/usr/lib/python3/dist-packages/gpxpy/geo.py is in python3-gpxpy 1.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | # -*- coding: utf-8 -*-
# Copyright 2011 Tomo Krajina
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging as mod_logging
import math as mod_math
from . import utils as mod_utils
# Generic geo related function and class(es)
# One degree in meters:
ONE_DEGREE = 1000. * 10000.8 / 90.
EARTH_RADIUS = 6371 * 1000
def to_rad(x):
return x / 180. * mod_math.pi
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
"""
Haversine distance between two points, expressed in meters.
Implemented from http://www.movable-type.co.uk/scripts/latlong.html
"""
d_lat = to_rad(latitude_1 - latitude_2)
d_lon = to_rad(longitude_1 - longitude_2)
lat1 = to_rad(latitude_1)
lat2 = to_rad(latitude_2)
a = mod_math.sin(d_lat/2) * mod_math.sin(d_lat/2) + \
mod_math.sin(d_lon/2) * mod_math.sin(d_lon/2) * mod_math.cos(lat1) * mod_math.cos(lat2)
c = 2 * mod_math.atan2(mod_math.sqrt(a), mod_math.sqrt(1-a))
d = EARTH_RADIUS * c
return d
def length(locations=None, _3d=None):
locations = locations or []
if not locations:
return 0
length = 0
for i in range(len(locations)):
if i > 0:
previous_location = locations[i - 1]
location = locations[i]
if _3d:
d = location.distance_3d(previous_location)
else:
d = location.distance_2d(previous_location)
if d != 0 and not d:
pass
else:
length += d
return length
def length_2d(locations=None):
""" 2-dimensional length (meters) of locations (only latitude and longitude, no elevation). """
locations = locations or []
return length(locations, False)
def length_3d(locations=None):
""" 3-dimensional length (meters) of locations (it uses latitude, longitude, and elevation). """
locations = locations or []
return length(locations, True)
def calculate_max_speed(speeds_and_distances):
"""
Compute average distance and standard deviation for distance. Extremes
in distances are usually extremes in speeds, so we will ignore them,
here.
speeds_and_distances must be a list containing pairs of (speed, distance)
for every point in a track segment.
"""
assert speeds_and_distances
if len(speeds_and_distances) > 0:
assert len(speeds_and_distances[0]) == 2
# ...
assert len(speeds_and_distances[-1]) == 2
size = float(len(speeds_and_distances))
if size < 20:
mod_logging.debug('Segment too small to compute speed, size=%s', size)
return None
distances = list(map(lambda x: x[1], speeds_and_distances))
average_distance = sum(distances) / float(size)
standard_distance_deviation = mod_math.sqrt(sum(map(lambda distance: (distance-average_distance)**2, distances))/size)
# Ignore items where the distance is too big:
filtered_speeds_and_distances = filter(lambda speed_and_distance: abs(speed_and_distance[1] - average_distance) <= standard_distance_deviation * 1.5, speeds_and_distances)
# sort by speed:
speeds = list(map(lambda speed_and_distance: speed_and_distance[0], filtered_speeds_and_distances))
if not isinstance(speeds, list): # python3
speeds = list(speeds)
if not speeds:
return None
speeds.sort()
# Even here there may be some extremes => ignore the last 5%:
index = int(len(speeds) * 0.95)
if index >= len(speeds):
index = -1
return speeds[index]
def calculate_uphill_downhill(elevations):
if not elevations:
return 0, 0
size = len(elevations)
def __filter(n):
current_ele = elevations[n]
if current_ele is None:
return False
if 0 < n < size - 1:
previous_ele = elevations[n-1]
next_ele = elevations[n+1]
if previous_ele is not None and current_ele is not None and next_ele is not None:
return previous_ele*.3 + current_ele*.4 + next_ele*.3
return current_ele
smoothed_elevations = list(map(__filter, range(size)))
uphill, downhill = 0., 0.
for n, elevation in enumerate(smoothed_elevations):
if n > 0 and elevation is not None and smoothed_elevations is not None:
d = elevation - smoothed_elevations[n-1]
if d > 0:
uphill += d
else:
downhill -= d
return uphill, downhill
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
haversine=None):
"""
Distance between two points. If elevation is None compute a 2d distance
if haversine==True -- haversine will be used for every computations,
otherwise...
Haversine distance will be used for distant points where elevation makes a
small difference, so it is ignored. That's because haversine is 5-6 times
slower than the dummy distance algorithm (which is OK for most GPS tracks).
"""
# If points too distant -- compute haversine distance:
if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
coef = mod_math.cos(latitude_1 / 180. * mod_math.pi)
x = latitude_1 - latitude_2
y = (longitude_1 - longitude_2) * coef
distance_2d = mod_math.sqrt(x * x + y * y) * ONE_DEGREE
if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
return distance_2d
return mod_math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
def elevation_angle(location1, location2, radians=False):
""" Uphill/downhill angle between two locations. """
if location1.elevation is None or location2.elevation is None:
return None
b = float(location2.elevation - location1.elevation)
a = location2.distance_2d(location1)
if a == 0:
return 0
angle = mod_math.atan(b / a)
if radians:
return angle
return 180 * angle / mod_math.pi
def distance_from_line(point, line_point_1, line_point_2):
""" Distance of point from a line given with two points. """
assert point, point
assert line_point_1, line_point_1
assert line_point_2, line_point_2
a = line_point_1.distance_2d(line_point_2)
if a == 0:
return line_point_1.distance_2d(point)
b = line_point_1.distance_2d(point)
c = line_point_2.distance_2d(point)
s = (a + b + c) / 2.
return 2. * mod_math.sqrt(abs(s * (s - a) * (s - b) * (s - c))) / a
def get_line_equation_coefficients(location1, location2):
"""
Get line equation coefficients for:
latitude * a + longitude * b + c = 0
This is a normal cartesian line (not spherical!)
"""
if location1.longitude == location2.longitude:
# Vertical line:
return float(0), float(1), float(-location1.longitude)
else:
a = float(location1.latitude - location2.latitude) / (location1.longitude - location2.longitude)
b = location1.latitude - location1.longitude * a
return float(1), float(-a), float(-b)
def simplify_polyline(points, max_distance):
"""Does Ramer-Douglas-Peucker algorithm for simplification of polyline """
if len(points) < 3:
return points
begin, end = points[0], points[-1]
# Use a "normal" line just to detect the most distant point (not its real distance)
# this is because this is faster to compute than calling distance_from_line() for
# every point.
#
# This is an approximation and may have some errors near the poles and if
# the points are too distant, but it should be good enough for most use
# cases...
a, b, c = get_line_equation_coefficients(begin, end)
tmp_max_distance = -1000000
tmp_max_distance_position = None
for point_no in range(len(points[1:-1])):
point = points[point_no]
d = abs(a * point.latitude + b * point.longitude + c)
if d > tmp_max_distance:
tmp_max_distance = d
tmp_max_distance_position = point_no
# Now that we have the most distance point, compute its real distance:
real_max_distance = distance_from_line(points[tmp_max_distance_position], begin, end)
if real_max_distance < max_distance:
return [begin, end]
return (simplify_polyline(points[:tmp_max_distance_position + 2], max_distance) +
simplify_polyline(points[tmp_max_distance_position + 1:], max_distance)[1:])
class Location:
""" Generic geographical location """
latitude = None
longitude = None
elevation = None
def __init__(self, latitude, longitude, elevation=None):
self.latitude = latitude
self.longitude = longitude
self.elevation = elevation
def has_elevation(self):
return self.elevation or self.elevation == 0
def remove_elevation(self):
self.elevation = None
def distance_2d(self, location):
if not location:
return None
return distance(self.latitude, self.longitude, None, location.latitude, location.longitude, None)
def distance_3d(self, location):
if not location:
return None
return distance(self.latitude, self.longitude, self.elevation, location.latitude, location.longitude, location.elevation)
def elevation_angle(self, location, radians=False):
return elevation_angle(self, location, radians)
def move(self, location_delta):
self.latitude, self.longitude = location_delta.move(self)
def __add__(self, location_delta):
latitude, longitude = location_delta.move(self)
return Location(latitude, longitude)
def __str__(self):
return '[loc:%s,%s@%s]' % (self.latitude, self.longitude, self.elevation)
def __repr__(self):
if self.elevation is None:
return 'Location(%s, %s)' % (self.latitude, self.longitude)
else:
return 'Location(%s, %s, %s)' % (self.latitude, self.longitude, self.elevation)
def __hash__(self):
return mod_utils.hash_object(self, ('latitude', 'longitude', 'elevation'))
class LocationDelta:
"""
Intended to use similar to timestamp.timedelta, but for Locations.
"""
NORTH = 0
EAST = 90
SOUTH = 180
WEST = 270
def __init__(self, distance=None, angle=None, latitude_diff=None, longitude_diff=None):
"""
Version 1:
Distance (in meters).
angle_from_north *clockwise*.
...must be given
Version 2:
latitude_diff and longitude_diff
...must be given
"""
if (distance is not None) and (angle is not None):
if (latitude_diff is not None) or (longitude_diff is not None):
raise Exception('No lat/lon diff if using distance and angle!')
self.distance = distance
self.angle_from_north = angle
self.move_function = self.move_by_angle_and_distance
elif (latitude_diff is not None) and (longitude_diff is not None):
if (distance is not None) or (angle is not None):
raise Exception('No distance/angle if using lat/lon diff!')
self.latitude_diff = latitude_diff
self.longitude_diff = longitude_diff
self.move_function = self.move_by_lat_lon_diff
def move(self, location):
"""
Move location by this timedelta.
"""
return self.move_function(location)
def move_by_angle_and_distance(self, location):
coef = mod_math.cos(location.latitude / 180. * mod_math.pi)
vertical_distance_diff = mod_math.sin((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
horizontal_distance_diff = mod_math.cos((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
lat_diff = self.distance * vertical_distance_diff
lon_diff = self.distance * horizontal_distance_diff / coef
return location.latitude + lat_diff, location.longitude + lon_diff
def move_by_lat_lon_diff(self, location):
return location.latitude + self.latitude_diff, location.longitude + self.longitude_diff
|