, the default `None` is equal to
the number of unique samples in your dataset divided by
the batch size, or 1 if that cannot be determined.
validation_steps: Only relevant if `steps_per_epoch`
is specified. Total number of steps (batches of samples)
to validate before stopping.
# Returns
A `History` object. Its `History.history` attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).
# Raises
RuntimeError: If the model was never compiled.
ValueError: In case of mismatch between the provided input data
and what the model expects.
"""
# Legacy support
if 'nb_epoch' in kwargs:
warnings.warn('The `nb_epoch` argument in `fit` '
'has been renamed `epochs`.')
epochs = kwargs.pop('nb_epoch')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.fit(x, y,
batch_size=batch_size,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
shuffle=shuffle,
class_weight=class_weight,
sample_weight=sample_weight,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps)
def evaluate(self, x, y, batch_size=32, verbose=1,
sample_weight=None):
"""Computes the loss on some input data, batch by batch.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
y: labels, as a Numpy array.
batch_size: integer. Number of samples per gradient update.
verbose: verbosity mode, 0 or 1.
sample_weight: sample weights, as a Numpy array.
# Returns
Scalar test loss (if the model has no metrics)
or list of scalars (if the model computes other metrics).
The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
# Raises
RuntimeError: if the model was never compiled.
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.evaluate(x, y,
batch_size=batch_size,
verbose=verbose,
sample_weight=sample_weight)
def predict(self, x, batch_size=32, verbose=0):
"""Generates output predictions for the input samples.
The input samples are processed batch by batch.
# Arguments
x: the input data, as a Numpy array.
batch_size: integer.
verbose: verbosity mode, 0 or 1.
# Returns
A Numpy array of predictions.
"""
if not self.built:
self.build()
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
def predict_on_batch(self, x):
"""Returns predictions for a single batch of samples.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
# Returns
A Numpy array of predictions.
"""
if not self.built:
self.build()
return self.model.predict_on_batch(x)
def train_on_batch(self, x, y, class_weight=None,
sample_weight=None):
"""Single gradient update over one batch of samples.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
y: labels, as a Numpy array.
class_weight: dictionary mapping classes to a weight value,
used for scaling the loss function (during training only).
sample_weight: sample weights, as a Numpy array.
# Returns
Scalar training loss (if the model has no metrics)
or list of scalars (if the model computes other metrics).
The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
# Raises
RuntimeError: if the model was never compiled.
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.train_on_batch(x, y,
sample_weight=sample_weight,
class_weight=class_weight)
def test_on_batch(self, x, y,
sample_weight=None):
"""Evaluates the model over a single batch of samples.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
y: labels, as a Numpy array.
sample_weight: sample weights, as a Numpy array.
# Returns
Scalar test loss (if the model has no metrics)
or list of scalars (if the model computes other metrics).
The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
# Raises
RuntimeError: if the model was never compiled.
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.test_on_batch(x, y,
sample_weight=sample_weight)
def predict_proba(self, x, batch_size=32, verbose=0):
"""Generates class probability predictions for the input samples.
The input samples are processed batch by batch.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
batch_size: integer.
verbose: verbosity mode, 0 or 1.
# Returns
A Numpy array of probability predictions.
"""
preds = self.predict(x, batch_size, verbose)
if preds.min() < 0. or preds.max() > 1.:
warnings.warn('Network returning invalid probability values. '
'The last layer might not normalize predictions '
'into probabilities '
'(like softmax or sigmoid would).')
return preds
def predict_classes(self, x, batch_size=32, verbose=0):
"""Generate class predictions for the input samples.
The input samples are processed batch by batch.
# Arguments
x: input data, as a Numpy array or list of Numpy arrays
(if the model has multiple inputs).
batch_size: integer.
verbose: verbosity mode, 0 or 1.
# Returns
A numpy array of class predictions.
"""
proba = self.predict(x, batch_size=batch_size, verbose=verbose)
if proba.shape[-1] > 1:
return proba.argmax(axis=-1)
else:
return (proba > 0.5).astype('int32')
@interfaces.legacy_generator_methods_support
def fit_generator(self, generator,
steps_per_epoch,
epochs=1,
verbose=1,
callbacks=None,
validation_data=None,
validation_steps=None,
class_weight=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
shuffle=True,
initial_epoch=0):
"""Fits the model on data generated batch-by-batch by a Python generator.
The generator is run in parallel to the model, for efficiency.
For instance, this allows you to do real-time data augmentation
on images on CPU in parallel to training your model on GPU.
# Arguments
generator: A generator.
The output of the generator must be either
- a tuple (inputs, targets)
- a tuple (inputs, targets, sample_weights).
All arrays should contain the same number of samples.
The generator is expected to loop over its data
indefinitely. An epoch finishes when `steps_per_epoch`
batches have been seen by the model.
steps_per_epoch: Total number of steps (batches of samples)
to yield from `generator` before declaring one epoch
finished and starting the next epoch. It should typically
be equal to the number of unique samples of your dataset
divided by the batch size.
epochs: Integer, total number of iterations on the data.
Note that in conjunction with initial_epoch, the parameter
epochs is to be understood as "final epoch". The model is
not trained for n steps given by epochs, but until the
epoch epochs is reached.
verbose: Verbosity mode, 0, 1, or 2.
callbacks: List of callbacks to be called during training.
validation_data: This can be either
- A generator for the validation data
- A tuple (inputs, targets)
- A tuple (inputs, targets, sample_weights).
validation_steps: Only relevant if `validation_data`
is a generator.
Number of steps to yield from validation generator
at the end of every epoch. It should typically
be equal to the number of unique samples of your
validation dataset divided by the batch size.
class_weight: Dictionary mapping class indices to a weight
for the class.
max_queue_size: Maximum size for the generator queue
workers: Maximum number of processes to spin up
use_multiprocessing: if True, use process based threading.
Note that because
this implementation relies on multiprocessing,
you should not pass
non picklable arguments to the generator
as they can't be passed
easily to children processes.
shuffle: Whether to shuffle the order of the batches at
the beginning of each epoch. Only used with instances
of `Sequence` (keras.utils.Sequence).
initial_epoch: Epoch at which to start training
(useful for resuming a previous training run).
# Returns
A `History` object.
# Raises
RuntimeError: if the model was never compiled.
# Example
```python
def generate_arrays_from_file(path):
while 1:
f = open(path)
for line in f:
# create Numpy arrays of input data
# and labels, from each line in the file
x, y = process_line(line)
yield (x, y)
f.close()
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
steps_per_epoch=1000, epochs=10)
```
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.fit_generator(generator,
steps_per_epoch,
epochs,
verbose=verbose,
callbacks=callbacks,
validation_data=validation_data,
validation_steps=validation_steps,
class_weight=class_weight,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
shuffle=shuffle,
initial_epoch=initial_epoch)
@interfaces.legacy_generator_methods_support
def evaluate_generator(self, generator, steps,
max_queue_size=10, workers=1,
use_multiprocessing=False):
"""Evaluates the model on a data generator.
The generator should return the same kind of data
as accepted by `test_on_batch`.
# Arguments
generator: Generator yielding tuples (inputs, targets)
or (inputs, targets, sample_weights)
steps: Total number of steps (batches of samples)
to yield from `generator` before stopping.
max_queue_size: maximum size for the generator queue
workers: maximum number of processes to spin up
use_multiprocessing: if True, use process based threading.
Note that because this implementation
relies on multiprocessing, you should not pass
non picklable arguments to the generator
as they can't be passed easily to children processes.
# Returns
Scalar test loss (if the model has no metrics)
or list of scalars (if the model computes other metrics).
The attribute `model.metrics_names` will give you
the display labels for the scalar outputs.
# Raises
RuntimeError: if the model was never compiled.
"""
if not self.built:
raise RuntimeError('The model needs to be compiled '
'before being used.')
return self.model.evaluate_generator(generator,
steps,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing)
@interfaces.legacy_generator_methods_support
def predict_generator(self, generator, steps,
max_queue_size=10, workers=1,
use_multiprocessing=False, verbose=0):
"""Generates predictions for the input samples from a data generator.
The generator should return the same kind of data as accepted by
`predict_on_batch`.
# Arguments
generator: generator yielding batches of input samples.
steps: Total number of steps (batches of samples)
to yield from `generator` before stopping.
max_queue_size: maximum size for the generator queue
workers: maximum number of processes to spin up
use_multiprocessing: if True, use process based threading.
Note that because this implementation
relies on multiprocessing, you should not pass
non picklable arguments to the generator
as they can't be passed easily to children processes.
verbose: verbosity mode, 0 or 1.
# Returns
A Numpy array of predictions.
"""
if not self.built:
self.build()
return self.model.predict_generator(generator, steps,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
verbose=verbose)
def get_config(self):
if isinstance(self.layers[0], legacy_layers.Merge):
return self.legacy_get_config()
config = []
for layer in self.layers:
config.append({'class_name': layer.__class__.__name__,
'config': layer.get_config()})
return copy.deepcopy(config)
@classmethod
def from_config(cls, config, custom_objects=None):
if 'class_name' not in config[0] or config[0]['class_name'] == 'Merge':
return cls.legacy_from_config(config)
model = cls()
for conf in config:
layer = layer_module.deserialize(conf, custom_objects=custom_objects)
model.add(layer)
return model
def legacy_get_config(self):
"""Retrieves the model configuration as a Python list.
# Returns
A list of dicts (each dict is a layer config).
"""
config = []
if isinstance(self.layers[0], legacy_layers.Merge):
assert hasattr(self.layers[0], 'layers')
layers = []
for layer in self.layers[0].layers:
layer_config = {'class_name': layer.__class__.__name__,
'config': layer.get_config()}
layers.append(layer_config)
merge_config = self.layers[0].get_config()
merge_config['layers'] = layers
config.append({'class_name': 'Merge', 'config': merge_config})
else:
config.append({'class_name': self.layers[0].__class__.__name__,
'config': self.layers[0].get_config()})
for layer in self.layers[1:]:
config.append({'class_name': layer.__class__.__name__,
'config': layer.get_config()})
return copy.deepcopy(config)
@classmethod
def legacy_from_config(cls, config, layer_cache=None):
"""Load a model from a legacy configuration.
# Arguments
config: dictionary with configuration.
layer_cache: cache to draw pre-existing layer.
# Returns
The loaded Model.
"""
if not layer_cache:
layer_cache = {}
def normalize_legacy_config(conf):
if 'class_name' not in conf:
class_name = conf['name']
name = conf.get('custom_name')
conf['name'] = name
return {'class_name': class_name,
'config': conf}
return conf
# the model we will return
model = cls()
def get_or_create_layer(layer_data):
name = layer_data['config'].get('name')
if name in layer_cache:
return layer_cache[name]
layer = layer_module.deserialize(layer_data)
layer_cache[name] = layer
return layer
first_layer = config[0]
first_layer = normalize_legacy_config(first_layer)
if first_layer['class_name'] == 'Merge':
merge_inputs = []
first_layer_config = first_layer['config']
for merge_input_config in first_layer_config.pop('layers'):
merge_input = layer_module.deserialize(merge_input_config)
merge_inputs.append(merge_input)
first_layer_config['layers'] = merge_inputs
merge = legacy_layers.Merge.from_config(first_layer_config)
model.add(merge)
else:
layer = get_or_create_layer(first_layer)
model.add(layer)
for conf in config[1:]:
conf = normalize_legacy_config(conf)
layer = get_or_create_layer(conf)
model.add(layer)
return model
def _clone_functional_model(model, input_tensors=None):
"""Clone a functional `Model` instance.
Model cloning is similar to calling a model on new inputs,
except that it creates new layers (and thus new weights) instead
of sharing the weights of the existing layers.
# Arguments
model: Instance of `Model`.
input_tensors: optional list of input tensors
to build the model upon. If not provided,
placeholders will be created.
# Returns
An instance of `Model` reproducing the behavior
of the original model, on top of new inputs tensors,
using newly instantiated weights.
# Raises
ValueError: in case of invalid `model` argument value.
"""
if not isinstance(model, Model):
raise ValueError('Expected `model` argument '
'to be a `Model` instance, got ', model)
if isinstance(model, Sequential):
raise ValueError('Expected `model` argument '
'to be a functional `Model` instance, '
'got a `Sequential` instance instead:', model)
layer_map = {} # Cache for created layers.
tensor_map = {} # Map {reference_tensor: (corresponding_tensor, mask)}
if input_tensors is None:
# Create placeholders to build the model on top of.
input_layers = []
input_tensors = []
for layer in model.input_layers:
input_tensor = Input(batch_shape=layer.batch_input_shape,
dtype=layer.dtype,
sparse=layer.sparse,
name=layer.name)
input_tensors.append(input_tensor)
# Cache newly created input layer.
newly_created_input_layer = input_tensor._keras_history[0]
layer_map[layer] = newly_created_input_layer
for original_input_layer, cloned_input_layer in zip(model.input_layers, input_layers):
layer_map[original_input_layer] = cloned_input_layer
else:
# Make sure that all input tensors come from a Keras layer.
# If tensor comes from an input layer: cache the input layer.
input_tensors = topology._to_list(input_tensors)
_input_tensors = []
for i, x in enumerate(input_tensors):
if not K.is_keras_tensor(x):
name = model.input_layers[i].name
input_tensor = Input(tensor=x,
name='input_wrapper_for_' + name)
_input_tensors.append(input_tensor)
# Cache newly created input layer.
original_input_layer = x._keras_history[0]
newly_created_input_layer = input_tensor._keras_history[0]
layer_map[original_input_layer] = newly_created_input_layer
else:
_input_tensors.append(x)
input_tensors = _input_tensors
for x, y in zip(model.inputs, input_tensors):
tensor_map[x] = (y, None) # tensor, mask
# Iterated over every node in the reference model, in depth order.
depth_keys = list(model.nodes_by_depth.keys())
depth_keys.sort(reverse=True)
for depth in depth_keys:
nodes = model.nodes_by_depth[depth]
for node in nodes:
# Recover the corresponding layer.
layer = node.outbound_layer
# Get or create layer.
if layer not in layer_map:
# Clone layer.
new_layer = layer.__class__.from_config(layer.get_config())
layer_map[layer] = new_layer
layer = new_layer
else:
# Reuse previously cloned layer.
layer = layer_map[layer]
# Don't call InputLayer multiple times.
if isinstance(layer, topology.InputLayer):
continue
# Gather inputs to call the new layer.
reference_input_tensors = node.input_tensors
reference_output_tensors = node.output_tensors
# If all previous input tensors are available in tensor_map,
# then call node.inbound_layer on them.
computed_data = [] # List of tuples (input, mask).
for x in reference_input_tensors:
if x in tensor_map:
computed_data.append(tensor_map[x])
if len(computed_data) == len(reference_input_tensors):
# Call layer.
if node.arguments:
kwargs = node.arguments
else:
kwargs = {}
if len(computed_data) == 1:
computed_tensor, computed_mask = computed_data[0]
if has_arg(layer.call, 'mask'):
if 'mask' not in kwargs:
kwargs['mask'] = computed_mask
output_tensors = topology._to_list(
layer(computed_tensor, **kwargs))
output_masks = topology._to_list(
layer.compute_mask(computed_tensor,
computed_mask))
computed_tensors = [computed_tensor]
computed_masks = [computed_mask]
else:
computed_tensors = [x[0] for x in computed_data]
computed_masks = [x[1] for x in computed_data]
if has_arg(layer.call, 'mask'):
if 'mask' not in kwargs:
kwargs['mask'] = computed_masks
output_tensors = topology._to_list(
layer(computed_tensors, **kwargs))
output_masks = topology._to_list(
layer.compute_mask(computed_tensors,
computed_masks))
# Update tensor_map.
for x, y, mask in zip(reference_output_tensors,
output_tensors,
output_masks):
tensor_map[x] = (y, mask)
# Check that we did compute the model outputs,
# then instantiate a new model from inputs and outputs.
output_tensors = []
for x in model.outputs:
assert x in tensor_map, 'Could not compute output ' + str(x)
tensor, _ = tensor_map[x]
output_tensors.append(tensor)
return Model(input_tensors, output_tensors, name=model.name)
def _clone_sequential_model(model, input_tensors=None):
"""Clone a `Sequential` model instance.
Model cloning is similar to calling a model on new inputs,
except that it creates new layers (and thus new weights) instead
of sharing the weights of the existing layers.
# Arguments
model: Instance of `Sequential`.
input_tensors: optional list of input tensors
to build the model upon. If not provided,
placeholders will be created.
# Returns
An instance of `Sequential` reproducing the behavior
of the original model, on top of new inputs tensors,
using newly instantiated weights.
# Raises
ValueError: in case of invalid `model` argument value.
"""
if not isinstance(model, Sequential):
raise ValueError('Expected `model` argument '
'to be a `Sequential` model instance, '
'but got:', model)
def clone(layer):
return layer.__class__.from_config(layer.get_config())
layers = [clone(layer) for layer in model.layers]
if input_tensors is None:
return Sequential(layers=layers, name=model.name)
else:
if len(topology._to_list(input_tensors)) != 1:
raise ValueError('To clone a `Sequential` model, we expect '
' at most one tensor '
'as part of `input_tensors`.')
x = topology._to_list(input_tensors)[0]
if K.is_keras_tensor(x):
origin_layer = x._keras_history[0]
if isinstance(origin_layer, topology.InputLayer):
return Sequential(layers=[origin_layer] + layers,
name=model.name)
else:
raise ValueError('Cannot clone a `Sequential` model on top '
'of a tensor that comes from a Keras layer '
'other than an `InputLayer`. '
'Use the functional API instead.')
input_tensor = Input(tensor=x,
name='input_wrapper_for_' + str(x.name))
input_layer = input_tensor._keras_history[0]
return Sequential(layers=[input_layer] + layers, name=model.name)
def clone_model(model, input_tensors=None):
"""Clone any `Model` instance.
Model cloning is similar to calling a model on new inputs,
except that it creates new layers (and thus new weights) instead
of sharing the weights of the existing layers.
# Arguments
model: Instance of `Model`
(could be a functional model or a Sequential model).
input_tensors: optional list of input tensors
to build the model upon. If not provided,
placeholders will be created.
# Returns
An instance of `Model` reproducing the behavior
of the original model, on top of new inputs tensors,
using newly instantiated weights.
# Raises
ValueError: in case of invalid `model` argument value.
"""
if isinstance(model, Sequential):
return _clone_sequential_model(model, input_tensors=input_tensors)
else:
return _clone_functional_model(model, input_tensors=input_tensors)
|