This file is indexed.

/usr/lib/python3/dist-packages/gpxpy/geo.py is in python3-gpxpy 1.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# -*- coding: utf-8 -*-

# Copyright 2011 Tomo Krajina
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging as mod_logging
import math as mod_math

from . import utils as mod_utils

# Generic geo related function and class(es)

# One degree in meters:
ONE_DEGREE = 1000. * 10000.8 / 90.

EARTH_RADIUS = 6371 * 1000


def to_rad(x):
    return x / 180. * mod_math.pi


def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
    """
    Haversine distance between two points, expressed in meters.

    Implemented from http://www.movable-type.co.uk/scripts/latlong.html
    """
    d_lat = to_rad(latitude_1 - latitude_2)
    d_lon = to_rad(longitude_1 - longitude_2)
    lat1 = to_rad(latitude_1)
    lat2 = to_rad(latitude_2)

    a = mod_math.sin(d_lat/2) * mod_math.sin(d_lat/2) + \
        mod_math.sin(d_lon/2) * mod_math.sin(d_lon/2) * mod_math.cos(lat1) * mod_math.cos(lat2)
    c = 2 * mod_math.atan2(mod_math.sqrt(a), mod_math.sqrt(1-a))
    d = EARTH_RADIUS * c

    return d


def length(locations=None, _3d=None):
    locations = locations or []
    if not locations:
        return 0
    length = 0
    for i in range(len(locations)):
        if i > 0:
            previous_location = locations[i - 1]
            location = locations[i]

            if _3d:
                d = location.distance_3d(previous_location)
            else:
                d = location.distance_2d(previous_location)
            if d != 0 and not d:
                pass
            else:
                length += d
    return length


def length_2d(locations=None):
    """ 2-dimensional length (meters) of locations (only latitude and longitude, no elevation). """
    locations = locations or []
    return length(locations, False)


def length_3d(locations=None):
    """ 3-dimensional length (meters) of locations (it uses latitude, longitude, and elevation). """
    locations = locations or []
    return length(locations, True)


def calculate_max_speed(speeds_and_distances):
    """
    Compute average distance and standard deviation for distance. Extremes
    in distances are usually extremes in speeds, so we will ignore them,
    here.

    speeds_and_distances must be a list containing pairs of (speed, distance)
    for every point in a track segment.
    """
    assert speeds_and_distances
    if len(speeds_and_distances) > 0:
        assert len(speeds_and_distances[0]) == 2
        # ...
        assert len(speeds_and_distances[-1]) == 2

    size = float(len(speeds_and_distances))

    if size < 20:
        mod_logging.debug('Segment too small to compute speed, size=%s', size)
        return None

    distances = list(map(lambda x: x[1], speeds_and_distances))
    average_distance = sum(distances) / float(size)
    standard_distance_deviation = mod_math.sqrt(sum(map(lambda distance: (distance-average_distance)**2, distances))/size)

    # Ignore items where the distance is too big:
    filtered_speeds_and_distances = filter(lambda speed_and_distance: abs(speed_and_distance[1] - average_distance) <= standard_distance_deviation * 1.5, speeds_and_distances)

    # sort by speed:
    speeds = list(map(lambda speed_and_distance: speed_and_distance[0], filtered_speeds_and_distances))
    if not isinstance(speeds, list):  # python3
        speeds = list(speeds)
    if not speeds:
        return None
    speeds.sort()

    # Even here there may be some extremes => ignore the last 5%:
    index = int(len(speeds) * 0.95)
    if index >= len(speeds):
        index = -1

    return speeds[index]


def calculate_uphill_downhill(elevations):
    if not elevations:
        return 0, 0

    size = len(elevations)

    def __filter(n):
        current_ele = elevations[n]
        if current_ele is None:
            return False
        if 0 < n < size - 1:
            previous_ele = elevations[n-1]
            next_ele = elevations[n+1]
            if previous_ele is not None and current_ele is not None and next_ele is not None:
                return previous_ele*.3 + current_ele*.4 + next_ele*.3
        return current_ele

    smoothed_elevations = list(map(__filter, range(size)))

    uphill, downhill = 0., 0.

    for n, elevation in enumerate(smoothed_elevations):
        if n > 0 and elevation is not None and smoothed_elevations is not None:
            d = elevation - smoothed_elevations[n-1]
            if d > 0:
                uphill += d
            else:
                downhill -= d

    return uphill, downhill


def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
             haversine=None):
    """
    Distance between two points. If elevation is None compute a 2d distance

    if haversine==True -- haversine will be used for every computations,
    otherwise...

    Haversine distance will be used for distant points where elevation makes a
    small difference, so it is ignored. That's because haversine is 5-6 times
    slower than the dummy distance algorithm (which is OK for most GPS tracks).
    """

    # If points too distant -- compute haversine distance:
    if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
        return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)

    coef = mod_math.cos(latitude_1 / 180. * mod_math.pi)
    x = latitude_1 - latitude_2
    y = (longitude_1 - longitude_2) * coef

    distance_2d = mod_math.sqrt(x * x + y * y) * ONE_DEGREE

    if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
        return distance_2d

    return mod_math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)


def elevation_angle(location1, location2, radians=False):
    """ Uphill/downhill angle between two locations. """
    if location1.elevation is None or location2.elevation is None:
        return None

    b = float(location2.elevation - location1.elevation)
    a = location2.distance_2d(location1)

    if a == 0:
        return 0

    angle = mod_math.atan(b / a)

    if radians:
        return angle

    return 180 * angle / mod_math.pi


def distance_from_line(point, line_point_1, line_point_2):
    """ Distance of point from a line given with two points. """
    assert point, point
    assert line_point_1, line_point_1
    assert line_point_2, line_point_2

    a = line_point_1.distance_2d(line_point_2)

    if a == 0:
        return line_point_1.distance_2d(point)

    b = line_point_1.distance_2d(point)
    c = line_point_2.distance_2d(point)

    s = (a + b + c) / 2.

    return 2. * mod_math.sqrt(abs(s * (s - a) * (s - b) * (s - c))) / a


def get_line_equation_coefficients(location1, location2):
    """
    Get line equation coefficients for:
        latitude * a + longitude * b + c = 0

    This is a normal cartesian line (not spherical!)
    """
    if location1.longitude == location2.longitude:
        # Vertical line:
        return float(0), float(1), float(-location1.longitude)
    else:
        a = float(location1.latitude - location2.latitude) / (location1.longitude - location2.longitude)
        b = location1.latitude - location1.longitude * a
        return float(1), float(-a), float(-b)


def simplify_polyline(points, max_distance):
    """Does Ramer-Douglas-Peucker algorithm for simplification of polyline """

    if len(points) < 3:
        return points

    begin, end = points[0], points[-1]

    # Use a "normal" line just to detect the most distant point (not its real distance)
    # this is because this is faster to compute than calling distance_from_line() for
    # every point.
    #
    # This is an approximation and may have some errors near the poles and if
    # the points are too distant, but it should be good enough for most use
    # cases...
    a, b, c = get_line_equation_coefficients(begin, end)

    tmp_max_distance = -1000000
    tmp_max_distance_position = None
    for point_no in range(len(points[1:-1])):
        point = points[point_no]
        d = abs(a * point.latitude + b * point.longitude + c)
        if d > tmp_max_distance:
            tmp_max_distance = d
            tmp_max_distance_position = point_no

    # Now that we have the most distance point, compute its real distance:
    real_max_distance = distance_from_line(points[tmp_max_distance_position], begin, end)

    if real_max_distance < max_distance:
        return [begin, end]

    return (simplify_polyline(points[:tmp_max_distance_position + 2], max_distance) +
            simplify_polyline(points[tmp_max_distance_position + 1:], max_distance)[1:])


class Location:
    """ Generic geographical location """

    latitude = None
    longitude = None
    elevation = None

    def __init__(self, latitude, longitude, elevation=None):
        self.latitude = latitude
        self.longitude = longitude
        self.elevation = elevation

    def has_elevation(self):
        return self.elevation or self.elevation == 0

    def remove_elevation(self):
        self.elevation = None

    def distance_2d(self, location):
        if not location:
            return None

        return distance(self.latitude, self.longitude, None, location.latitude, location.longitude, None)

    def distance_3d(self, location):
        if not location:
            return None

        return distance(self.latitude, self.longitude, self.elevation, location.latitude, location.longitude, location.elevation)

    def elevation_angle(self, location, radians=False):
        return elevation_angle(self, location, radians)

    def move(self, location_delta):
        self.latitude, self.longitude = location_delta.move(self)

    def __add__(self, location_delta):
        latitude, longitude = location_delta.move(self)
        return Location(latitude, longitude)

    def __str__(self):
        return '[loc:%s,%s@%s]' % (self.latitude, self.longitude, self.elevation)

    def __repr__(self):
        if self.elevation is None:
            return 'Location(%s, %s)' % (self.latitude, self.longitude)
        else:
            return 'Location(%s, %s, %s)' % (self.latitude, self.longitude, self.elevation)

    def __hash__(self):
        return mod_utils.hash_object(self, ('latitude', 'longitude', 'elevation'))


class LocationDelta:
    """
    Intended to use similar to timestamp.timedelta, but for Locations.
    """

    NORTH = 0
    EAST = 90
    SOUTH = 180
    WEST = 270

    def __init__(self, distance=None, angle=None, latitude_diff=None, longitude_diff=None):
        """
        Version 1:
            Distance (in meters).
            angle_from_north *clockwise*.
            ...must be given
        Version 2:
            latitude_diff and longitude_diff
            ...must be given
        """
        if (distance is not None) and (angle is not None):
            if (latitude_diff is not None) or (longitude_diff is not None):
                raise Exception('No lat/lon diff if using distance and angle!')
            self.distance = distance
            self.angle_from_north = angle
            self.move_function = self.move_by_angle_and_distance
        elif (latitude_diff is not None) and (longitude_diff is not None):
            if (distance is not None) or (angle is not None):
                raise Exception('No distance/angle if using lat/lon diff!')
            self.latitude_diff  = latitude_diff
            self.longitude_diff = longitude_diff
            self.move_function = self.move_by_lat_lon_diff

    def move(self, location):
        """
        Move location by this timedelta.
        """
        return self.move_function(location)

    def move_by_angle_and_distance(self, location):
        coef = mod_math.cos(location.latitude / 180. * mod_math.pi)
        vertical_distance_diff   = mod_math.sin((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
        horizontal_distance_diff = mod_math.cos((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
        lat_diff = self.distance * vertical_distance_diff
        lon_diff = self.distance * horizontal_distance_diff / coef
        return location.latitude + lat_diff, location.longitude + lon_diff

    def move_by_lat_lon_diff(self, location):
        return location.latitude  + self.latitude_diff, location.longitude + self.longitude_diff