/usr/lib/python3/dist-packages/hypothesis/strategies.py is in python3-hypothesis 3.44.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 | # coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2017 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
from __future__ import division, print_function, absolute_import
import enum
import math
import datetime as dt
import operator
from decimal import Context, Decimal
from inspect import isclass, isfunction
from fractions import Fraction
from functools import reduce
from hypothesis.errors import InvalidArgument, ResolutionFailed
from hypothesis.control import assume
from hypothesis._settings import note_deprecation
from hypothesis.internal.cache import LRUReusedCache
from hypothesis.searchstrategy import SearchStrategy
from hypothesis.internal.compat import gcd, ceil, floor, hrange, \
text_type, get_type_hints, getfullargspec, implements_iterator
from hypothesis.internal.floats import is_negative, float_to_int, \
int_to_float, count_between_floats
from hypothesis.internal.renaming import renamed_arguments
from hypothesis.utils.conventions import infer, not_set
from hypothesis.internal.reflection import proxies, required_args
from hypothesis.internal.validation import check_type, try_convert, \
check_strategy, check_valid_bound, check_valid_sizes, \
check_valid_integer, check_valid_interval
__all__ = [
'nothing',
'just', 'one_of',
'none',
'choices', 'streaming',
'booleans', 'integers', 'floats', 'complex_numbers', 'fractions',
'decimals',
'characters', 'text', 'from_regex', 'binary', 'uuids',
'tuples', 'lists', 'sets', 'frozensets', 'iterables',
'dictionaries', 'fixed_dictionaries',
'sampled_from', 'permutations',
'datetimes', 'dates', 'times', 'timedeltas',
'builds',
'randoms', 'random_module',
'recursive', 'composite',
'shared', 'runner', 'data',
'deferred',
'from_type', 'register_type_strategy',
]
_strategies = set()
class FloatKey(object):
def __init__(self, f):
self.value = float_to_int(f)
def __eq__(self, other):
return isinstance(other, FloatKey) and (
other.value == self.value
)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.value)
def convert_value(v):
if isinstance(v, float):
return FloatKey(v)
return (type(v), v)
STRATEGY_CACHE = LRUReusedCache(1024)
def cacheable(fn):
@proxies(fn)
def cached_strategy(*args, **kwargs):
kwargs_cache_key = set()
try:
for k, v in kwargs.items():
kwargs_cache_key.add((k, convert_value(v)))
except TypeError:
return fn(*args, **kwargs)
cache_key = (
fn,
tuple(map(convert_value, args)), frozenset(kwargs_cache_key))
try:
return STRATEGY_CACHE[cache_key]
except TypeError:
return fn(*args, **kwargs)
except KeyError:
result = fn(*args, **kwargs)
if not isinstance(result, SearchStrategy) or result.is_cacheable:
STRATEGY_CACHE[cache_key] = result
return result
cached_strategy.__clear_cache = STRATEGY_CACHE.clear
return cached_strategy
def base_defines_strategy(force_reusable):
def decorator(strategy_definition):
from hypothesis.searchstrategy.lazy import LazyStrategy
_strategies.add(strategy_definition.__name__)
@proxies(strategy_definition)
def accept(*args, **kwargs):
result = LazyStrategy(strategy_definition, args, kwargs)
if force_reusable:
result.force_has_reusable_values = True
assert result.has_reusable_values
return result
return accept
return decorator
defines_strategy = base_defines_strategy(False)
defines_strategy_with_reusable_values = base_defines_strategy(True)
class Nothing(SearchStrategy):
def calc_is_empty(self, recur):
return True
def do_draw(self, data):
# This method should never be called because draw() will mark the
# data as invalid immediately because is_empty is True.
assert False # pragma: no cover
def calc_has_reusable_values(self, recur):
return True
def __repr__(self):
return 'nothing()'
def map(self, f):
return self
def filter(self, f):
return self
def flatmap(self, f):
return self
NOTHING = Nothing()
@cacheable
def nothing():
"""This strategy never successfully draws a value and will always reject on
an attempt to draw.
Examples from this strategy do not shrink (because there are none).
"""
return NOTHING
def just(value):
"""Return a strategy which only generates ``value``.
Note: ``value`` is not copied. Be wary of using mutable values.
If ``value`` is the result of a callable, you can use
:func:`builds(callable) <hypothesis.strategies.builds>` instead
of ``just(callable())`` to get a fresh value each time.
Examples from this strategy do not shrink (because there is only one).
"""
from hypothesis.searchstrategy.misc import JustStrategy
return JustStrategy(value)
@defines_strategy
def none():
"""Return a strategy which only generates None.
Examples from this strategy do not shrink (because there is only
one).
"""
return just(None)
def one_of(*args):
"""Return a strategy which generates values from any of the argument
strategies.
This may be called with one iterable argument instead of multiple
strategy arguments. In which case one_of(x) and one_of(\*x) are
equivalent.
Examples from this strategy will generally shrink to ones that come from
strategies earlier in the list, then shrink according to behaviour of the
strategy that produced them. In order to get good shrinking behaviour,
try to put simpler strategies first. e.g. ``one_of(none(), text())`` is
better than ``one_of(text(), none())``.
This is especially important when using recursive strategies. e.g.
``x = st.deferred(lambda: st.none() | st.tuples(x, x))`` will shrink well,
but ``x = st.deferred(lambda: st.tuples(x, x) | st.none())`` will shrink
very badly indeed.
"""
if len(args) == 1 and not isinstance(args[0], SearchStrategy):
try:
args = tuple(args[0])
except TypeError:
pass
from hypothesis.searchstrategy.strategies import OneOfStrategy
return OneOfStrategy(args)
@cacheable
@defines_strategy_with_reusable_values
def integers(min_value=None, max_value=None):
"""Returns a strategy which generates integers (in Python 2 these may be
ints or longs).
If min_value is not None then all values will be >= min_value. If
max_value is not None then all values will be <= max_value
Examples from this strategy will shrink towards being positive (e.g. 1000
is considered simpler than -1) and then towards zero.
"""
check_valid_bound(min_value, 'min_value')
check_valid_bound(max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
from hypothesis.searchstrategy.numbers import IntegersFromStrategy, \
BoundedIntStrategy, WideRangeIntStrategy
min_int_value = None if min_value is None else ceil(min_value)
max_int_value = None if max_value is None else floor(max_value)
if min_int_value is not None and max_int_value is not None and \
min_int_value > max_int_value:
raise InvalidArgument('No integers between min_value=%r and '
'max_value=%r' % (min_value, max_value))
if min_int_value is None:
if max_int_value is None:
return (
WideRangeIntStrategy()
)
else:
return IntegersFromStrategy(0).map(lambda x: max_int_value - x)
else:
if max_int_value is None:
return IntegersFromStrategy(min_int_value)
else:
assert min_int_value <= max_int_value
if min_int_value == max_int_value:
return just(min_int_value)
elif min_int_value >= 0:
return BoundedIntStrategy(min_int_value, max_int_value)
elif max_int_value <= 0:
return BoundedIntStrategy(
-max_int_value, -min_int_value
).map(lambda t: -t)
else:
return integers(min_value=0, max_value=max_int_value) | \
integers(min_value=min_int_value, max_value=0)
@cacheable
@defines_strategy
def booleans():
"""Returns a strategy which generates instances of bool.
Examples from this strategy will shrink towards False (i.e.
shrinking will try to replace True with False where possible).
"""
from hypothesis.searchstrategy.misc import BoolStrategy
return BoolStrategy()
@cacheable
@defines_strategy_with_reusable_values
def floats(
min_value=None, max_value=None, allow_nan=None, allow_infinity=None
):
"""Returns a strategy which generates floats.
- If min_value is not None, all values will be >= min_value.
- If max_value is not None, all values will be <= max_value.
- If min_value or max_value is not None, it is an error to enable
allow_nan.
- If both min_value and max_value are not None, it is an error to enable
allow_infinity.
Where not explicitly ruled out by the bounds, all of infinity, -infinity
and NaN are possible values generated by this strategy.
Examples from this strategy have a complicated and hard to explain
shrinking behaviour, but it tries to improve "human readability". Finite
numbers will be preferred to infinity and infinity will be preferred to
NaN.
"""
if allow_nan is None:
allow_nan = bool(min_value is None and max_value is None)
elif allow_nan:
if min_value is not None or max_value is not None:
raise InvalidArgument(
'Cannot have allow_nan=%r, with min_value or max_value' % (
allow_nan
))
min_value = try_convert(float, min_value, 'min_value')
max_value = try_convert(float, max_value, 'max_value')
check_valid_bound(min_value, 'min_value')
check_valid_bound(max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
if min_value == float(u'-inf'):
min_value = None
if max_value == float(u'inf'):
max_value = None
if allow_infinity is None:
allow_infinity = bool(min_value is None or max_value is None)
elif allow_infinity:
if min_value is not None and max_value is not None:
raise InvalidArgument(
'Cannot have allow_infinity=%r, with both min_value and '
'max_value' % (
allow_infinity
))
from hypothesis.searchstrategy.numbers import FloatStrategy, \
FixedBoundedFloatStrategy
if min_value is None and max_value is None:
return FloatStrategy(
allow_infinity=allow_infinity, allow_nan=allow_nan,
)
elif min_value is not None and max_value is not None:
if min_value == max_value:
return just(min_value)
elif is_negative(min_value):
if is_negative(max_value):
return floats(min_value=-max_value, max_value=-min_value).map(
operator.neg
)
else:
return floats(min_value=0.0, max_value=max_value) | floats(
min_value=0.0, max_value=-min_value).map(operator.neg)
elif count_between_floats(min_value, max_value) > 1000:
return FixedBoundedFloatStrategy(
lower_bound=min_value, upper_bound=max_value
)
else:
ub_int = float_to_int(max_value)
lb_int = float_to_int(min_value)
assert lb_int <= ub_int
return integers(min_value=lb_int, max_value=ub_int).map(
int_to_float
)
elif min_value is not None:
if min_value < 0:
result = floats(
min_value=0.0
) | floats(min_value=min_value, max_value=-0.0)
else:
result = (
floats(allow_infinity=allow_infinity, allow_nan=False).map(
lambda x: assume(not math.isnan(x)) and min_value + abs(x)
)
)
if min_value == 0 and not is_negative(min_value):
result = result.filter(lambda x: math.copysign(1.0, x) == 1)
return result
else:
assert max_value is not None
if max_value > 0:
result = floats(
min_value=0.0,
max_value=max_value,
) | floats(max_value=-0.0)
else:
result = (
floats(allow_infinity=allow_infinity, allow_nan=False).map(
lambda x: assume(not math.isnan(x)) and max_value - abs(x)
)
)
if max_value == 0 and is_negative(max_value):
result = result.filter(is_negative)
return result
@cacheable
@defines_strategy_with_reusable_values
def complex_numbers():
"""Returns a strategy that generates complex numbers.
Examples from this strategy shrink by shrinking their component real
and imaginary parts.
"""
from hypothesis.searchstrategy.numbers import ComplexStrategy
return ComplexStrategy(
tuples(floats(), floats())
)
@cacheable
@defines_strategy
def tuples(*args):
"""Return a strategy which generates a tuple of the same length as args by
generating the value at index i from args[i].
e.g. tuples(integers(), integers()) would generate a tuple of length
two with both values an integer.
Examples from this strategy shrink by shrinking their component parts.
"""
for arg in args:
check_strategy(arg)
from hypothesis.searchstrategy.collections import TupleStrategy
return TupleStrategy(args, tuple)
@defines_strategy
def sampled_from(elements):
"""Returns a strategy which generates any value present in ``elements``.
Note that as with :func:`~hypotheses.strategies.just`, values will not be
copied and thus you should be careful of using mutable data.
``sampled_from`` supports ordered collections, as well as
:class:`~python:enum.Enum` objects. :class:`~python:enum.Flag` objects
may also generate any combination of their members.
Examples from this strategy shrink by replacing them with values earlier in
the list. So e.g. sampled_from((10, 1)) will shrink by trying to replace
1 values with 10, and sampled_from((1, 10)) will shrink by trying to
replace 10 values with 1.
"""
from hypothesis.searchstrategy.misc import SampledFromStrategy
from hypothesis.internal.conjecture.utils import check_sample
values = check_sample(elements)
if not values:
return nothing()
if len(values) == 1:
return just(values[0])
if hasattr(enum, 'Flag') and isclass(elements) and \
issubclass(elements, enum.Flag):
# Combinations of enum.Flag members are also members. We generate
# these dynamically, because static allocation takes O(2^n) memory.
return sets(sampled_from(values), min_size=1).map(
lambda s: reduce(operator.or_, s))
return SampledFromStrategy(values)
_AVERAGE_LIST_LENGTH = 5.0
@cacheable
@defines_strategy
def lists(
elements=None, min_size=None, average_size=None, max_size=None,
unique_by=None, unique=False,
):
"""Returns a list containing values drawn from elements with length in the
interval [min_size, max_size] (no bounds in that direction if these are
None). If max_size is 0 then elements may be None and only the empty list
will be drawn.
average_size may be used as a size hint to roughly control the size
of the list but it may not be the actual average of sizes you get, due
to a variety of factors.
If unique is True (or something that evaluates to True), we compare direct
object equality, as if unique_by was `lambda x: x`. This comparison only
works for hashable types.
if unique_by is not None it must be a function returning a hashable type
when given a value drawn from elements. The resulting list will satisfy the
condition that for i != j, unique_by(result[i]) != unique_by(result[j]).
Examples from this strategy shrink by trying to remove elements from the
list, and by shrinking each individual element of the list.
"""
check_valid_sizes(min_size, average_size, max_size)
if elements is None or (max_size is not None and max_size <= 0):
if max_size is None or max_size > 0:
raise InvalidArgument(
u'Cannot create non-empty lists without an element type'
)
else:
return builds(list)
check_strategy(elements)
if unique:
if unique_by is not None:
raise InvalidArgument((
'cannot specify both unique and unique_by (you probably only '
'want to set unique_by)'
))
else:
def unique_by(x):
return x
if unique_by is not None:
from hypothesis.searchstrategy.collections import UniqueListStrategy
min_size = min_size or 0
max_size = max_size or float(u'inf')
if average_size is None:
if max_size < float(u'inf'):
if max_size <= 5:
average_size = min_size + 0.75 * (max_size - min_size)
else:
average_size = (max_size + min_size) / 2
else:
average_size = max(
_AVERAGE_LIST_LENGTH,
min_size * 2
)
result = UniqueListStrategy(
elements=elements,
average_size=average_size,
max_size=max_size,
min_size=min_size,
key=unique_by
)
else:
from hypothesis.searchstrategy.collections import ListStrategy
if min_size is None:
min_size = 0
if average_size is None:
if max_size is None:
average_size = _AVERAGE_LIST_LENGTH
else:
average_size = (min_size + max_size) * 0.5
result = ListStrategy(
(elements,), average_length=average_size,
min_size=min_size, max_size=max_size,
)
return result
@cacheable
@defines_strategy
def sets(elements=None, min_size=None, average_size=None, max_size=None):
"""This has the same behaviour as lists, but returns sets instead.
Note that Hypothesis cannot tell if values are drawn from elements
are hashable until running the test, so you can define a strategy
for sets of an unhashable type but it will fail at test time.
Examples from this strategy shrink by trying to remove elements from the
set, and by shrinking each individual element of the set.
"""
return lists(
elements=elements, min_size=min_size, average_size=average_size,
max_size=max_size, unique=True
).map(set)
@cacheable
@defines_strategy
def frozensets(elements=None, min_size=None, average_size=None, max_size=None):
"""This is identical to the sets function but instead returns
frozensets."""
return lists(
elements=elements, min_size=min_size, average_size=average_size,
max_size=max_size, unique=True
).map(frozenset)
@defines_strategy
def iterables(elements=None, min_size=None, average_size=None, max_size=None,
unique_by=None, unique=False):
"""This has the same behaviour as lists, but returns iterables instead.
Some iterables cannot be indexed (e.g. sets) and some do not have a
fixed length (e.g. generators). This strategy produces iterators,
which cannot be indexed and do not have a fixed length. This ensures
that you do not accidentally depend on sequence behaviour.
"""
@implements_iterator
class PrettyIter(object):
def __init__(self, values):
self._values = values
self._iter = iter(self._values)
def __iter__(self):
return self._iter
def __next__(self):
return next(self._iter)
def __repr__(self):
return 'iter({!r})'.format(self._values)
return lists(
elements=elements, min_size=min_size, average_size=average_size,
max_size=max_size, unique_by=unique_by, unique=unique
).map(PrettyIter)
@defines_strategy
def fixed_dictionaries(mapping):
"""Generates a dictionary of the same type as mapping with a fixed set of
keys mapping to strategies. mapping must be a dict subclass.
Generated values have all keys present in mapping, with the
corresponding values drawn from mapping[key]. If mapping is an
instance of OrderedDict the keys will also be in the same order,
otherwise the order is arbitrary.
Examples from this strategy shrink by shrinking each individual value in
the generated dictionary.
"""
from hypothesis.searchstrategy.collections import FixedKeysDictStrategy
check_type(dict, mapping, 'mapping')
for v in mapping.values():
check_strategy(v)
return FixedKeysDictStrategy(mapping)
@cacheable
@defines_strategy
def dictionaries(
keys, values, dict_class=dict,
min_size=None, average_size=None, max_size=None
):
"""Generates dictionaries of type dict_class with keys drawn from the keys
argument and values drawn from the values argument.
The size parameters have the same interpretation as for lists.
Examples from this strategy shrink by trying to remove keys from the
generated dictionary, and by shrinking each generated key and value.
"""
check_valid_sizes(min_size, average_size, max_size)
if max_size == 0:
return fixed_dictionaries(dict_class())
check_strategy(keys)
check_strategy(values)
return lists(
tuples(keys, values),
min_size=min_size, average_size=average_size, max_size=max_size,
unique_by=lambda x: x[0]
).map(dict_class)
@defines_strategy
def streaming(elements):
"""Generates an infinite stream of values where each value is drawn from
elements.
The result is iterable (the iterator will never terminate) and
indexable.
Examples from this strategy shrink by trying to shrink each value drawn.
.. deprecated:: 3.15.0
Use :func:`data() <hypothesis.strategies.data>` instead.
"""
note_deprecation(
'streaming() has been deprecated. Use the data() strategy instead and '
'replace stream iteration with data.draw() calls.'
)
check_strategy(elements)
from hypothesis.searchstrategy.streams import StreamStrategy
return StreamStrategy(elements)
@cacheable
@defines_strategy_with_reusable_values
def characters(whitelist_categories=None, blacklist_categories=None,
blacklist_characters=None, min_codepoint=None,
max_codepoint=None, whitelist_characters=None):
"""Generates unicode text type (unicode on python 2, str on python 3)
characters following specified filtering rules.
When no filtering rules are specifed, any character can be produced.
If ``min_codepoint`` or ``max_codepoint`` is specifed, then only
characters having a codepoint in that range will be produced.
If ``whitelist_categories`` is specified, then only characters from those
Unicode categories will be produced. This is a further restriction,
characters must also satisfy ``min_codepoint`` and ``max_codepoint``.
If ``blacklist_categories`` is specified, then any character from those
categories will not be produced. This is a further restriction,
characters that match both ``whitelist_categories`` and
``blacklist_categories`` will not be produced.
If ``whitelist_characters`` is specified, then any additional characters
in that list will also be produced.
If ``blacklist_characters`` is specified, then any characters in that list
will be not be produced. Any overlap between ``whitelist_characters`` and
``blacklist_characters`` will raise an exception.
Examples from this strategy shrink towards smaller codepoints.
"""
if (
min_codepoint is not None and max_codepoint is not None and
min_codepoint > max_codepoint
):
raise InvalidArgument(
'Cannot have min_codepoint=%d > max_codepoint=%d ' % (
min_codepoint, max_codepoint
)
)
if all((whitelist_characters is not None,
min_codepoint is None,
max_codepoint is None,
whitelist_categories is None,
blacklist_categories is None,
)):
raise InvalidArgument(
'Cannot have just whitelist_characters=%r alone, '
'it would have no effect. Perhaps you want sampled_from()' % (
whitelist_characters,
)
)
if (
whitelist_characters is not None and
blacklist_characters is not None and
set(blacklist_characters).intersection(set(whitelist_characters))
):
raise InvalidArgument(
'Characters %r are present in both whitelist_characters=%r, and '
'blacklist_characters=%r' % (
set(blacklist_characters).intersection(
set(whitelist_characters)
),
whitelist_characters, blacklist_characters,
)
)
from hypothesis.searchstrategy.strings import OneCharStringStrategy
return OneCharStringStrategy(whitelist_categories=whitelist_categories,
blacklist_categories=blacklist_categories,
blacklist_characters=blacklist_characters,
min_codepoint=min_codepoint,
max_codepoint=max_codepoint,
whitelist_characters=whitelist_characters)
@cacheable
@defines_strategy_with_reusable_values
def text(
alphabet=None,
min_size=None, average_size=None, max_size=None
):
"""Generates values of a unicode text type (unicode on python 2, str on
python 3) with values drawn from alphabet, which should be an iterable of
length one strings or a strategy generating such. If it is None it will
default to generating the full unicode range. If it is an empty collection
this will only generate empty strings.
min_size, max_size and average_size have the usual interpretations.
Examples from this strategy shrink towards shorter strings, and with the
characters in the text shrinking as per the alphabet strategy.
"""
from hypothesis.searchstrategy.strings import StringStrategy
if alphabet is None:
char_strategy = characters(blacklist_categories=('Cs',))
elif not alphabet:
if (min_size or 0) > 0:
raise InvalidArgument(
'Invalid min_size %r > 0 for empty alphabet' % (
min_size,
)
)
return just(u'')
elif isinstance(alphabet, SearchStrategy):
char_strategy = alphabet
else:
char_strategy = sampled_from(list(map(text_type, alphabet)))
return StringStrategy(lists(
char_strategy, average_size=average_size, min_size=min_size,
max_size=max_size
))
@cacheable
@defines_strategy
def from_regex(regex):
"""Generates strings that contain a match for the given regex (i.e. ones
for which :func:`re.search` will return a non-None result).
``regex`` may be a pattern or :func:`compiled regex <python:re.compile>`.
Both byte-strings and unicode strings are supported, and will generate
examples of the same type.
You can use regex flags such as :const:`re.IGNORECASE`, :const:`re.DOTALL`
or :const:`re.UNICODE` to control generation. Flags can be passed either
in compiled regex or inside the pattern with a ``(?iLmsux)`` group.
Some regular expressions are only partly supported - the underlying
strategy checks local matching and relies on filtering to resolve
context-dependent expressions. Using too many of these constructs may
cause health-check errors as too many examples are filtered out. This
mainly includes (positive or negative) lookahead and lookbehind groups.
If you want the generated string to match the whole regex you should use
boundary markers. So e.g. ``r"\\A.\\Z"`` will return a single character
string, while ``"."`` will return any string, and ``r"\\A.$"`` will return
a single character optionally followed by a ``"\\n"``.
Examples from this strategy shrink towards shorter strings and lower
character values.
"""
from hypothesis.searchstrategy.regex import regex_strategy
return regex_strategy(regex)
@cacheable
@defines_strategy_with_reusable_values
def binary(
min_size=None, average_size=None, max_size=None
):
"""Generates the appropriate binary type (str in python 2, bytes in python
3).
min_size, average_size and max_size have the usual interpretations.
Examples from this strategy shrink towards smaller strings and lower byte
values.
"""
from hypothesis.searchstrategy.strings import BinaryStringStrategy, \
FixedSizeBytes
check_valid_sizes(min_size, average_size, max_size)
if min_size == max_size is not None:
return FixedSizeBytes(min_size)
return BinaryStringStrategy(
lists(
integers(min_value=0, max_value=255),
average_size=average_size, min_size=min_size, max_size=max_size
)
)
@cacheable
@defines_strategy
def randoms():
"""Generates instances of Random (actually a Hypothesis specific
RandomWithSeed class which displays what it was initially seeded with)
Examples from this strategy shrink to seeds closer to zero.
"""
from hypothesis.searchstrategy.misc import RandomStrategy
return RandomStrategy(integers())
class RandomSeeder(object):
def __init__(self, seed):
self.seed = seed
def __repr__(self):
return 'random.seed(%r)' % (self.seed,)
@cacheable
@defines_strategy
def random_module():
"""If your code depends on the global random module then you need to use
this.
It will explicitly seed the random module at the start of your test
so that tests are reproducible. The value it passes you is an opaque
object whose only useful feature is that its repr displays the
random seed. It is not itself a random number generator. If you want
a random number generator you should use the randoms() strategy
which will give you one.
Examples from these strategy shrink to seeds closer to zero.
"""
from hypothesis.control import cleanup
import random
class RandomModule(SearchStrategy):
def do_draw(self, data):
data.can_reproduce_example_from_repr = False
seed = data.draw(integers())
state = random.getstate()
random.seed(seed)
cleanup(lambda: random.setstate(state))
return RandomSeeder(seed)
return shared(RandomModule(), 'hypothesis.strategies.random_module()')
@cacheable
@defines_strategy
def builds(target, *args, **kwargs):
"""Generates values by drawing from ``args`` and ``kwargs`` and passing
them to ``target`` in the appropriate argument position.
e.g. ``builds(target, integers(), flag=booleans())`` would draw an
integer ``i`` and a boolean ``b`` and call ``target(i, flag=b)``.
If ``target`` has type annotations, they will be used to infer a strategy
for required arguments that were not passed to builds. You can also tell
builds to infer a strategy for an optional argument by passing the special
value :const:`hypothesis.infer` as a keyword argument to
builds, instead of a strategy for that argument to ``target``.
Examples from this strategy shrink by shrinking the argument values to
the target.
"""
if infer in args:
# Avoid an implementation nightmare juggling tuples and worse things
raise InvalidArgument('infer was passed as a positional argument to '
'builds(), but is only allowed as a keyword arg')
hints = get_type_hints(target.__init__ if isclass(target) else target)
for kw in [k for k, v in kwargs.items() if v is infer]:
if kw not in hints:
raise InvalidArgument(
'passed %s=infer for %s, but %s has no type annotation'
% (kw, target.__name__, kw))
kwargs[kw] = from_type(hints[kw])
required = required_args(target, args, kwargs)
for ms in set(hints) & (required or set()):
kwargs[ms] = from_type(hints[ms])
return tuples(tuples(*args), fixed_dictionaries(kwargs)).map(
lambda value: target(*value[0], **value[1])
)
def delay_error(func):
"""A decorator to make exceptions lazy but success immediate.
We want from_type to resolve to a strategy immediately if possible,
for a useful repr and interactive use, but delay errors until a
value would be drawn to localise them to a particular test.
"""
@proxies(func)
def inner(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
error = e
def lazy_error():
raise error
return builds(lazy_error)
return inner
@cacheable
@delay_error
def from_type(thing):
"""Looks up the appropriate search strategy for the given type.
``from_type`` is used internally to fill in missing arguments to
:func:`~hypothesis.strategies.builds` and can be used interactively
to explore what strategies are available or to debug type resolution.
You can use :func:`~hypothesis.strategies.register_type_strategy` to
handle your custom types, or to globally redefine certain strategies -
for example excluding NaN from floats, or use timezone-aware instead of
naive time and datetime strategies.
The resolution logic may be changed in a future version, but currently
tries these four options:
1. If ``thing`` is in the default lookup mapping or user-registered lookup,
return the corresponding strategy. The default lookup covers all types
with Hypothesis strategies, including extras where possible.
2. If ``thing`` is from the :mod:`python:typing` module, return the
corresponding strategy (special logic).
3. If ``thing`` has one or more subtypes in the merged lookup, return
the union of the strategies for those types that are not subtypes of
other elements in the lookup.
4. Finally, if ``thing`` has type annotations for all required arguments,
it is resolved via :func:`~hypothesis.strategies.builds`.
"""
from hypothesis.searchstrategy import types
if not isinstance(thing, type):
try:
# At runtime, `typing.NewType` returns an identity function rather
# than an actual type, but we can check that for a possible match
# and then read the magic attribute to unwrap it.
import typing
if all([
hasattr(thing, '__supertype__'), hasattr(typing, 'NewType'),
isfunction(thing), getattr(thing, '__module__', 0) == 'typing'
]):
return from_type(thing.__supertype__)
# Under Python 3.6, Unions are not instances of `type` - but we
# still want to resolve them!
if getattr(thing, '__origin__', None) is typing.Union:
args = sorted(thing.__args__, key=types.type_sorting_key)
return one_of([from_type(t) for t in args])
except ImportError: # pragma: no cover
pass
raise InvalidArgument('thing=%s must be a type' % (thing,))
# Now that we know `thing` is a type, the first step is to check for an
# explicitly registered strategy. This is the best (and hopefully most
# common) way to resolve a type to a strategy. Note that the value in the
# lookup may be a strategy or a function from type -> strategy; and we
# convert empty results into an explicit error.
if thing in types._global_type_lookup:
strategy = types._global_type_lookup[thing]
if not isinstance(strategy, SearchStrategy):
strategy = strategy(thing)
if strategy.is_empty:
raise ResolutionFailed(
'Error: %r resolved to an empty strategy' % (thing,))
return strategy
# If there's no explicitly registered strategy, maybe a subtype of thing
# is registered - if so, we can resolve it to the subclass strategy.
# We'll start by checking if thing is from from the typing module,
# because there are several special cases that don't play well with
# subclass and instance checks.
try:
import typing
if isinstance(thing, typing.TypingMeta):
return types.from_typing_type(thing)
except ImportError: # pragma: no cover
pass
# If it's not from the typing module, we get all registered types that are
# a subclass of `thing` and are not themselves a subtype of any other such
# type. For example, `Number -> integers() | floats()`, but bools() is
# not included because bool is a subclass of int as well as Number.
strategies = [
v if isinstance(v, SearchStrategy) else v(thing)
for k, v in types._global_type_lookup.items()
if issubclass(k, thing) and
sum(types.try_issubclass(k, T) for T in types._global_type_lookup) == 1
]
empty = ', '.join(repr(s) for s in strategies if s.is_empty)
if empty:
raise ResolutionFailed(
'Could not resolve %s to a strategy; consider using '
'register_type_strategy' % empty)
elif strategies:
return one_of(strategies)
# If we don't have a strategy registered for this type or any subtype, we
# may be able to fall back on type annotations.
# Types created via typing.NamedTuple use a custom attribute instead -
# but we can still use builds(), if we work out the right kwargs.
if issubclass(thing, tuple) and hasattr(thing, '_fields') \
and hasattr(thing, '_field_types'):
kwargs = {k: from_type(thing._field_types[k]) for k in thing._fields}
return builds(thing, **kwargs)
if issubclass(thing, enum.Enum):
assert len(thing), repr(thing) + ' has no members to sample'
return sampled_from(thing)
# If the constructor has an annotation for every required argument,
# we can (and do) use builds() without supplying additional arguments.
required = required_args(thing)
if not required or required.issubset(get_type_hints(thing.__init__)):
return builds(thing)
# We have utterly failed, and might as well say so now.
raise ResolutionFailed('Could not resolve %r to a strategy; consider '
'using register_type_strategy' % (thing,))
@cacheable
@defines_strategy_with_reusable_values
def fractions(min_value=None, max_value=None, max_denominator=None):
"""Returns a strategy which generates Fractions.
If min_value is not None then all generated values are no less than
min_value. If max_value is not None then all generated values are no
greater than max_value. min_value and max_value may be anything accepted
by the :class:`~fractions.Fraction` constructor.
If max_denominator is not None then the denominator of any generated
values is no greater than max_denominator. Note that max_denominator must
be None or a positive integer.
Examples from this strategy shrink towards smaller denominators, then
closer to zero.
"""
min_value = try_convert(Fraction, min_value, 'min_value')
max_value = try_convert(Fraction, max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
check_valid_integer(max_denominator)
if max_denominator is not None:
if max_denominator < 1:
raise InvalidArgument(
'max_denominator=%r must be >= 1' % max_denominator)
def fraction_bounds(value):
"""Find the best lower and upper approximation for value."""
# Adapted from CPython's Fraction.limit_denominator here:
# https://github.com/python/cpython/blob/3.6/Lib/fractions.py#L219
if value is None or value.denominator <= max_denominator:
return value, value
p0, q0, p1, q1 = 0, 1, 1, 0
n, d = value.numerator, value.denominator
while True:
a = n // d
q2 = q0 + a * q1
if q2 > max_denominator:
break
p0, q0, p1, q1 = p1, q1, p0 + a * p1, q2
n, d = d, n - a * d
k = (max_denominator - q0) // q1
low, high = Fraction(p1, q1), Fraction(p0 + k * p1, q0 + k * q1)
assert low < value < high
return low, high
# Take the high approximation for min_value and low for max_value
bounds = (max_denominator, min_value, max_value)
_, min_value = fraction_bounds(min_value)
max_value, _ = fraction_bounds(max_value)
if None not in (min_value, max_value) and min_value > max_value:
raise InvalidArgument(
'There are no fractions with a denominator <= %r between '
'min_value=%r and max_value=%r' % bounds)
if min_value is not None and min_value == max_value:
return just(min_value)
def dm_func(denom):
"""Take denom, construct numerator strategy, and build fraction."""
# Four cases of algebra to get integer bounds and scale factor.
min_num, max_num = None, None
if max_value is None and min_value is None:
pass
elif min_value is None:
max_num = denom * max_value.numerator
denom *= max_value.denominator
elif max_value is None:
min_num = denom * min_value.numerator
denom *= min_value.denominator
else:
low = min_value.numerator * max_value.denominator
high = max_value.numerator * min_value.denominator
scale = min_value.denominator * max_value.denominator
# After calculating our integer bounds and scale factor, we remove
# the gcd to avoid drawing more bytes for the example than needed.
# Note that `div` can be at most equal to `scale`.
div = gcd(scale, gcd(low, high))
min_num = denom * low // div
max_num = denom * high // div
denom *= scale // div
return builds(
Fraction,
integers(min_value=min_num, max_value=max_num),
just(denom)
)
if max_denominator is None:
return integers(min_value=1).flatmap(dm_func)
return integers(1, max_denominator).flatmap(dm_func).map(
lambda f: f.limit_denominator(max_denominator))
@cacheable
@defines_strategy_with_reusable_values
def decimals(min_value=None, max_value=None,
allow_nan=None, allow_infinity=None, places=None):
"""Generates instances of :class:`decimals.Decimal`, which may be:
- A finite rational number, between ``min_value`` and ``max_value``.
- Not a Number, if ``allow_nan`` is True. None means "allow NaN, unless
``min_value`` and ``max_value`` are not None".
- Positive or negative infinity, if ``max_value`` and ``min_value``
respectively are None, and ``allow_infinity`` is not False. None means
"allow infinity, unless excluded by the min and max values".
Note that where floats have one ``NaN`` value, Decimals have four: signed,
and either *quiet* or *signalling*. See `the decimal module docs
<https://docs.python.org/3/library/decimal.html#special-values>`_ for
more information on special values.
If ``places`` is not None, all finite values drawn from the strategy will
have that number of digits after the decimal place.
Examples from this strategy do not have a well defined shrink order but
try to maximize human readability when shrinking.
"""
# Convert min_value and max_value to Decimal values, and validate args
check_valid_integer(places)
if places is not None and places < 0:
raise InvalidArgument('places=%r may not be negative' % places)
if min_value is not None:
min_value = try_convert(Decimal, min_value, 'min_value')
if min_value.is_infinite() and min_value < 0:
if not (allow_infinity or allow_infinity is None):
raise InvalidArgument('allow_infinity=%r, but min_value=%r'
% (allow_infinity, min_value))
min_value = None
elif not min_value.is_finite():
# This could be positive infinity, quiet NaN, or signalling NaN
raise InvalidArgument(u'Invalid min_value=%r' % min_value)
if max_value is not None:
max_value = try_convert(Decimal, max_value, 'max_value')
if max_value.is_infinite() and max_value > 0:
if not (allow_infinity or allow_infinity is None):
raise InvalidArgument('allow_infinity=%r, but max_value=%r'
% (allow_infinity, max_value))
max_value = None
elif not max_value.is_finite():
raise InvalidArgument(u'Invalid max_value=%r' % max_value)
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
if allow_infinity and (None not in (min_value, max_value)):
raise InvalidArgument('Cannot allow infinity between finite bounds')
# Set up a strategy for finite decimals. Note that both floating and
# fixed-point decimals require careful handling to remain isolated from
# any external precision context - in short, we always work out the
# required precision for lossless operation and use context methods.
if places is not None:
# Fixed-point decimals are basically integers with a scale factor
def ctx(val):
"""Return a context in which this value is lossless."""
precision = ceil(math.log10(abs(val) or 1)) + places + 1
return Context(prec=max([precision, 1]))
def int_to_decimal(val):
context = ctx(val)
return context.quantize(context.multiply(val, factor), factor)
factor = Decimal(10) ** -places
min_num, max_num = None, None
if min_value is not None:
min_num = ceil(ctx(min_value).divide(min_value, factor))
if max_value is not None:
max_num = floor(ctx(max_value).divide(max_value, factor))
if None not in (min_num, max_num) and min_num > max_num:
raise InvalidArgument(
'There are no decimals with %d places between min_value=%r '
'and max_value=%r ' % (places, min_value, max_value))
strat = integers(min_num, max_num).map(int_to_decimal)
else:
# Otherwise, they're like fractions featuring a power of ten
def fraction_to_decimal(val):
precision = ceil(math.log10(abs(val.numerator) or 1) +
math.log10(val.denominator)) + 1
return Context(prec=precision or 1).divide(
Decimal(val.numerator), val.denominator)
strat = fractions(min_value, max_value).map(fraction_to_decimal)
# Compose with sampled_from for infinities and NaNs as appropriate
special = []
if allow_nan or (allow_nan is None and (None in (min_value, max_value))):
special.extend(map(Decimal, ('NaN', '-NaN', 'sNaN', '-sNaN')))
if allow_infinity or (allow_infinity is max_value is None):
special.append(Decimal('Infinity'))
if allow_infinity or (allow_infinity is min_value is None):
special.append(Decimal('-Infinity'))
return strat | sampled_from(special)
def recursive(base, extend, max_leaves=100):
"""base: A strategy to start from.
extend: A function which takes a strategy and returns a new strategy.
max_leaves: The maximum number of elements to be drawn from base on a given
run.
This returns a strategy ``S`` such that ``S = extend(base | S)``. That is,
values may be drawn from base, or from any strategy reachable by mixing
applications of | and extend.
An example may clarify: ``recursive(booleans(), lists)`` would return a
strategy that may return arbitrarily nested and mixed lists of booleans.
So e.g. ``False``, ``[True]``, ``[False, []]``, and ``[[[[True]]]]`` are
all valid values to be drawn from that strategy.
Examples from this strategy shrink by trying to reduce the amount of
recursion and by shrinking according to the shrinking behaviour of base
and the result of extend.
"""
from hypothesis.searchstrategy.recursive import RecursiveStrategy
return RecursiveStrategy(base, extend, max_leaves)
@defines_strategy
def permutations(values):
"""Return a strategy which returns permutations of the collection
``values``.
Examples from this strategy shrink by trying to become closer to the
original order of values.
"""
from hypothesis.internal.conjecture.utils import integer_range
values = list(values)
if not values:
return builds(list)
class PermutationStrategy(SearchStrategy):
def do_draw(self, data):
# Reversed Fisher-Yates shuffle. Reverse order so that it shrinks
# propertly: This way we prefer things that are lexicographically
# closer to the identity.
result = list(values)
for i in hrange(len(result)):
j = integer_range(data, i, len(result) - 1)
result[i], result[j] = result[j], result[i]
return result
return PermutationStrategy()
@defines_strategy_with_reusable_values
@renamed_arguments(
min_datetime='min_value',
max_datetime='max_value',
)
def datetimes(
min_value=dt.datetime.min, max_value=dt.datetime.max,
timezones=none(),
min_datetime=None, max_datetime=None,
):
"""A strategy for generating datetimes, which may be timezone-aware.
This strategy works by drawing a naive datetime between ``min_datetime``
and ``max_datetime``, which must both be naive (have no timezone).
``timezones`` must be a strategy that generates tzinfo objects (or None,
which is valid for naive datetimes). A value drawn from this strategy
will be added to a naive datetime, and the resulting tz-aware datetime
returned.
.. note::
tz-aware datetimes from this strategy may be ambiguous or non-existent
due to daylight savings, leap seconds, timezone and calendar
adjustments, etc. This is intentional, as malformed timestamps are a
common source of bugs.
:py:func:`hypothesis.extra.timezones` requires the ``pytz`` package, but
provides all timezones in the Olsen database. If you also want to allow
naive datetimes, combine strategies like ``none() | timezones()``.
Alternatively, you can create a list of the timezones you wish to allow
(e.g. from the standard library, ``datetutil``, or ``pytz``) and use
:py:func:`sampled_from`. Ensure that simple values such as None or UTC
are at the beginning of the list for proper minimisation.
Examples from this strategy shrink towards midnight on January 1st 2000.
"""
# Why must bounds be naive? In principle, we could also write a strategy
# that took aware bounds, but the API and validation is much harder.
# If you want to generate datetimes between two particular momements in
# time I suggest (a) just filtering out-of-bounds values; (b) if bounds
# are very close, draw a value and subtract it's UTC offset, handling
# overflows and nonexistent times; or (c) do something customised to
# handle datetimes in e.g. a four-microsecond span which is not
# representable in UTC. Handling (d), all of the above, leads to a much
# more complex API for all users and a useful feature for very few.
from hypothesis.searchstrategy.datetime import DatetimeStrategy
check_type(dt.datetime, min_value, 'min_value')
check_type(dt.datetime, max_value, 'max_value')
if min_value.tzinfo is not None:
raise InvalidArgument('min_value=%r must not have tzinfo'
% (min_value,))
if max_value.tzinfo is not None:
raise InvalidArgument('max_value=%r must not have tzinfo'
% (max_value,))
check_valid_interval(min_value, max_value,
'min_value', 'max_value')
if not isinstance(timezones, SearchStrategy):
raise InvalidArgument(
'timezones=%r must be a SearchStrategy that can provide tzinfo '
'for datetimes (either None or dt.tzinfo objects)' % (timezones,))
return DatetimeStrategy(min_value, max_value, timezones)
@defines_strategy_with_reusable_values
@renamed_arguments(
min_date='min_value',
max_date='max_value',
)
def dates(
min_value=dt.date.min, max_value=dt.date.max,
min_date=None, max_date=None,
):
"""A strategy for dates between ``min_date`` and ``max_date``.
Examples from this strategy shrink towards January 1st 2000.
"""
from hypothesis.searchstrategy.datetime import DateStrategy
check_type(dt.date, min_value, 'min_value')
check_type(dt.date, max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
if min_value == max_value:
return just(min_value)
return DateStrategy(min_value, max_value)
@defines_strategy_with_reusable_values
@renamed_arguments(
min_time='min_value',
max_time='max_value',
)
def times(
min_value=dt.time.min, max_value=dt.time.max, timezones=none(),
min_time=None, max_time=None,
):
"""A strategy for times between ``min_time`` and ``max_time``.
The ``timezones`` argument is handled as for :py:func:`datetimes`.
Examples from this strategy shrink towards midnight, with the timezone
component shrinking as for the strategy that provided it.
"""
check_type(dt.time, min_value, 'min_value')
check_type(dt.time, max_value, 'max_value')
if min_value.tzinfo is not None:
raise InvalidArgument('min_value=%r must not have tzinfo' % min_value)
if max_value.tzinfo is not None:
raise InvalidArgument('max_value=%r must not have tzinfo' % max_value)
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
day = dt.date(2000, 1, 1)
return datetimes(min_value=dt.datetime.combine(day, min_value),
max_value=dt.datetime.combine(day, max_value),
timezones=timezones).map(lambda t: t.timetz())
@defines_strategy_with_reusable_values
@renamed_arguments(
min_delta='min_value',
max_delta='max_value',
)
def timedeltas(
min_value=dt.timedelta.min, max_value=dt.timedelta.max,
min_delta=None, max_delta=None
):
"""A strategy for timedeltas between ``min_value`` and ``max_value``.
Examples from this strategy shrink towards zero.
"""
from hypothesis.searchstrategy.datetime import TimedeltaStrategy
check_type(dt.timedelta, min_value, 'min_value')
check_type(dt.timedelta, max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
if min_value == max_value:
return just(min_value)
return TimedeltaStrategy(min_value=min_value, max_value=max_value)
@cacheable
def composite(f):
"""Defines a strategy that is built out of potentially arbitrarily many
other strategies.
This is intended to be used as a decorator. See
:ref:`the full documentation for more details <composite-strategies>`
about how to use this function.
Examples from this strategy shrink by shrinking the output of each draw
call.
"""
from hypothesis.internal.reflection import define_function_signature
argspec = getfullargspec(f)
if (
argspec.defaults is not None and
len(argspec.defaults) == len(argspec.args)
):
raise InvalidArgument(
'A default value for initial argument will never be used')
if len(argspec.args) == 0 and not argspec.varargs:
raise InvalidArgument(
'Functions wrapped with composite must take at least one '
'positional argument.'
)
annots = {k: v for k, v in argspec.annotations.items()
if k in (argspec.args + argspec.kwonlyargs + ['return'])}
new_argspec = argspec._replace(args=argspec.args[1:], annotations=annots)
@defines_strategy
@define_function_signature(f.__name__, f.__doc__, new_argspec)
def accept(*args, **kwargs):
class CompositeStrategy(SearchStrategy):
def do_draw(self, data):
first_draw = [True]
def draw(strategy):
first_draw[0] = False
return data.draw(strategy)
return f(draw, *args, **kwargs)
return CompositeStrategy()
accept.__module__ = f.__module__
return accept
def shared(base, key=None):
"""Returns a strategy that draws a single shared value per run, drawn from
base. Any two shared instances with the same key will share the same value,
otherwise the identity of this strategy will be used. That is:
>>> s = integers() # or any other strategy
>>> x = shared(s)
>>> y = shared(s)
In the above x and y may draw different (or potentially the same) values.
In the following they will always draw the same:
>>> x = shared(s, key="hi")
>>> y = shared(s, key="hi")
Examples from this strategy shrink as per their base strategy.
"""
from hypothesis.searchstrategy.shared import SharedStrategy
return SharedStrategy(base, key)
@defines_strategy
def choices():
"""Strategy that generates a function that behaves like random.choice.
Will note choices made for reproducibility.
.. deprecated:: 3.15.0
Use :func:`data() <hypothesis.strategies.data>` with
:func:`sampled_from() <hypothesis.strategies.sampled_from>` instead.
Examples from this strategy shrink by making each choice function return
an earlier value in the sequence passed to it.
"""
from hypothesis.control import note, current_build_context
from hypothesis.internal.conjecture.utils import choice, check_sample
note_deprecation(
'choices() has been deprecated. Use the data() strategy instead and '
'replace its usage with data.draw(sampled_from(elements))) calls.'
)
class Chooser(object):
def __init__(self, build_context, data):
self.build_context = build_context
self.data = data
self.choice_count = 0
def __call__(self, values):
if not values:
raise IndexError('Cannot choose from empty sequence')
result = choice(self.data, check_sample(values))
with self.build_context.local():
self.choice_count += 1
note('Choice #%d: %r' % (self.choice_count, result))
return result
def __repr__(self):
return 'choice'
class ChoiceStrategy(SearchStrategy):
supports_find = False
def do_draw(self, data):
data.can_reproduce_example_from_repr = False
return Chooser(current_build_context(), data)
return shared(
ChoiceStrategy(),
key='hypothesis.strategies.chooser.choice_function'
)
@cacheable
@defines_strategy_with_reusable_values
def uuids(version=None):
"""Returns a strategy that generates :class:`UUIDs <uuid.UUID>`.
If the optional version argument is given, value is passed through
to :class:`~python:uuid.UUID` and only UUIDs of that version will
be generated.
All returned values from this will be unique, so e.g. if you do
``lists(uuids())`` the resulting list will never contain duplicates.
Examples from this strategy don't have any meaningful shrink order.
"""
from uuid import UUID
if version not in (None, 1, 2, 3, 4, 5):
raise InvalidArgument((
'version=%r, but version must be in (None, 1, 2, 3, 4, 5) '
'to pass to the uuid.UUID constructor.') % (version, )
)
return shared(randoms(), key='hypothesis.strategies.uuids.generator').map(
lambda r: UUID(version=version, int=r.getrandbits(128))
)
@defines_strategy_with_reusable_values
def runner(default=not_set):
"""A strategy for getting "the current test runner", whatever that may be.
The exact meaning depends on the entry point, but it will usually be the
associated 'self' value for it.
If there is no current test runner and a default is provided, return
that default. If no default is provided, raises InvalidArgument.
Examples from this strategy do not shrink (because there is only one).
"""
class RunnerStrategy(SearchStrategy):
def do_draw(self, data):
runner = getattr(data, 'hypothesis_runner', not_set)
if runner is not_set:
if default is not_set:
raise InvalidArgument(
'Cannot use runner() strategy with no '
'associated runner or explicit default.'
)
else:
return default
else:
return runner
return RunnerStrategy()
@cacheable
def data():
"""This isn't really a normal strategy, but instead gives you an object
which can be used to draw data interactively from other strategies.
It can only be used within :func:`@given <hypothesis.given>`, not
:func:`find() <hypothesis.find>`. This is because the lifetime
of the object cannot outlast the test body.
See :ref:`the rest of the documentation <interactive-draw>` for more
complete information.
Examples from this strategy do not shrink (because there is only one),
but the result of calls to each draw() call shrink as they normally would.
"""
from hypothesis.control import note
class DataObject(object):
def __init__(self, data):
self.count = 0
self.data = data
def __repr__(self):
return 'data(...)'
def draw(self, strategy, label=None):
result = self.data.draw(strategy)
self.count += 1
if label is not None:
note('Draw %d (%s): %r' % (self.count, label, result))
else:
note('Draw %d: %r' % (self.count, result))
return result
class DataStrategy(SearchStrategy):
supports_find = False
def do_draw(self, data):
data.can_reproduce_example_from_repr = False
if not hasattr(data, 'hypothesis_shared_data_strategy'):
data.hypothesis_shared_data_strategy = DataObject(data)
return data.hypothesis_shared_data_strategy
def __repr__(self):
return 'data()'
def map(self, f):
self.__not_a_first_class_strategy('map')
def filter(self, f):
self.__not_a_first_class_strategy('filter')
def flatmap(self, f):
self.__not_a_first_class_strategy('flatmap')
def example(self):
self.__not_a_first_class_strategy('example')
def __not_a_first_class_strategy(self, name):
raise InvalidArgument((
'Cannot call %s on a DataStrategy. You should probably be '
"using @composite for whatever it is you're trying to do."
) % (name,))
return DataStrategy()
def register_type_strategy(custom_type, strategy):
"""Add an entry to the global type-to-strategy lookup.
This lookup is used in :func:`~hypothesis.strategies.builds` and
:func:`@given <hypothesis.given>`.
:func:`~hypothesis.strategies.builds` will be used automatically for
classes with type annotations on ``__init__`` , so you only need to
register a strategy if one or more arguments need to be more tightly
defined than their type-based default, or if you want to supply a strategy
for an argument with a default value.
``strategy`` may be a search strategy, or a function that takes a type and
returns a strategy (useful for generic types).
"""
from hypothesis.searchstrategy import types
if not isinstance(custom_type, type):
raise InvalidArgument('custom_type=%r must be a type')
elif not (isinstance(strategy, SearchStrategy) or callable(strategy)):
raise InvalidArgument(
'strategy=%r must be a SearchStrategy, or a function that takes '
'a generic type and returns a specific SearchStrategy')
elif isinstance(strategy, SearchStrategy) and strategy.is_empty:
raise InvalidArgument('strategy=%r must not be empty')
types._global_type_lookup[custom_type] = strategy
from_type.__clear_cache()
@cacheable
def deferred(definition):
"""A deferred strategy allows you to write a strategy that references other
strategies that have not yet been defined. This allows for the easy
definition of recursive and mutually recursive strategies.
The definition argument should be a zero-argument function that returns a
strategy. It will be evaluated the first time the strategy is used to
produce an example.
Example usage:
>>> import hypothesis.strategies as st
>>> x = st.deferred(lambda: st.booleans() | st.tuples(x, x))
>>> x.example()
(((False, (True, True)), (False, True)), (True, True))
>>> x.example()
(True, True)
Mutual recursion also works fine:
>>> a = st.deferred(lambda: st.booleans() | b)
>>> b = st.deferred(lambda: st.tuples(a, a))
>>> a.example()
(True, (True, False))
>>> b.example()
(False, True)
Examples from this strategy shrink as they normally would from the strategy
returned by the definition.
"""
from hypothesis.searchstrategy.deferred import DeferredStrategy
return DeferredStrategy(definition)
assert _strategies.issubset(set(__all__)), _strategies - set(__all__)
|