/usr/lib/python3/dist-packages/keras/constraints.py is in python3-keras 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | from __future__ import absolute_import
import six
from . import backend as K
from .utils.generic_utils import serialize_keras_object
from .utils.generic_utils import deserialize_keras_object
class Constraint(object):
def __call__(self, w):
return w
def get_config(self):
return {}
class MaxNorm(Constraint):
"""MaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have a norm less than or equal to a desired value.
# Arguments
m: the maximum norm for the incoming weights.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
# References
- [Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et al. 2014](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)
"""
def __init__(self, max_value=2, axis=0):
self.max_value = max_value
self.axis = axis
def __call__(self, w):
norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
desired = K.clip(norms, 0, self.max_value)
w *= (desired / (K.epsilon() + norms))
return w
def get_config(self):
return {'max_value': self.max_value,
'axis': self.axis}
class NonNeg(Constraint):
"""Constrains the weights to be non-negative.
"""
def __call__(self, w):
w *= K.cast(K.greater_equal(w, 0.), K.floatx())
return w
class UnitNorm(Constraint):
"""Constrains the weights incident to each hidden unit to have unit norm.
# Arguments
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, axis=0):
self.axis = axis
def __call__(self, w):
return w / (K.epsilon() + K.sqrt(K.sum(K.square(w),
axis=self.axis,
keepdims=True)))
def get_config(self):
return {'axis': self.axis}
class MinMaxNorm(Constraint):
"""MinMaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have the norm between a lower bound and an upper bound.
# Arguments
min_value: the minimum norm for the incoming weights.
max_value: the maximum norm for the incoming weights.
rate: rate for enforcing the constraint: weights will be
rescaled to yield
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
Effectively, this means that rate=1.0 stands for strict
enforcement of the constraint, while rate<1.0 means that
weights will be rescaled at each step to slowly move
towards a value inside the desired interval.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
self.min_value = min_value
self.max_value = max_value
self.rate = rate
self.axis = axis
def __call__(self, w):
norms = K.sqrt(K.sum(K.square(w), axis=self.axis, keepdims=True))
desired = (self.rate * K.clip(norms, self.min_value, self.max_value) +
(1 - self.rate) * norms)
w *= (desired / (K.epsilon() + norms))
return w
def get_config(self):
return {'min_value': self.min_value,
'max_value': self.max_value,
'rate': self.rate,
'axis': self.axis}
# Aliases.
max_norm = MaxNorm
non_neg = NonNeg
unit_norm = UnitNorm
min_max_norm = MinMaxNorm
# Legacy aliases.
maxnorm = max_norm
nonneg = non_neg
unitnorm = unit_norm
def serialize(constraint):
return serialize_keras_object(constraint)
def deserialize(config, custom_objects=None):
return deserialize_keras_object(config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='constraint')
def get(identifier):
if identifier is None:
return None
if isinstance(identifier, dict):
return deserialize(identifier)
elif isinstance(identifier, six.string_types):
config = {'class_name': str(identifier), 'config': {}}
return deserialize(config)
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret constraint identifier:',
identifier)
|