This file is indexed.

/usr/lib/python3/dist-packages/keras/models.py is in python3-keras 2.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function

import warnings
import copy
import json
import os
import yaml
import numpy as np

from . import backend as K
from . import optimizers
from . import layers as layer_module
from .utils.io_utils import ask_to_proceed_with_overwrite
from .utils.generic_utils import has_arg
from .engine.training import Model
from .engine import topology
from .engine.topology import Layer
from .engine.topology import Input
from .engine.topology import InputLayer
from .legacy import layers as legacy_layers
from .legacy import models as legacy_models
from .legacy import interfaces

try:
    import h5py
except ImportError:
    h5py = None


def save_model(model, filepath, overwrite=True, include_optimizer=True):
    """Save a model to a HDF5 file.

    The saved model contains:
        - the model's configuration (topology)
        - the model's weights
        - the model's optimizer's state (if any)

    Thus the saved model can be reinstantiated in
    the exact same state, without any of the code
    used for model definition or training.

    # Arguments
        model: Keras model instance to be saved.
        filepath: String, path where to save the model.
        overwrite: Whether we should overwrite any existing
            model at the target location, or instead
            ask the user with a manual prompt.
        include_optimizer: If True, save optimizer's state together.

    # Raises
        ImportError: if h5py is not available.
    """

    if h5py is None:
        raise ImportError('`save_model` requires h5py.')

    def get_json_type(obj):
        """Serialize any object to a JSON-serializable structure.

        # Arguments
            obj: the object to serialize

        # Returns
            JSON-serializable structure representing `obj`.

        # Raises
            TypeError: if `obj` cannot be serialized.
        """
        # if obj is a serializable Keras class instance
        # e.g. optimizer, layer
        if hasattr(obj, 'get_config'):
            return {'class_name': obj.__class__.__name__,
                    'config': obj.get_config()}

        # if obj is any numpy type
        if type(obj).__module__ == np.__name__:
            if isinstance(obj, np.ndarray):
                return {'type': type(obj),
                        'value': obj.tolist()}
            else:
                return obj.item()

        # misc functions (e.g. loss function)
        if callable(obj):
            return obj.__name__

        # if obj is a python 'type'
        if type(obj).__name__ == type.__name__:
            return obj.__name__

        raise TypeError('Not JSON Serializable:', obj)

    from . import __version__ as keras_version

    # If file exists and should not be overwritten.
    if not overwrite and os.path.isfile(filepath):
        proceed = ask_to_proceed_with_overwrite(filepath)
        if not proceed:
            return

    with h5py.File(filepath, mode='w') as f:
        f.attrs['keras_version'] = str(keras_version).encode('utf8')
        f.attrs['backend'] = K.backend().encode('utf8')
        f.attrs['model_config'] = json.dumps({
            'class_name': model.__class__.__name__,
            'config': model.get_config()
        }, default=get_json_type).encode('utf8')

        model_weights_group = f.create_group('model_weights')
        if legacy_models.needs_legacy_support(model):
            model_layers = legacy_models.legacy_sequential_layers(model)
        else:
            model_layers = model.layers
        topology.save_weights_to_hdf5_group(model_weights_group, model_layers)

        if include_optimizer and hasattr(model, 'optimizer'):
            if isinstance(model.optimizer, optimizers.TFOptimizer):
                warnings.warn(
                    'TensorFlow optimizers do not '
                    'make it possible to access '
                    'optimizer attributes or optimizer state '
                    'after instantiation. '
                    'As a result, we cannot save the optimizer '
                    'as part of the model save file.'
                    'You will have to compile your model again '
                    'after loading it. '
                    'Prefer using a Keras optimizer instead '
                    '(see keras.io/optimizers).')
            else:
                f.attrs['training_config'] = json.dumps({
                    'optimizer_config': {
                        'class_name': model.optimizer.__class__.__name__,
                        'config': model.optimizer.get_config()
                    },
                    'loss': model.loss,
                    'metrics': model.metrics,
                    'sample_weight_mode': model.sample_weight_mode,
                    'loss_weights': model.loss_weights,
                }, default=get_json_type).encode('utf8')

                # Save optimizer weights.
                symbolic_weights = getattr(model.optimizer, 'weights')
                if symbolic_weights:
                    optimizer_weights_group = f.create_group('optimizer_weights')
                    weight_values = K.batch_get_value(symbolic_weights)
                    weight_names = []
                    for i, (w, val) in enumerate(zip(symbolic_weights,
                                                     weight_values)):
                        # Default values of symbolic_weights is /variable
                        # for theano and cntk
                        if K.backend() == 'theano' or K.backend() == 'cntk':
                            if hasattr(w, 'name'):
                                if w.name.split('/')[-1] == 'variable':
                                    name = str(w.name) + '_' + str(i)
                                else:
                                    name = str(w.name)
                            else:
                                name = 'param_' + str(i)
                        else:
                            if hasattr(w, 'name') and w.name:
                                name = str(w.name)
                            else:
                                name = 'param_' + str(i)
                        weight_names.append(name.encode('utf8'))
                    optimizer_weights_group.attrs['weight_names'] = weight_names
                    for name, val in zip(weight_names, weight_values):
                        param_dset = optimizer_weights_group.create_dataset(
                            name,
                            val.shape,
                            dtype=val.dtype)
                        if not val.shape:
                            # scalar
                            param_dset[()] = val
                        else:
                            param_dset[:] = val
        f.flush()


def load_model(filepath, custom_objects=None, compile=True):
    """Loads a model saved via `save_model`.

    # Arguments
        filepath: String, path to the saved model.
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.
        compile: Boolean, whether to compile the model
            after loading.

    # Returns
        A Keras model instance. If an optimizer was found
        as part of the saved model, the model is already
        compiled. Otherwise, the model is uncompiled and
        a warning will be displayed. When `compile` is set
        to False, the compilation is omitted without any
        warning.

    # Raises
        ImportError: if h5py is not available.
        ValueError: In case of an invalid savefile.
    """
    if h5py is None:
        raise ImportError('`load_model` requires h5py.')

    if not custom_objects:
        custom_objects = {}

    def convert_custom_objects(obj):
        """Handles custom object lookup.

        # Arguments
            obj: object, dict, or list.

        # Returns
            The same structure, where occurrences
                of a custom object name have been replaced
                with the custom object.
        """
        if isinstance(obj, list):
            deserialized = []
            for value in obj:
                deserialized.append(convert_custom_objects(value))
            return deserialized
        if isinstance(obj, dict):
            deserialized = {}
            for key, value in obj.items():
                deserialized[key] = convert_custom_objects(value)
            return deserialized
        if obj in custom_objects:
            return custom_objects[obj]
        return obj
    with h5py.File(filepath, mode='r') as f:
        # instantiate model
        model_config = f.attrs.get('model_config')
        if model_config is None:
            raise ValueError('No model found in config file.')
        model_config = json.loads(model_config.decode('utf-8'))
        model = model_from_config(model_config, custom_objects=custom_objects)

        # set weights
        topology.load_weights_from_hdf5_group(f['model_weights'], model.layers)

        # Early return if compilation is not required.
        if not compile:
            return model

        # instantiate optimizer
        training_config = f.attrs.get('training_config')
        if training_config is None:
            warnings.warn('No training configuration found in save file: '
                          'the model was *not* compiled. Compile it manually.')
            return model
        training_config = json.loads(training_config.decode('utf-8'))
        optimizer_config = training_config['optimizer_config']
        optimizer = optimizers.deserialize(optimizer_config,
                                           custom_objects=custom_objects)

        # Recover loss functions and metrics.
        loss = convert_custom_objects(training_config['loss'])
        metrics = convert_custom_objects(training_config['metrics'])
        sample_weight_mode = training_config['sample_weight_mode']
        loss_weights = training_config['loss_weights']

        # Compile model.
        model.compile(optimizer=optimizer,
                      loss=loss,
                      metrics=metrics,
                      loss_weights=loss_weights,
                      sample_weight_mode=sample_weight_mode)

        # Set optimizer weights.
        if 'optimizer_weights' in f:
            # Build train function (to get weight updates).
            if isinstance(model, Sequential):
                model.model._make_train_function()
            else:
                model._make_train_function()
            optimizer_weights_group = f['optimizer_weights']
            optimizer_weight_names = [n.decode('utf8') for n in
                                      optimizer_weights_group.attrs['weight_names']]
            optimizer_weight_values = [optimizer_weights_group[n] for n in
                                       optimizer_weight_names]
            try:
                model.optimizer.set_weights(optimizer_weight_values)
            except ValueError:
                warnings.warn('Error in loading the saved optimizer '
                              'state. As a result, your model is '
                              'starting with a freshly initialized '
                              'optimizer.')
    return model


def model_from_config(config, custom_objects=None):
    """Instantiates a Keras model from its config.

    # Arguments
        config: Configuration dictionary.
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.

    # Returns
        A Keras model instance (uncompiled).

    # Raises
        TypeError: if `config` is not a dictionary.
    """
    if isinstance(config, list):
        raise TypeError('`model_from_config` expects a dictionary, not a list. '
                        'Maybe you meant to use '
                        '`Sequential.from_config(config)`?')
    return layer_module.deserialize(config, custom_objects=custom_objects)


def model_from_yaml(yaml_string, custom_objects=None):
    """Parses a yaml model configuration file and returns a model instance.

    # Arguments
        yaml_string: YAML string encoding a model configuration.
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.

    # Returns
        A Keras model instance (uncompiled).
    """
    config = yaml.load(yaml_string)
    return layer_module.deserialize(config, custom_objects=custom_objects)


def model_from_json(json_string, custom_objects=None):
    """Parses a JSON model configuration file and returns a model instance.

    # Arguments
        json_string: JSON string encoding a model configuration.
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.

    # Returns
        A Keras model instance (uncompiled).
    """
    config = json.loads(json_string)
    return layer_module.deserialize(config, custom_objects=custom_objects)


class Sequential(Model):
    """Linear stack of layers.

    # Arguments
        layers: list of layers to add to the model.

    # Note
        The first layer passed to a Sequential model
        should have a defined input shape. What that
        means is that it should have received an `input_shape`
        or `batch_input_shape` argument,
        or for some type of layers (recurrent, Dense...)
        an `input_dim` argument.

    # Example

        ```python
            model = Sequential()
            # first layer must have a defined input shape
            model.add(Dense(32, input_dim=500))
            # afterwards, Keras does automatic shape inference
            model.add(Dense(32))

            # also possible (equivalent to the above):
            model = Sequential()
            model.add(Dense(32, input_shape=(500,)))
            model.add(Dense(32))

            # also possible (equivalent to the above):
            model = Sequential()
            # here the batch dimension is None,
            # which means any batch size will be accepted by the model.
            model.add(Dense(32, batch_input_shape=(None, 500)))
            model.add(Dense(32))
        ```
    """

    def __init__(self, layers=None, name=None):
        self.layers = []  # Stack of layers.
        self.model = None  # Internal Model instance.
        self.inputs = []  # List of input tensors
        self.outputs = []  # List of length 1: the output tensor (unique).
        self._trainable = True
        self._initial_weights = None

        # Model attributes.
        self.inbound_nodes = []
        self.outbound_nodes = []
        self.built = False

        # Set model name.
        if not name:
            prefix = 'sequential_'
            name = prefix + str(K.get_uid(prefix))
        self.name = name

        # Add to the model any layers passed to the constructor.
        if layers:
            for layer in layers:
                self.add(layer)

    def add(self, layer):
        """Adds a layer instance on top of the layer stack.

        # Arguments
            layer: layer instance.

        # Raises
            TypeError: If `layer` is not a layer instance.
            ValueError: In case the `layer` argument does not
                know its input shape.
            ValueError: In case the `layer` argument has
                multiple output tensors, or is already connected
                somewhere else (forbidden in `Sequential` models).
        """
        if not isinstance(layer, Layer):
            raise TypeError('The added layer must be '
                            'an instance of class Layer. '
                            'Found: ' + str(layer))
        if not self.outputs:
            # First layer in model: check that it is an input layer.
            if not isinstance(layer, (InputLayer, legacy_layers.Merge)):
                # Create an input layer.
                # First, we need to infer its expected input shape and dtype.
                if isinstance(layer, (Model, Sequential)):
                    # We were passed a model as first layer.
                    # This requires a specific way to figure out the
                    # input shape and dtype.
                    if not layer.layers:
                        raise ValueError('Cannot add an empty model '
                                         'to a `Sequential` model.')
                    # In case of nested models: recover the first layer
                    # of the deepest model to infer input shape and dtype.
                    first_layer = layer.layers[0]
                    while isinstance(first_layer, (Model, Sequential)):
                        first_layer = first_layer.layers[0]
                    batch_shape = first_layer.batch_input_shape
                    dtype = first_layer.dtype
                else:
                    # We were passed a regular layer, and it should
                    # know about its input shape. Otherwise, that's an error.
                    if not hasattr(layer, 'batch_input_shape'):
                        raise ValueError('The first layer in a '
                                         'Sequential model must '
                                         'get an `input_shape` or '
                                         '`batch_input_shape` argument.')
                    batch_shape = layer.batch_input_shape
                    dtype = layer.dtype
                # Instantiate the input layer.
                x = Input(batch_shape=batch_shape,
                          dtype=dtype,
                          name=layer.name + '_input')
                # This will build the current layer
                # and create the node connecting the current layer
                # to the input layer we just created.
                layer(x)

            if len(layer.inbound_nodes[-1].output_tensors) != 1:
                raise ValueError('All layers in a Sequential model '
                                 'should have a single output tensor. '
                                 'For multi-output layers, '
                                 'use the functional API.')

            self.outputs = [layer.inbound_nodes[-1].output_tensors[0]]
            self.inputs = topology.get_source_inputs(self.outputs[0])

            # We create an input node, which we will keep updated
            # as we add more layers
            topology.Node(outbound_layer=self,
                          inbound_layers=[],
                          node_indices=[],
                          tensor_indices=[],
                          input_tensors=self.inputs,
                          output_tensors=self.outputs,
                          # no model-level masking for now
                          input_masks=[None for _ in self.inputs],
                          output_masks=[None],
                          input_shapes=[x._keras_shape for x in self.inputs],
                          output_shapes=[self.outputs[0]._keras_shape])
        else:
            output_tensor = layer(self.outputs[0])
            if isinstance(output_tensor, list):
                raise TypeError('All layers in a Sequential model '
                                'should have a single output tensor. '
                                'For multi-output layers, '
                                'use the functional API.')
            self.outputs = [output_tensor]
            # update self.inbound_nodes
            self.inbound_nodes[0].output_tensors = self.outputs
            self.inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]

        self.layers.append(layer)
        self.built = False

    def pop(self):
        """Removes the last layer in the model.

        # Raises
            TypeError: if there are no layers in the model.
        """
        if not self.layers:
            raise TypeError('There are no layers in the model.')

        self.layers.pop()
        if not self.layers:
            self.outputs = []
            self.inbound_nodes = []
            self.outbound_nodes = []
        else:
            self.layers[-1].outbound_nodes = []
            self.outputs = [self.layers[-1].output]
            # update self.inbound_nodes
            self.inbound_nodes[0].output_tensors = self.outputs
            self.inbound_nodes[0].output_shapes = [self.outputs[0]._keras_shape]
        self.built = False

    def get_layer(self, name=None, index=None):
        """Retrieve a layer that is part of the model.

        Returns a layer based on either its name (unique)
        or its index in the graph. Indices are based on
        order of horizontal graph traversal (bottom-up).

        # Arguments
            name: string, name of layer.
            index: integer, index of layer.

        # Returns
            A layer instance.
        """
        if not self.built:
            self.build()
        return self.model.get_layer(name, index)

    def call(self, inputs, mask=None):
        if not self.built:
            self.build()
        return self.model.call(inputs, mask)

    def build(self, input_shape=None):
        if not self.inputs or not self.outputs:
            raise TypeError('Sequential model cannot be built: model is empty.'
                            ' Add some layers first.')
        # actually create the model
        self.model = Model(self.inputs, self.outputs[0],
                           name=self.name + '_model')
        self.model.trainable = self.trainable

        # mirror model attributes
        self.supports_masking = self.model.supports_masking
        self._output_mask_cache = self.model._output_mask_cache
        self._output_tensor_cache = self.model._output_tensor_cache
        self._output_shape_cache = self.model._output_shape_cache
        self.input_layers = self.model.input_layers
        self.input_layers_node_indices = self.model.input_layers_node_indices
        self.input_layers_tensor_indices = self.model.input_layers_tensor_indices
        self.output_layers = self.model.output_layers
        self.output_layers_node_indices = self.model.output_layers_node_indices
        self.output_layers_tensor_indices = self.model.output_layers_tensor_indices
        self.nodes_by_depth = self.model.nodes_by_depth
        self.container_nodes = self.model.container_nodes
        self.output_names = self.model.output_names
        self.input_names = self.model.input_names
        self._feed_input_names = self.model._feed_input_names
        self._feed_inputs = self.model._feed_inputs

        # Make sure child model callbacks
        # will call the parent Sequential model.
        self.model.callback_model = self
        self.built = True

    @property
    def uses_learning_phase(self):
        if not self.built:
            self.build()
        return self.model.uses_learning_phase

    @property
    def _flattened_layers(self):
        layers = []
        if self.layers:
            # Support for legacy models
            if isinstance(self.layers[0], legacy_layers.Merge):
                merge = self.layers[0]
                for layer in merge.layers:
                    if hasattr(layer, '_flattened_layers'):
                        for sublayer in layer._flattened_layers:
                            if sublayer not in layers:
                                layers.append(sublayer)
                    elif hasattr(layer, 'layers'):
                        for sublayer in layer.layers:
                            if sublayer not in layers:
                                layers.append(sublayer)
                    else:
                        if layer not in layers:
                            layers.append(layer)
            else:
                if self.layers[0] not in layers:
                    layers.append(self.layers[0])
            for layer in self.layers[1:]:
                if layer not in layers:
                    layers.append(layer)
        return layers

    def _gather_list_attr(self, attr):
        all_attrs = []
        for layer in self._flattened_layers:
            all_attrs += getattr(layer, attr, [])
        return all_attrs

    @property
    def trainable(self):
        return self._trainable

    @trainable.setter
    def trainable(self, value):
        if self.model:
            self.model.trainable = value
        self._trainable = value

    @property
    def trainable_weights(self):
        if not self.trainable:
            return []
        # Support for legacy behavior
        return self._gather_list_attr('trainable_weights')

    @property
    def non_trainable_weights(self):
        # Support for legacy behavior
        weights = self._gather_list_attr('non_trainable_weights')
        if not self.trainable:
            trainable_weights = self._gather_list_attr('trainable_weights')
            return trainable_weights + weights
        return weights

    @property
    def updates(self):
        if not self.built:
            self.build()
        return self.model.updates

    @property
    def state_updates(self):
        if not self.built:
            self.build()
        return self.model.state_updates

    def get_updates_for(self, inputs):
        if not self.built:
            self.build()
        return self.model.get_updates_for(inputs)

    @property
    def losses(self):
        if not self.built:
            self.build()
        return self.model.losses

    def get_losses_for(self, inputs):
        if not self.built:
            self.build()
        return self.model.get_losses_for(inputs)

    @property
    def regularizers(self):
        if not self.built:
            self.build()
        return self.model.regularizers

    def get_weights(self):
        """Retrieves the weights of the model.

        # Returns
            A flat list of Numpy arrays
            (one array per model weight).
        """
        # Legacy support
        if legacy_models.needs_legacy_support(self):
            layers = legacy_models.legacy_sequential_layers(self)
            weights = []
            for layer in layers:
                weights.append(layer.get_weights())
            return weights

        if not self.built:
            self.build()
        return self.model.get_weights()

    def set_weights(self, weights):
        """Sets the weights of the model.

        # Arguments
            weights: Should be a list
                of Numpy arrays with shapes and types matching
                the output of `model.get_weights()`.
        """
        # Legacy support
        if legacy_models.needs_legacy_support(self):
            layers = legacy_models.legacy_sequential_layers(self)
            for layer in layers:
                nb_param = len(layer.weights)
                layer.set_weights(weights[:nb_param])
                weights = weights[nb_param:]

        if not self.built:
            self.build()
        self.model.set_weights(weights)

    def load_weights(self, filepath, by_name=False):
        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # Legacy support
        if legacy_models.needs_legacy_support(self):
            layers = legacy_models.legacy_sequential_layers(self)
        else:
            layers = self.layers
        if by_name:
            topology.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            topology.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

    def save_weights(self, filepath, overwrite=True):
        if h5py is None:
            raise ImportError('`save_weights` requires h5py.')
        # If file exists and should not be overwritten:
        if not overwrite and os.path.isfile(filepath):
            proceed = ask_to_proceed_with_overwrite(filepath)
            if not proceed:
                return
        # Legacy support
        if legacy_models.needs_legacy_support(self):
            layers = legacy_models.legacy_sequential_layers(self)
        else:
            layers = self.layers

        f = h5py.File(filepath, 'w')
        topology.save_weights_to_hdf5_group(f, layers)
        f.flush()
        f.close()

    def compile(self, optimizer, loss,
                metrics=None,
                sample_weight_mode=None,
                weighted_metrics=None,
                target_tensors=None,
                **kwargs):
        """Configures the model for training.

        # Arguments
            optimizer: String (name of optimizer) or optimizer object.
                See [optimizers](/optimizers).
            loss: String (name of objective function) or objective function.
                See [losses](/losses).
                If the model has multiple outputs, you can use a different loss
                on each output by passing a dictionary or a list of losses.
                The loss value that will be minimized by the model
                will then be the sum of all individual losses.
            metrics: List of metrics to be evaluated by the model
                during training and testing.
                Typically you will use `metrics=['accuracy']`.
                To specify different metrics for different outputs of a
                multi-output model, you could also pass a dictionary,
                such as `metrics={'output_a': 'accuracy'}`.
            sample_weight_mode: If you need to do timestep-wise
                sample weighting (2D weights), set this to `"temporal"`.
                `None` defaults to sample-wise weights (1D).
                If the model has multiple outputs, you can use a different
                `sample_weight_mode` on each output by passing a
                dictionary or a list of modes.
            weighted_metrics: List of metrics to be evaluated and weighted
                by sample_weight or class_weight during training and testing.
            target_tensors: By default, Keras will create a placeholder for the
                model's target, which will be fed with the target data during
                training. If instead you would like to use your own
                target tensor (in turn, Keras will not expect external
                Numpy data for these targets at training time), you
                can specify them via the `target_tensors` argument.
                It should be a single tensor
                (for a single-output `Sequential` model).
            **kwargs: When using the Theano/CNTK backends, these arguments
                are passed into `K.function`.
                When using the TensorFlow backend,
                these arguments are passed into `tf.Session.run`.

        # Raises
            ValueError: In case of invalid arguments for

        # Example
            ```python
                model = Sequential()
                model.add(Dense(32, input_shape=(500,)))
                model.add(Dense(10, activation='softmax'))
                model.compile(optimizer='rmsprop',
                              loss='categorical_crossentropy',
                              metrics=['accuracy'])
            ```
        """
        # create the underlying model
        self.build()
        # call compile method of Model class
        self.model.compile(optimizer, loss,
                           metrics=metrics,
                           sample_weight_mode=sample_weight_mode,
                           weighted_metrics=weighted_metrics,
                           target_tensors=target_tensors,
                           **kwargs)
        self.optimizer = self.model.optimizer
        self.loss = self.model.loss
        self.metrics = self.model.metrics
        self.loss_weights = self.model.loss_weights
        self.sample_weight_mode = self.model.sample_weight_mode
        self.weighted_metrics = self.model.weighted_metrics
        self.targets = self.model.targets
        self.metrics_tensors = self.model.metrics_tensors
        self.metrics_names = self.model.metrics_names
        self.sample_weights = self.model.sample_weights
        self.total_loss = self.model.total_loss

    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_split=0.,
            validation_data=None,
            shuffle=True,
            class_weight=None,
            sample_weight=None,
            initial_epoch=0,
            steps_per_epoch=None,
            validation_steps=None,
            **kwargs):
        """Trains the model for a fixed number of epochs (iterations on a dataset).

        # Arguments
            x: Numpy array of training data.
                If the input layer in the model is named, you can also pass a
                dictionary mapping the input name to a Numpy array.
                `x` can be `None` (default) if feeding from
                framework-native tensors (e.g. TensorFlow data tensors).
            y: Numpy array of target (label) data.
                If the output layer in the model is named, you can also pass a
                dictionary mapping the output name to a Numpy array.
                `y` can be `None` (default) if feeding from
                framework-native tensors (e.g. TensorFlow data tensors).
            batch_size: Integer or `None`.
                Number of samples per gradient update.
                If unspecified, it will default to 32.
            epochs: Integer. Number of epochs to train the model.
                An epoch is an iteration over the entire `x` and `y`
                data provided.
                Note that in conjunction with `initial_epoch`,
                `epochs` is to be understood as "final epoch".
                The model is not trained for a number of iterations
                given by `epochs`, but merely until the epoch
                of index `epochs` is reached.
            verbose: 0, 1, or 2. Verbosity mode.
                0 = silent, 1 = progress bar, 2 = one line per epoch.
            callbacks: List of `keras.callbacks.Callback` instances.
                List of callbacks to apply during training.
                See [callbacks](/callbacks).
            validation_split: Float between 0 and 1.
                Fraction of the training data to be used as validation data.
                The model will set apart this fraction of the training data,
                will not train on it, and will evaluate
                the loss and any model metrics
                on this data at the end of each epoch.
                The validation data is selected from the last samples
                in the `x` and `y` data provided, before shuffling.
            validation_data: tuple `(x_val, y_val)` or tuple
                `(x_val, y_val, val_sample_weights)` on which to evaluate
                the loss and any model metrics at the end of each epoch.
                The model will not be trained on this data.
                This will override `validation_split`.
            shuffle: Boolean (whether to shuffle the training data
                before each epoch) or str (for 'batch').
                'batch' is a special option for dealing with the
                limitations of HDF5 data; it shuffles in batch-sized chunks.
                Has no effect when `steps_per_epoch` is not `None`.
            class_weight: Optional dictionary mapping class indices (integers)
                to a weight (float) value, used for weighting the loss function
                (during training only).
                This can be useful to tell the model to
                "pay more attention" to samples from
                an under-represented class.
            sample_weight: Optional Numpy array of weights for
                the training samples, used for weighting the loss function
                (during training only). You can either pass a flat (1D)
                Numpy array with the same length as the input samples
                (1:1 mapping between weights and samples),
                or in the case of temporal data,
                you can pass a 2D array with shape
                `(samples, sequence_length)`,
                to apply a different weight to every timestep of every sample.
                In this case you should make sure to specify
                `sample_weight_mode="temporal"` in `compile()`.
            initial_epoch: Epoch at which to start training
                (useful for resuming a previous training run).
            steps_per_epoch: Total number of steps (batches of samples)
                before declaring one epoch finished and starting the
                next epoch. When training with input tensors such as
                TensorFlow data tensors, the default `None` is equal to
                the number of unique samples in your dataset divided by
                the batch size, or 1 if that cannot be determined.
            validation_steps: Only relevant if `steps_per_epoch`
                is specified. Total number of steps (batches of samples)
                to validate before stopping.

        # Returns
            A `History` object. Its `History.history` attribute is
            a record of training loss values and metrics values
            at successive epochs, as well as validation loss values
            and validation metrics values (if applicable).

        # Raises
            RuntimeError: If the model was never compiled.
            ValueError: In case of mismatch between the provided input data
                and what the model expects.
        """
        # Legacy support
        if 'nb_epoch' in kwargs:
            warnings.warn('The `nb_epoch` argument in `fit` '
                          'has been renamed `epochs`.')
            epochs = kwargs.pop('nb_epoch')
        if kwargs:
            raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))

        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.fit(x, y,
                              batch_size=batch_size,
                              epochs=epochs,
                              verbose=verbose,
                              callbacks=callbacks,
                              validation_split=validation_split,
                              validation_data=validation_data,
                              shuffle=shuffle,
                              class_weight=class_weight,
                              sample_weight=sample_weight,
                              initial_epoch=initial_epoch,
                              steps_per_epoch=steps_per_epoch,
                              validation_steps=validation_steps)

    def evaluate(self, x, y, batch_size=32, verbose=1,
                 sample_weight=None):
        """Computes the loss on some input data, batch by batch.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).
            y: labels, as a Numpy array.
            batch_size: integer. Number of samples per gradient update.
            verbose: verbosity mode, 0 or 1.
            sample_weight: sample weights, as a Numpy array.

        # Returns
            Scalar test loss (if the model has no metrics)
            or list of scalars (if the model computes other metrics).
            The attribute `model.metrics_names` will give you
            the display labels for the scalar outputs.

        # Raises
            RuntimeError: if the model was never compiled.
        """
        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.evaluate(x, y,
                                   batch_size=batch_size,
                                   verbose=verbose,
                                   sample_weight=sample_weight)

    def predict(self, x, batch_size=32, verbose=0):
        """Generates output predictions for the input samples.

        The input samples are processed batch by batch.

        # Arguments
            x: the input data, as a Numpy array.
            batch_size: integer.
            verbose: verbosity mode, 0 or 1.

        # Returns
            A Numpy array of predictions.
        """
        if not self.built:
            self.build()
        return self.model.predict(x, batch_size=batch_size, verbose=verbose)

    def predict_on_batch(self, x):
        """Returns predictions for a single batch of samples.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).

        # Returns
            A Numpy array of predictions.
        """
        if not self.built:
            self.build()
        return self.model.predict_on_batch(x)

    def train_on_batch(self, x, y, class_weight=None,
                       sample_weight=None):
        """Single gradient update over one batch of samples.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).
            y: labels, as a Numpy array.
            class_weight: dictionary mapping classes to a weight value,
                used for scaling the loss function (during training only).
            sample_weight: sample weights, as a Numpy array.

        # Returns
            Scalar training loss (if the model has no metrics)
            or list of scalars (if the model computes other metrics).
            The attribute `model.metrics_names` will give you
            the display labels for the scalar outputs.

        # Raises
            RuntimeError: if the model was never compiled.
        """
        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.train_on_batch(x, y,
                                         sample_weight=sample_weight,
                                         class_weight=class_weight)

    def test_on_batch(self, x, y,
                      sample_weight=None):
        """Evaluates the model over a single batch of samples.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).
            y: labels, as a Numpy array.
            sample_weight: sample weights, as a Numpy array.

        # Returns
            Scalar test loss (if the model has no metrics)
            or list of scalars (if the model computes other metrics).
            The attribute `model.metrics_names` will give you
            the display labels for the scalar outputs.

        # Raises
            RuntimeError: if the model was never compiled.
        """
        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.test_on_batch(x, y,
                                        sample_weight=sample_weight)

    def predict_proba(self, x, batch_size=32, verbose=0):
        """Generates class probability predictions for the input samples.

        The input samples are processed batch by batch.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).
            batch_size: integer.
            verbose: verbosity mode, 0 or 1.

        # Returns
            A Numpy array of probability predictions.
        """
        preds = self.predict(x, batch_size, verbose)
        if preds.min() < 0. or preds.max() > 1.:
            warnings.warn('Network returning invalid probability values. '
                          'The last layer might not normalize predictions '
                          'into probabilities '
                          '(like softmax or sigmoid would).')
        return preds

    def predict_classes(self, x, batch_size=32, verbose=0):
        """Generate class predictions for the input samples.

        The input samples are processed batch by batch.

        # Arguments
            x: input data, as a Numpy array or list of Numpy arrays
                (if the model has multiple inputs).
            batch_size: integer.
            verbose: verbosity mode, 0 or 1.

        # Returns
            A numpy array of class predictions.
        """
        proba = self.predict(x, batch_size=batch_size, verbose=verbose)
        if proba.shape[-1] > 1:
            return proba.argmax(axis=-1)
        else:
            return (proba > 0.5).astype('int32')

    @interfaces.legacy_generator_methods_support
    def fit_generator(self, generator,
                      steps_per_epoch,
                      epochs=1,
                      verbose=1,
                      callbacks=None,
                      validation_data=None,
                      validation_steps=None,
                      class_weight=None,
                      max_queue_size=10,
                      workers=1,
                      use_multiprocessing=False,
                      shuffle=True,
                      initial_epoch=0):
        """Fits the model on data generated batch-by-batch by a Python generator.

        The generator is run in parallel to the model, for efficiency.
        For instance, this allows you to do real-time data augmentation
        on images on CPU in parallel to training your model on GPU.

        # Arguments
            generator: A generator.
                The output of the generator must be either
                - a tuple (inputs, targets)
                - a tuple (inputs, targets, sample_weights).
                All arrays should contain the same number of samples.
                The generator is expected to loop over its data
                indefinitely. An epoch finishes when `steps_per_epoch`
                batches have been seen by the model.
            steps_per_epoch: Total number of steps (batches of samples)
                to yield from `generator` before declaring one epoch
                finished and starting the next epoch. It should typically
                be equal to the number of unique samples of your dataset
                divided by the batch size.
            epochs: Integer, total number of iterations on the data.
                Note that in conjunction with initial_epoch, the parameter
                epochs is to be understood as "final epoch". The model is
                not trained for n steps given by epochs, but until the
                epoch epochs is reached.
            verbose: Verbosity mode, 0, 1, or 2.
            callbacks: List of callbacks to be called during training.
            validation_data: This can be either
                - A generator for the validation data
                - A tuple (inputs, targets)
                - A tuple (inputs, targets, sample_weights).
            validation_steps: Only relevant if `validation_data`
                is a generator.
                Number of steps to yield from validation generator
                at the end of every epoch. It should typically
                be equal to the number of unique samples of your
                validation dataset divided by the batch size.
            class_weight: Dictionary mapping class indices to a weight
                for the class.
            max_queue_size: Maximum size for the generator queue
            workers: Maximum number of processes to spin up
            use_multiprocessing: if True, use process based threading.
                Note that because
                this implementation relies on multiprocessing,
                you should not pass
                non picklable arguments to the generator
                as they can't be passed
                easily to children processes.
            shuffle: Whether to shuffle the order of the batches at
                the beginning of each epoch. Only used with instances
                of `Sequence` (keras.utils.Sequence).
            initial_epoch: Epoch at which to start training
                (useful for resuming a previous training run).

        # Returns
            A `History` object.

        # Raises
            RuntimeError: if the model was never compiled.

        # Example

        ```python
            def generate_arrays_from_file(path):
                while 1:
                    f = open(path)
                    for line in f:
                        # create Numpy arrays of input data
                        # and labels, from each line in the file
                        x, y = process_line(line)
                        yield (x, y)
                    f.close()

            model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                                steps_per_epoch=1000, epochs=10)
        ```
        """
        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.fit_generator(generator,
                                        steps_per_epoch,
                                        epochs,
                                        verbose=verbose,
                                        callbacks=callbacks,
                                        validation_data=validation_data,
                                        validation_steps=validation_steps,
                                        class_weight=class_weight,
                                        max_queue_size=max_queue_size,
                                        workers=workers,
                                        use_multiprocessing=use_multiprocessing,
                                        shuffle=shuffle,
                                        initial_epoch=initial_epoch)

    @interfaces.legacy_generator_methods_support
    def evaluate_generator(self, generator, steps,
                           max_queue_size=10, workers=1,
                           use_multiprocessing=False):
        """Evaluates the model on a data generator.

        The generator should return the same kind of data
        as accepted by `test_on_batch`.

        # Arguments
            generator: Generator yielding tuples (inputs, targets)
                or (inputs, targets, sample_weights)
            steps: Total number of steps (batches of samples)
                to yield from `generator` before stopping.
            max_queue_size: maximum size for the generator queue
            workers: maximum number of processes to spin up
            use_multiprocessing: if True, use process based threading.
                Note that because this implementation
                relies on multiprocessing, you should not pass
                non picklable arguments to the generator
                as they can't be passed easily to children processes.

        # Returns
            Scalar test loss (if the model has no metrics)
            or list of scalars (if the model computes other metrics).
            The attribute `model.metrics_names` will give you
            the display labels for the scalar outputs.

        # Raises
            RuntimeError: if the model was never compiled.
        """
        if not self.built:
            raise RuntimeError('The model needs to be compiled '
                               'before being used.')
        return self.model.evaluate_generator(generator,
                                             steps,
                                             max_queue_size=max_queue_size,
                                             workers=workers,
                                             use_multiprocessing=use_multiprocessing)

    @interfaces.legacy_generator_methods_support
    def predict_generator(self, generator, steps,
                          max_queue_size=10, workers=1,
                          use_multiprocessing=False, verbose=0):
        """Generates predictions for the input samples from a data generator.

        The generator should return the same kind of data as accepted by
        `predict_on_batch`.

        # Arguments
            generator: generator yielding batches of input samples.
            steps: Total number of steps (batches of samples)
                to yield from `generator` before stopping.
            max_queue_size: maximum size for the generator queue
            workers: maximum number of processes to spin up
            use_multiprocessing: if True, use process based threading.
                Note that because this implementation
                relies on multiprocessing, you should not pass
                non picklable arguments to the generator
                as they can't be passed easily to children processes.
            verbose: verbosity mode, 0 or 1.

        # Returns
            A Numpy array of predictions.
        """
        if not self.built:
            self.build()
        return self.model.predict_generator(generator, steps,
                                            max_queue_size=max_queue_size,
                                            workers=workers,
                                            use_multiprocessing=use_multiprocessing,
                                            verbose=verbose)

    def get_config(self):
        if isinstance(self.layers[0], legacy_layers.Merge):
            return self.legacy_get_config()

        config = []
        for layer in self.layers:
            config.append({'class_name': layer.__class__.__name__,
                           'config': layer.get_config()})
        return copy.deepcopy(config)

    @classmethod
    def from_config(cls, config, custom_objects=None):
        if 'class_name' not in config[0] or config[0]['class_name'] == 'Merge':
            return cls.legacy_from_config(config)

        model = cls()
        for conf in config:
            layer = layer_module.deserialize(conf, custom_objects=custom_objects)
            model.add(layer)
        return model

    def legacy_get_config(self):
        """Retrieves the model configuration as a Python list.

        # Returns
            A list of dicts (each dict is a layer config).
        """
        config = []
        if isinstance(self.layers[0], legacy_layers.Merge):
            assert hasattr(self.layers[0], 'layers')
            layers = []
            for layer in self.layers[0].layers:
                layer_config = {'class_name': layer.__class__.__name__,
                                'config': layer.get_config()}
                layers.append(layer_config)
            merge_config = self.layers[0].get_config()
            merge_config['layers'] = layers
            config.append({'class_name': 'Merge', 'config': merge_config})
        else:
            config.append({'class_name': self.layers[0].__class__.__name__,
                           'config': self.layers[0].get_config()})
        for layer in self.layers[1:]:
            config.append({'class_name': layer.__class__.__name__,
                           'config': layer.get_config()})
        return copy.deepcopy(config)

    @classmethod
    def legacy_from_config(cls, config, layer_cache=None):
        """Load a model from a legacy configuration.

        # Arguments
            config: dictionary with configuration.
            layer_cache: cache to draw pre-existing layer.

        # Returns
            The loaded Model.
        """
        if not layer_cache:
            layer_cache = {}

        def normalize_legacy_config(conf):
            if 'class_name' not in conf:
                class_name = conf['name']
                name = conf.get('custom_name')
                conf['name'] = name
                return {'class_name': class_name,
                        'config': conf}
            return conf

        # the model we will return
        model = cls()

        def get_or_create_layer(layer_data):
            name = layer_data['config'].get('name')
            if name in layer_cache:
                return layer_cache[name]
            layer = layer_module.deserialize(layer_data)
            layer_cache[name] = layer
            return layer

        first_layer = config[0]
        first_layer = normalize_legacy_config(first_layer)
        if first_layer['class_name'] == 'Merge':
            merge_inputs = []
            first_layer_config = first_layer['config']
            for merge_input_config in first_layer_config.pop('layers'):
                merge_input = layer_module.deserialize(merge_input_config)
                merge_inputs.append(merge_input)
            first_layer_config['layers'] = merge_inputs
            merge = legacy_layers.Merge.from_config(first_layer_config)
            model.add(merge)
        else:
            layer = get_or_create_layer(first_layer)
            model.add(layer)

        for conf in config[1:]:
            conf = normalize_legacy_config(conf)
            layer = get_or_create_layer(conf)
            model.add(layer)
        return model


def _clone_functional_model(model, input_tensors=None):
    """Clone a functional `Model` instance.

    Model cloning is similar to calling a model on new inputs,
    except that it creates new layers (and thus new weights) instead
    of sharing the weights of the existing layers.

    # Arguments
        model: Instance of `Model`.
        input_tensors: optional list of input tensors
            to build the model upon. If not provided,
            placeholders will be created.

    # Returns
        An instance of `Model` reproducing the behavior
        of the original model, on top of new inputs tensors,
        using newly instantiated weights.

    # Raises
        ValueError: in case of invalid `model` argument value.
    """
    if not isinstance(model, Model):
        raise ValueError('Expected `model` argument '
                         'to be a `Model` instance, got ', model)
    if isinstance(model, Sequential):
        raise ValueError('Expected `model` argument '
                         'to be a functional `Model` instance, '
                         'got a `Sequential` instance instead:', model)

    layer_map = {}  # Cache for created layers.
    tensor_map = {}  # Map {reference_tensor: (corresponding_tensor, mask)}
    if input_tensors is None:
        # Create placeholders to build the model on top of.
        input_layers = []
        input_tensors = []
        for layer in model.input_layers:
            input_tensor = Input(batch_shape=layer.batch_input_shape,
                                 dtype=layer.dtype,
                                 sparse=layer.sparse,
                                 name=layer.name)
            input_tensors.append(input_tensor)
            # Cache newly created input layer.
            newly_created_input_layer = input_tensor._keras_history[0]
            layer_map[layer] = newly_created_input_layer
        for original_input_layer, cloned_input_layer in zip(model.input_layers, input_layers):
            layer_map[original_input_layer] = cloned_input_layer
    else:
        # Make sure that all input tensors come from a Keras layer.
        # If tensor comes from an input layer: cache the input layer.
        input_tensors = topology._to_list(input_tensors)
        _input_tensors = []
        for i, x in enumerate(input_tensors):
            if not K.is_keras_tensor(x):
                name = model.input_layers[i].name
                input_tensor = Input(tensor=x,
                                     name='input_wrapper_for_' + name)
                _input_tensors.append(input_tensor)
                # Cache newly created input layer.
                original_input_layer = x._keras_history[0]
                newly_created_input_layer = input_tensor._keras_history[0]
                layer_map[original_input_layer] = newly_created_input_layer
            else:
                _input_tensors.append(x)
        input_tensors = _input_tensors

    for x, y in zip(model.inputs, input_tensors):
        tensor_map[x] = (y, None)  # tensor, mask

    # Iterated over every node in the reference model, in depth order.
    depth_keys = list(model.nodes_by_depth.keys())
    depth_keys.sort(reverse=True)
    for depth in depth_keys:
        nodes = model.nodes_by_depth[depth]
        for node in nodes:
            # Recover the corresponding layer.
            layer = node.outbound_layer

            # Get or create layer.
            if layer not in layer_map:
                # Clone layer.
                new_layer = layer.__class__.from_config(layer.get_config())
                layer_map[layer] = new_layer
                layer = new_layer
            else:
                # Reuse previously cloned layer.
                layer = layer_map[layer]
                # Don't call InputLayer multiple times.
                if isinstance(layer, topology.InputLayer):
                    continue

            # Gather inputs to call the new layer.
            reference_input_tensors = node.input_tensors
            reference_output_tensors = node.output_tensors

            # If all previous input tensors are available in tensor_map,
            # then call node.inbound_layer on them.
            computed_data = []  # List of tuples (input, mask).
            for x in reference_input_tensors:
                if x in tensor_map:
                    computed_data.append(tensor_map[x])

            if len(computed_data) == len(reference_input_tensors):
                # Call layer.
                if node.arguments:
                    kwargs = node.arguments
                else:
                    kwargs = {}
                if len(computed_data) == 1:
                    computed_tensor, computed_mask = computed_data[0]
                    if has_arg(layer.call, 'mask'):
                        if 'mask' not in kwargs:
                            kwargs['mask'] = computed_mask
                    output_tensors = topology._to_list(
                        layer(computed_tensor, **kwargs))
                    output_masks = topology._to_list(
                        layer.compute_mask(computed_tensor,
                                           computed_mask))
                    computed_tensors = [computed_tensor]
                    computed_masks = [computed_mask]
                else:
                    computed_tensors = [x[0] for x in computed_data]
                    computed_masks = [x[1] for x in computed_data]
                    if has_arg(layer.call, 'mask'):
                        if 'mask' not in kwargs:
                            kwargs['mask'] = computed_masks
                    output_tensors = topology._to_list(
                        layer(computed_tensors, **kwargs))
                    output_masks = topology._to_list(
                        layer.compute_mask(computed_tensors,
                                           computed_masks))
                # Update tensor_map.
                for x, y, mask in zip(reference_output_tensors,
                                      output_tensors,
                                      output_masks):
                    tensor_map[x] = (y, mask)

    # Check that we did compute the model outputs,
    # then instantiate a new model from inputs and outputs.
    output_tensors = []
    for x in model.outputs:
        assert x in tensor_map, 'Could not compute output ' + str(x)
        tensor, _ = tensor_map[x]
        output_tensors.append(tensor)
    return Model(input_tensors, output_tensors, name=model.name)


def _clone_sequential_model(model, input_tensors=None):
    """Clone a `Sequential` model instance.

    Model cloning is similar to calling a model on new inputs,
    except that it creates new layers (and thus new weights) instead
    of sharing the weights of the existing layers.

    # Arguments
        model: Instance of `Sequential`.
        input_tensors: optional list of input tensors
            to build the model upon. If not provided,
            placeholders will be created.

    # Returns
        An instance of `Sequential` reproducing the behavior
        of the original model, on top of new inputs tensors,
        using newly instantiated weights.

    # Raises
        ValueError: in case of invalid `model` argument value.
    """
    if not isinstance(model, Sequential):
        raise ValueError('Expected `model` argument '
                         'to be a `Sequential` model instance, '
                         'but got:', model)

    def clone(layer):
        return layer.__class__.from_config(layer.get_config())

    layers = [clone(layer) for layer in model.layers]
    if input_tensors is None:
        return Sequential(layers=layers, name=model.name)
    else:
        if len(topology._to_list(input_tensors)) != 1:
            raise ValueError('To clone a `Sequential` model, we expect '
                             ' at most one tensor '
                             'as part of `input_tensors`.')
        x = topology._to_list(input_tensors)[0]
        if K.is_keras_tensor(x):
            origin_layer = x._keras_history[0]
            if isinstance(origin_layer, topology.InputLayer):
                return Sequential(layers=[origin_layer] + layers,
                                  name=model.name)
            else:
                raise ValueError('Cannot clone a `Sequential` model on top '
                                 'of a tensor that comes from a Keras layer '
                                 'other than an `InputLayer`. '
                                 'Use the functional API instead.')
        input_tensor = Input(tensor=x,
                             name='input_wrapper_for_' + str(x.name))
        input_layer = input_tensor._keras_history[0]
        return Sequential(layers=[input_layer] + layers, name=model.name)


def clone_model(model, input_tensors=None):
    """Clone any `Model` instance.

    Model cloning is similar to calling a model on new inputs,
    except that it creates new layers (and thus new weights) instead
    of sharing the weights of the existing layers.

    # Arguments
        model: Instance of `Model`
            (could be a functional model or a Sequential model).
        input_tensors: optional list of input tensors
            to build the model upon. If not provided,
            placeholders will be created.

    # Returns
        An instance of `Model` reproducing the behavior
        of the original model, on top of new inputs tensors,
        using newly instantiated weights.

    # Raises
        ValueError: in case of invalid `model` argument value.
    """
    if isinstance(model, Sequential):
        return _clone_sequential_model(model, input_tensors=input_tensors)
    else:
        return _clone_functional_model(model, input_tensors=input_tensors)