This file is indexed.

/usr/lib/python3/dist-packages/jmespath/functions.py is in python3-jmespath 0.9.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import math
import json

from jmespath import exceptions
from jmespath.compat import string_type as STRING_TYPE
from jmespath.compat import get_methods, with_metaclass


# python types -> jmespath types
TYPES_MAP = {
    'bool': 'boolean',
    'list': 'array',
    'dict': 'object',
    'NoneType': 'null',
    'unicode': 'string',
    'str': 'string',
    'float': 'number',
    'int': 'number',
    'long': 'number',
    'OrderedDict': 'object',
    '_Projection': 'array',
    '_Expression': 'expref',
}


# jmespath types -> python types
REVERSE_TYPES_MAP = {
    'boolean': ('bool',),
    'array': ('list', '_Projection'),
    'object': ('dict', 'OrderedDict',),
    'null': ('None',),
    'string': ('unicode', 'str'),
    'number': ('float', 'int', 'long'),
    'expref': ('_Expression',),
}


def signature(*arguments):
    def _record_signature(func):
        func.signature = arguments
        return func
    return _record_signature


class FunctionRegistry(type):
    def __init__(cls, name, bases, attrs):
        cls._populate_function_table()
        super(FunctionRegistry, cls).__init__(name, bases, attrs)

    def _populate_function_table(cls):
        function_table = {}
        # Any method with a @signature decorator that also
        # starts with "_func_" is registered as a function.
        # _func_max_by -> max_by function.
        for name, method in get_methods(cls):
            if not name.startswith('_func_'):
                continue
            signature = getattr(method, 'signature', None)
            if signature is not None:
                function_table[name[6:]] = {
                    'function': method,
                    'signature': signature,
                }
        cls.FUNCTION_TABLE = function_table


class Functions(with_metaclass(FunctionRegistry, object)):

    FUNCTION_TABLE = {
    }

    def call_function(self, function_name, resolved_args):
        try:
            spec = self.FUNCTION_TABLE[function_name]
        except KeyError:
            raise exceptions.UnknownFunctionError(
                "Unknown function: %s()" % function_name)
        function = spec['function']
        signature = spec['signature']
        self._validate_arguments(resolved_args, signature, function_name)
        return function(self, *resolved_args)

    def _validate_arguments(self, args, signature, function_name):
        if signature and signature[-1].get('variadic'):
            if len(args) < len(signature):
                raise exceptions.VariadictArityError(
                    len(signature), len(args), function_name)
        elif len(args) != len(signature):
            raise exceptions.ArityError(
                len(signature), len(args), function_name)
        return self._type_check(args, signature, function_name)

    def _type_check(self, actual, signature, function_name):
        for i in range(len(signature)):
            allowed_types = signature[i]['types']
            if allowed_types:
                self._type_check_single(actual[i], allowed_types,
                                        function_name)

    def _type_check_single(self, current, types, function_name):
        # Type checking involves checking the top level type,
        # and in the case of arrays, potentially checking the types
        # of each element.
        allowed_types, allowed_subtypes = self._get_allowed_pytypes(types)
        # We're not using isinstance() on purpose.
        # The type model for jmespath does not map
        # 1-1 with python types (booleans are considered
        # integers in python for example).
        actual_typename = type(current).__name__
        if actual_typename not in allowed_types:
            raise exceptions.JMESPathTypeError(
                function_name, current,
                self._convert_to_jmespath_type(actual_typename), types)
        # If we're dealing with a list type, we can have
        # additional restrictions on the type of the list
        # elements (for example a function can require a
        # list of numbers or a list of strings).
        # Arrays are the only types that can have subtypes.
        if allowed_subtypes:
            self._subtype_check(current, allowed_subtypes,
                                types, function_name)

    def _get_allowed_pytypes(self, types):
        allowed_types = []
        allowed_subtypes = []
        for t in types:
            type_ = t.split('-', 1)
            if len(type_) == 2:
                type_, subtype = type_
                allowed_subtypes.append(REVERSE_TYPES_MAP[subtype])
            else:
                type_ = type_[0]
            allowed_types.extend(REVERSE_TYPES_MAP[type_])
        return allowed_types, allowed_subtypes

    def _subtype_check(self, current, allowed_subtypes, types, function_name):
        if len(allowed_subtypes) == 1:
            # The easy case, we know up front what type
            # we need to validate.
            allowed_subtypes = allowed_subtypes[0]
            for element in current:
                actual_typename = type(element).__name__
                if actual_typename not in allowed_subtypes:
                    raise exceptions.JMESPathTypeError(
                        function_name, element, actual_typename, types)
        elif len(allowed_subtypes) > 1 and current:
            # Dynamic type validation.  Based on the first
            # type we see, we validate that the remaining types
            # match.
            first = type(current[0]).__name__
            for subtypes in allowed_subtypes:
                if first in subtypes:
                    allowed = subtypes
                    break
            else:
                raise exceptions.JMESPathTypeError(
                    function_name, current[0], first, types)
            for element in current:
                actual_typename = type(element).__name__
                if actual_typename not in allowed:
                    raise exceptions.JMESPathTypeError(
                        function_name, element, actual_typename, types)

    @signature({'types': ['number']})
    def _func_abs(self, arg):
        return abs(arg)

    @signature({'types': ['array-number']})
    def _func_avg(self, arg):
        if arg:
            return sum(arg) / float(len(arg))
        else:
            return None

    @signature({'types': [], 'variadic': True})
    def _func_not_null(self, *arguments):
        for argument in arguments:
            if argument is not None:
                return argument

    @signature({'types': []})
    def _func_to_array(self, arg):
        if isinstance(arg, list):
            return arg
        else:
            return [arg]

    @signature({'types': []})
    def _func_to_string(self, arg):
        if isinstance(arg, STRING_TYPE):
            return arg
        else:
            return json.dumps(arg, separators=(',', ':'),
                              default=str)

    @signature({'types': []})
    def _func_to_number(self, arg):
        if isinstance(arg, (list, dict, bool)):
            return None
        elif arg is None:
            return None
        elif isinstance(arg, (int, float)):
            return arg
        else:
            try:
                return int(arg)
            except ValueError:
                try:
                    return float(arg)
                except ValueError:
                    return None

    @signature({'types': ['array', 'string']}, {'types': []})
    def _func_contains(self, subject, search):
        return search in subject

    @signature({'types': ['string', 'array', 'object']})
    def _func_length(self, arg):
        return len(arg)

    @signature({'types': ['string']}, {'types': ['string']})
    def _func_ends_with(self, search, suffix):
        return search.endswith(suffix)

    @signature({'types': ['string']}, {'types': ['string']})
    def _func_starts_with(self, search, suffix):
        return search.startswith(suffix)

    @signature({'types': ['array', 'string']})
    def _func_reverse(self, arg):
        if isinstance(arg, STRING_TYPE):
            return arg[::-1]
        else:
            return list(reversed(arg))

    @signature({"types": ['number']})
    def _func_ceil(self, arg):
        return math.ceil(arg)

    @signature({"types": ['number']})
    def _func_floor(self, arg):
        return math.floor(arg)

    @signature({"types": ['string']}, {"types": ['array-string']})
    def _func_join(self, separator, array):
        return separator.join(array)

    @signature({'types': ['expref']}, {'types': ['array']})
    def _func_map(self, expref, arg):
        result = []
        for element in arg:
            result.append(expref.visit(expref.expression, element))
        return result

    @signature({"types": ['array-number', 'array-string']})
    def _func_max(self, arg):
        if arg:
            return max(arg)
        else:
            return None

    @signature({"types": ["object"], "variadic": True})
    def _func_merge(self, *arguments):
        merged = {}
        for arg in arguments:
            merged.update(arg)
        return merged

    @signature({"types": ['array-number', 'array-string']})
    def _func_min(self, arg):
        if arg:
            return min(arg)
        else:
            return None

    @signature({"types": ['array-string', 'array-number']})
    def _func_sort(self, arg):
        return list(sorted(arg))

    @signature({"types": ['array-number']})
    def _func_sum(self, arg):
        return sum(arg)

    @signature({"types": ['object']})
    def _func_keys(self, arg):
        # To be consistent with .values()
        # should we also return the indices of a list?
        return list(arg.keys())

    @signature({"types": ['object']})
    def _func_values(self, arg):
        return list(arg.values())

    @signature({'types': []})
    def _func_type(self, arg):
        if isinstance(arg, STRING_TYPE):
            return "string"
        elif isinstance(arg, bool):
            return "boolean"
        elif isinstance(arg, list):
            return "array"
        elif isinstance(arg, dict):
            return "object"
        elif isinstance(arg, (float, int)):
            return "number"
        elif arg is None:
            return "null"

    @signature({'types': ['array']}, {'types': ['expref']})
    def _func_sort_by(self, array, expref):
        if not array:
            return array
        # sort_by allows for the expref to be either a number of
        # a string, so we have some special logic to handle this.
        # We evaluate the first array element and verify that it's
        # either a string of a number.  We then create a key function
        # that validates that type, which requires that remaining array
        # elements resolve to the same type as the first element.
        required_type = self._convert_to_jmespath_type(
            type(expref.visit(expref.expression, array[0])).__name__)
        if required_type not in ['number', 'string']:
            raise exceptions.JMESPathTypeError(
                'sort_by', array[0], required_type, ['string', 'number'])
        keyfunc = self._create_key_func(expref,
                                        [required_type],
                                        'sort_by')
        return list(sorted(array, key=keyfunc))

    @signature({'types': ['array']}, {'types': ['expref']})
    def _func_min_by(self, array, expref):
        keyfunc = self._create_key_func(expref,
                                        ['number', 'string'],
                                        'min_by')
        return min(array, key=keyfunc)

    @signature({'types': ['array']}, {'types': ['expref']})
    def _func_max_by(self, array, expref):
        keyfunc = self._create_key_func(expref,
                                        ['number', 'string'],
                                        'min_by')
        return max(array, key=keyfunc)

    def _create_key_func(self, expref, allowed_types, function_name):
        def keyfunc(x):
            result = expref.visit(expref.expression, x)
            actual_typename = type(result).__name__
            jmespath_type = self._convert_to_jmespath_type(actual_typename)
            # allowed_types is in term of jmespath types, not python types.
            if jmespath_type not in allowed_types:
                raise exceptions.JMESPathTypeError(
                    function_name, result, jmespath_type, allowed_types)
            return result
        return keyfunc

    def _convert_to_jmespath_type(self, pyobject):
        return TYPES_MAP.get(pyobject, 'unknown')