This file is indexed.

/usr/lib/python3/dist-packages/ginga/AstroImage.py is in python3-ginga 2.7.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
#
# AstroImage.py -- Abstraction of an astronomical data image.
#
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
#
import sys
import math
import traceback

import numpy

from ginga.util import wcsmod, io_fits
from ginga.util import wcs, iqcalc
from ginga.BaseImage import BaseImage, ImageError, Header
from ginga.misc import Bunch
from ginga import trcalc
import ginga.util.six as six
from ginga.util.six.moves import map


class AstroHeader(Header):
    pass


class AstroImage(BaseImage):
    """
    Abstraction of an astronomical data (image).

    NOTE: this module is NOT thread-safe!
    """
    # class variables for WCS and IO can be set
    wcsClass = None
    ioClass = None

    @classmethod
    def set_wcsClass(cls, klass):
        cls.wcsClass = klass

    @classmethod
    def set_ioClass(cls, klass):
        cls.ioClass = klass

    def __init__(self, data_np=None, metadata=None, logger=None,
                 name=None, wcsclass=None, ioclass=None,
                 inherit_primary_header=False):

        BaseImage.__init__(self, data_np=data_np, metadata=metadata,
                           logger=logger, name=name)

        # wcsclass specifies a pluggable WCS module
        if wcsclass is None:
            if self.wcsClass is None:
                wcsclass = wcsmod.WCS
            else:
                wcsclass = self.wcsClass
        self.wcs = wcsclass(self.logger)

        # ioclass specifies a pluggable IO module
        if ioclass is None:
            if self.ioClass is None:
                ioclass = io_fits.fitsLoaderClass
            else:
                ioclass = self.ioClass

        self.io = ioclass(self.logger)
        self.io.register_type('image', self.__class__)

        self.inherit_primary_header = inherit_primary_header
        if self.inherit_primary_header:
            # User wants to inherit from primary header--this will hold it
            self._primary_hdr = AstroHeader()
        else:
            self._primary_hdr = None

        if metadata is not None:
            header = self.get_header()
            self.wcs.load_header(header)

        # For navigating multidimensional data
        self.naxispath = []
        self.revnaxis = []
        self._md_data = None

    def setup_data(self, data, naxispath=None):
        # initialize data attribute to something reasonable
        if data is None:
            data = numpy.zeros((0, 0))
        elif not isinstance(data, numpy.ndarray):
            data = numpy.zeros((0, 0))
        elif 0 in data.shape:
            data = numpy.zeros((0, 0))
        elif len(data.shape) < 2:
            # Expand 1D arrays into 1xN array
            data = data.reshape((1, data.shape[0]))

        # this is a handle to the full data array
        self._md_data = data

        # this will get reset in set_naxispath() if array is
        # multidimensional
        self._data = data

        if naxispath is None:
            naxispath = []

        # Set naxispath to drill down to first 2D data slice
        if len(naxispath) == 0:
            naxispath = ([0] * (len(data.shape) - 2))

        self.set_naxispath(naxispath)

    def load_hdu(self, hdu, fobj=None, naxispath=None,
                 inherit_primary_header=None):

        if self.io is None:
            # need image loader for the fromHDU() call below
            raise ImageError("No IO loader defined")

        self.clear_metadata()

        # collect HDU header
        ahdr = self.get_header()
        self.io.fromHDU(hdu, ahdr)

        # Set PRIMARY header
        if inherit_primary_header is None:
            inherit_primary_header = self.inherit_primary_header
        else:  # This ensures get_header() is consistent
            self.inherit_primary_header = inherit_primary_header

        if inherit_primary_header and (fobj is not None):
            if self._primary_hdr is None:
                self._primary_hdr = AstroHeader()

            self.io.fromHDU(fobj[0], self._primary_hdr)

        self.setup_data(hdu.data)

        # Try to make a wcs object on the header
        if hasattr(self, 'wcs') and self.wcs is not None:
            self.wcs.load_header(hdu.header, fobj=fobj)

    def load_file(self, filespec, **kwargs):

        if self.io is None:
            raise ImageError("No IO loader defined")

        self.io.load_file(filespec, dstobj=self, **kwargs)

    def load_data(self, data_np, naxispath=None, metadata=None):

        self.clear_metadata()

        self.setup_data(data_np, naxispath=naxispath)

        if metadata is not None:
            self.update_metadata(metadata)

    def load_buffer(self, buf, dims, dtype, byteswap=False,
                    naxispath=None, metadata=None):
        data = numpy.fromstring(buf, dtype=dtype)
        if byteswap:
            data.byteswap(True)
        data = data.reshape(dims)

        self.load_data(data, naxispath=naxispath, metadata=metadata)

    def get_mddata(self):
        return self._md_data

    def set_naxispath(self, naxispath):
        """Choose a slice out of multidimensional data.
        """
        revnaxis = list(naxispath)
        revnaxis.reverse()

        # construct slice view and extract it
        view = revnaxis + [slice(None), slice(None)]
        data = self.get_mddata()[view]

        if len(data.shape) != 2:
            raise ImageError(
                "naxispath does not lead to a 2D slice: {}".format(naxispath))

        self.naxispath = naxispath
        self.revnaxis = revnaxis

        self.set_data(data)

    def set_wcs(self, wcs):
        self.wcs = wcs

    def set_io(self, io):
        self.io = io

    def get_data_size(self):
        return self.get_size()

    def get_header(self, create=True):
        try:
            # By convention, the fits header is stored in a dictionary
            # under the metadata keyword 'header'
            hdr = self.metadata['header']

            if self.inherit_primary_header and self._primary_hdr is not None:
                # Inherit PRIMARY header for display but keep metadata intact
                displayhdr = AstroHeader()
                for key in hdr.keyorder:
                    card = hdr.get_card(key)
                    bnch = displayhdr.__setitem__(card.key, card.value)
                    bnch.comment = card.comment
                for key in self._primary_hdr.keyorder:
                    if key not in hdr:
                        card = self._primary_hdr.get_card(key)
                        bnch = displayhdr.__setitem__(card.key, card.value)
                        bnch.comment = card.comment
            else:
                # Normal, separate header
                displayhdr = hdr

        except KeyError as e:
            if not create:
                raise e
            hdr = AstroHeader()
            self.metadata['header'] = hdr
            displayhdr = hdr

        return displayhdr

    def get_keyword(self, kwd, *args):
        """Get an item from the fits header, if any."""
        try:
            kwds = self.get_header()
            return kwds[kwd]
        except KeyError:
            # return a default if there is one
            if len(args) > 0:
                return args[0]
            raise KeyError(kwd)

    def get_keywords_list(self, *args):
        return list(map(self.get_keyword, args))

    def set_keyword(self, kwd, value, create=True):
        kwds = self.get_header(create=create)
        kwd = kwd.upper()
        if not create:
            prev = kwds[kwd]  # noqa, this raises KeyError
        kwds[kwd] = value

    def update_keywords(self, keyDict):
        hdr = self.get_header()
        # Upcase all keywords
        for kwd, val in keyDict.items():
            hdr[kwd.upper()] = val

        # Try to make a wcs object on the header
        if hasattr(self, 'wcs') and self.wcs is not None:
            self.wcs.load_header(hdr)

    def set_keywords(self, **kwds):
        """Set an item in the fits header, if any."""
        return self.update_keywords(kwds)

    def update_data(self, data_np, metadata=None, astype=None):
        """DO NOT USE: this method will be deprecated!
        """
        self.set_data(data_np.copy(), metadata=metadata,
                      astype=astype)

    def update_metadata(self, key_dict):
        for key, val in key_dict.items():
            self.metadata[key] = val

        # refresh the WCS
        if hasattr(self, 'wcs') and self.wcs is not None:
            header = self.get_header()
            self.wcs.load_header(header)

    def clear_all(self):
        # clear metadata and data
        super(AstroImage, self).clear_all()

        # unreference full data array
        self._md_data = self._data

    def transfer(self, other, astype=None):
        data = self._get_data()
        other.update_data(data, astype=astype)
        other.update_metadata(self.metadata)

    def copy(self, astype=None):
        data = self._get_data()
        other = AstroImage(data, logger=self.logger)
        self.transfer(other, astype=astype)
        return other

    def save_as_file(self, filepath, **kwdargs):
        data = self._get_data()
        header = self.get_header()
        self.io.save_as_file(filepath, data, header, **kwdargs)

    def pixtocoords(self, x, y, system=None, coords='data'):
        args = [x, y] + self.revnaxis
        return self.wcs.pixtocoords(args, system=system, coords=coords)

    def spectral_coord(self, coords='data'):
        args = [0, 0] + self.revnaxis
        return self.wcs.spectral_coord(args, coords=coords)

    def pixtoradec(self, x, y, format='deg', coords='data'):
        args = [x, y] + self.revnaxis
        ra_deg, dec_deg = self.wcs.pixtoradec(args, coords=coords)

        if format == 'deg':
            return ra_deg, dec_deg
        return wcs.deg2fmt(ra_deg, dec_deg, format)

    def radectopix(self, ra_deg, dec_deg, format='deg', coords='data'):
        if format != 'deg':
            # convert coordinates to degrees
            ra_deg = wcs.lon_to_deg(ra_deg)
            dec_deg = wcs.lat_to_deg(dec_deg)
        return self.wcs.radectopix(ra_deg, dec_deg, coords=coords,
                                   naxispath=self.revnaxis)

    # -----> TODO: merge into wcs.py ?
    #
    def get_starsep_XY(self, x1, y1, x2, y2):
        # source point
        ra_org, dec_org = self.pixtoradec(x1, y1)

        # destination point
        ra_dst, dec_dst = self.pixtoradec(x2, y2)

        return wcs.get_starsep_RaDecDeg(ra_org, dec_org, ra_dst, dec_dst)

    def calc_radius_xy(self, x, y, radius_deg):
        """Calculate a radius (in pixels) from the point (x, y) to a circle
        defined by radius in degrees.
        """
        # calculate ra/dec of x,y pixel
        ra_deg, dec_deg = self.pixtoradec(x, y)

        # Calculate position 1 degree from the given one
        # NOTE: this needs to add in DEC, not RA
        ra2_deg, dec2_deg = wcs.add_offset_radec(ra_deg, dec_deg,
                                                 0.0, 1.0)

        # Calculate the length of this segment--it is pixels/deg
        x2, y2 = self.radectopix(ra2_deg, dec2_deg)
        px_per_deg_e = math.sqrt(math.fabs(x2 - x)**2 + math.fabs(y2 - y)**2)

        # calculate radius based on desired radius_deg
        radius_px = px_per_deg_e * radius_deg
        return radius_px

    def calc_radius_deg2pix(self, ra_deg, dec_deg, delta_deg,
                            equinox=None):
        x, y = self.radectopix(ra_deg, dec_deg, equinox=equinox)
        return self.calc_radius_xy(x, y, delta_deg)

    def add_offset_xy(self, x, y, delta_deg_x, delta_deg_y):
        # calculate ra/dec of x,y pixel
        ra_deg, dec_deg = self.pixtoradec(x, y)

        # add offsets
        ra2_deg, dec2_deg = wcs.add_offset_radec(ra_deg, dec_deg,
                                                 delta_deg_x, delta_deg_y)

        # then back to new pixel coords
        x2, y2 = self.radectopix(ra2_deg, dec2_deg)

        return (x2, y2)

    def calc_radius_center(self, delta_deg):
        return self.calc_radius_xy(float(self.width / 2.0),
                                   float(self.height / 2.0),
                                   delta_deg)

    def calc_compass(self, x, y, len_deg_e, len_deg_n):

        # Get east and north coordinates
        xe, ye = self.add_offset_xy(x, y, len_deg_e, 0.0)
        xe = int(round(xe))
        ye = int(round(ye))
        xn, yn = self.add_offset_xy(x, y, 0.0, len_deg_n)
        xn = int(round(xn))
        yn = int(round(yn))

        return (x, y, xn, yn, xe, ye)

    def calc_compass_radius(self, x, y, radius_px):
        xe, ye = self.add_offset_xy(x, y, 1.0, 0.0)
        xn, yn = self.add_offset_xy(x, y, 0.0, 1.0)

        # now calculate the length in pixels of those arcs
        # (planar geometry is good enough here)
        px_per_deg_e = math.sqrt(math.fabs(ye - y)**2 + math.fabs(xe - x)**2)
        px_per_deg_n = math.sqrt(math.fabs(yn - y)**2 + math.fabs(xn - x)**2)

        # now calculate the arm length in degrees for each arm
        # (this produces same-length arms)
        len_deg_e = radius_px / px_per_deg_e
        len_deg_n = radius_px / px_per_deg_n

        return self.calc_compass(x, y, len_deg_e, len_deg_n)

    def calc_compass_center(self):
        # calculate center of data
        x = float(self.width) / 2.0
        y = float(self.height) / 2.0

        # radius we want the arms to be (approx 1/4 the smallest dimension)
        radius_px = float(min(self.width, self.height)) / 4.0

        return self.calc_compass_radius(x, y, radius_px)
    #
    # <----- TODO: merge this into wcs.py ?

    def get_wcs_rotation_deg(self):
        header = self.get_header()
        (rot, cdelt1, cdelt2) = wcs.get_rotation_and_scale(header)
        return rot

    def rotate(self, deg, update_wcs=False):
        #old_deg = self.get_wcs_rotation_deg()

        super(AstroImage, self).rotate(deg)

        # TODO: currently this is not working!
        ## if update_wcs:
        ##     self.wcs.rotate(deg)

    def mosaic_inline(self, imagelist, bg_ref=None, trim_px=None,
                      merge=False, allow_expand=True, expand_pad_deg=0.01,
                      max_expand_pct=None,
                      update_minmax=True, suppress_callback=False):
        """Drops new images into the current image (if there is room),
        relocating them according the WCS between the two images.
        """
        # Get our own (mosaic) rotation and scale
        header = self.get_header()
        ((xrot_ref, yrot_ref),
         (cdelt1_ref, cdelt2_ref)) = wcs.get_xy_rotation_and_scale(header)

        scale_x, scale_y = math.fabs(cdelt1_ref), math.fabs(cdelt2_ref)

        # drop each image in the right place in the new data array
        mydata = self._get_data()

        count = 1
        res = []
        for image in imagelist:
            name = image.get('name', 'image%d' % (count))
            count += 1

            data_np = image._get_data()

            # Calculate sky position at the center of the piece
            ctr_x, ctr_y = trcalc.get_center(data_np)
            ra, dec = image.pixtoradec(ctr_x, ctr_y)

            # User specified a trim?  If so, trim edge pixels from each
            # side of the array
            ht, wd = data_np.shape[:2]
            if trim_px:
                xlo, xhi = trim_px, wd - trim_px
                ylo, yhi = trim_px, ht - trim_px
                data_np = data_np[ylo:yhi, xlo:xhi, ...]
                ht, wd = data_np.shape[:2]

            # If caller asked us to match background of pieces then
            # get the median of this piece
            if bg_ref is not None:
                bg = iqcalc.get_median(data_np)
                bg_inc = bg_ref - bg
                data_np = data_np + bg_inc

            # Determine max/min to update our values
            if update_minmax:
                maxval = numpy.nanmax(data_np)
                minval = numpy.nanmin(data_np)
                self.maxval = max(self.maxval, maxval)
                self.minval = min(self.minval, minval)

            # Get rotation and scale of piece
            header = image.get_header()
            ((xrot, yrot),
             (cdelt1, cdelt2)) = wcs.get_xy_rotation_and_scale(header)
            self.logger.debug("image(%s) xrot=%f yrot=%f cdelt1=%f "
                              "cdelt2=%f" % (name, xrot, yrot, cdelt1, cdelt2))

            # scale if necessary
            # TODO: combine with rotation?
            if (not numpy.isclose(math.fabs(cdelt1), scale_x) or
                    not numpy.isclose(math.fabs(cdelt2), scale_y)):
                nscale_x = math.fabs(cdelt1) / scale_x
                nscale_y = math.fabs(cdelt2) / scale_y
                self.logger.debug("scaling piece by x(%f), y(%f)" % (
                    nscale_x, nscale_y))
                data_np, (ascale_x, ascale_y) = trcalc.get_scaled_cutout_basic(
                    data_np, 0, 0, wd - 1, ht - 1, nscale_x, nscale_y,
                    logger=self.logger)

            # Rotate piece into our orientation, according to wcs
            rot_dx, rot_dy = xrot - xrot_ref, yrot - yrot_ref

            flip_x = False
            flip_y = False

            # Optomization for 180 rotations
            if (numpy.isclose(math.fabs(rot_dx), 180.0) or
                    numpy.isclose(math.fabs(rot_dy), 180.0)):
                rotdata = trcalc.transform(data_np,
                                           flip_x=True, flip_y=True)
                rot_dx = 0.0
                rot_dy = 0.0
            else:
                rotdata = data_np

            # Finish with any necessary rotation of piece
            if not numpy.isclose(rot_dy, 0.0):
                rot_deg = rot_dy
                self.logger.debug("rotating %s by %f deg" % (name, rot_deg))
                rotdata = trcalc.rotate(rotdata, rot_deg,
                                        #rotctr_x=ctr_x, rotctr_y=ctr_y
                                        logger=self.logger)

            # Flip X due to negative CDELT1
            if numpy.sign(cdelt1) != numpy.sign(cdelt1_ref):
                flip_x = True

            # Flip Y due to negative CDELT2
            if numpy.sign(cdelt2) != numpy.sign(cdelt2_ref):
                flip_y = True

            if flip_x or flip_y:
                rotdata = trcalc.transform(rotdata,
                                           flip_x=flip_x, flip_y=flip_y)

            # Get size and data of new image
            ht, wd = rotdata.shape[:2]
            ctr_x, ctr_y = trcalc.get_center(rotdata)

            # Find location of image piece (center) in our array
            x0, y0 = self.radectopix(ra, dec)

            # Merge piece as closely as possible into our array
            # Unfortunately we lose a little precision rounding to the
            # nearest pixel--can't be helped with this approach
            x0, y0 = int(round(x0)), int(round(y0))
            self.logger.debug("Fitting image '%s' into mosaic at %d,%d" % (
                name, x0, y0))

            # This is for useful debugging info only
            my_ctr_x, my_ctr_y = trcalc.get_center(mydata)
            off_x, off_y = x0 - my_ctr_x, y0 - my_ctr_y
            self.logger.debug("centering offsets: %d,%d" % (off_x, off_y))

            # Sanity check piece placement
            xlo, xhi = x0 - ctr_x, x0 + wd - ctr_x
            ylo, yhi = y0 - ctr_y, y0 + ht - ctr_y
            assert (xhi - xlo == wd), \
                Exception("Width differential %d != %d" % (xhi - xlo, wd))
            assert (yhi - ylo == ht), \
                Exception("Height differential %d != %d" % (yhi - ylo, ht))

            mywd, myht = self.get_size()
            if xlo < 0 or xhi > mywd or ylo < 0 or yhi > myht:
                if not allow_expand:
                    raise Exception("New piece doesn't fit on image and "
                                    "allow_expand=False")

                # <-- Resize our data array to allow the new image

                # determine amount to pad expansion by
                expand_x = max(int(expand_pad_deg / scale_x), 0)
                expand_y = max(int(expand_pad_deg / scale_y), 0)

                nx1_off, nx2_off = 0, 0
                if xlo < 0:
                    nx1_off = abs(xlo) + expand_x
                if xhi > mywd:
                    nx2_off = (xhi - mywd) + expand_x
                xlo, xhi = xlo + nx1_off, xhi + nx1_off

                ny1_off, ny2_off = 0, 0
                if ylo < 0:
                    ny1_off = abs(ylo) + expand_y
                if yhi > myht:
                    ny2_off = (yhi - myht) + expand_y
                ylo, yhi = ylo + ny1_off, yhi + ny1_off

                new_wd = mywd + nx1_off + nx2_off
                new_ht = myht + ny1_off + ny2_off

                # sanity check on new mosaic size
                old_area = mywd * myht
                new_area = new_wd * new_ht
                expand_pct = new_area / old_area
                if ((max_expand_pct is not None) and
                        (expand_pct > max_expand_pct)):
                    raise Exception("New area exceeds current one by %.2f %%;"
                                    "increase max_expand_pct (%.2f) to allow" %
                                    (expand_pct * 100, max_expand_pct))

                # go for it!
                new_data = numpy.zeros((new_ht, new_wd))
                # place current data into new data
                new_data[ny1_off:ny1_off + myht, nx1_off:nx1_off + mywd] = \
                    mydata
                self._data = new_data
                mydata = new_data

                if (nx1_off > 0) or (ny1_off > 0):
                    # Adjust our WCS for relocation of the reference pixel
                    crpix1, crpix2 = self.get_keywords_list('CRPIX1', 'CRPIX2')
                    kwds = dict(CRPIX1=crpix1 + nx1_off,
                                CRPIX2=crpix2 + ny1_off)
                    self.update_keywords(kwds)

            # fit image piece into our array
            try:
                if merge:
                    mydata[ylo:yhi, xlo:xhi, ...] += rotdata[0:ht, 0:wd, ...]
                else:
                    idx = (mydata[ylo:yhi, xlo:xhi, ...] == 0.0)
                    mydata[ylo:yhi, xlo:xhi, ...][idx] = \
                        rotdata[0:ht, 0:wd, ...][idx]

            except Exception as e:
                self.logger.error("Error fitting tile: %s" % (str(e)))
                raise

            res.append((xlo, ylo, xhi, yhi))

        # TODO: recalculate min and max values
        # Can't use usual techniques because it adds too much time to the
        # mosacing
        #self._set_minmax()

        # Notify watchers that our data has changed
        if not suppress_callback:
            self.make_callback('modified')

        return res

    def info_xy(self, data_x, data_y, settings):
        # Get the value under the data coordinates
        try:
            # We report the value across the pixel, even though the coords
            # change halfway across the pixel
            value = self.get_data_xy(int(data_x + 0.5), int(data_y + 0.5))

        except Exception as e:
            value = None

        system = settings.get('wcs_coords', None)
        format = settings.get('wcs_display', 'sexagesimal')
        ra_lbl, dec_lbl = six.unichr(945), six.unichr(948)

        # Calculate WCS coords, if available
        try:
            if self.wcs is None:
                self.logger.debug("No WCS for this image")
                ra_txt = dec_txt = 'NO WCS'

            elif self.wcs.coordsys == 'raw':
                self.logger.debug("No coordinate system determined")
                ra_txt = dec_txt = 'NO WCS'

            elif self.wcs.coordsys == 'pixel':
                args = [data_x, data_y] + self.revnaxis
                x, y = self.wcs.pixtosystem(args, system=system, coords='data')
                ra_txt = "%+.3f" % (x)
                dec_txt = "%+.3f" % (y)
                ra_lbl, dec_lbl = "X", "Y"

            else:
                args = [data_x, data_y] + self.revnaxis

                lon_deg, lat_deg = self.wcs.pixtosystem(
                    args, system=system, coords='data')

                if format == 'sexagesimal':
                    if system in ('galactic', 'ecliptic'):
                        sign, deg, min, sec = wcs.degToDms(lon_deg,
                                                           isLatitude=False)
                        ra_txt = '+%03d:%02d:%06.3f' % (deg, min, sec)
                    else:
                        deg, min, sec = wcs.degToHms(lon_deg)
                        ra_txt = '%02d:%02d:%06.3f' % (deg, min, sec)

                    sign, deg, min, sec = wcs.degToDms(lat_deg)
                    if sign < 0:
                        sign = '-'
                    else:
                        sign = '+'
                    dec_txt = '%s%02d:%02d:%06.3f' % (sign, deg, min, sec)

                else:
                    ra_txt = '%+10.7f' % (lon_deg)
                    dec_txt = '%+10.7f' % (lat_deg)

                if system == 'galactic':
                    ra_lbl, dec_lbl = "l", "b"
                elif system == 'ecliptic':
                    ra_lbl, dec_lbl = six.unichr(0x03BB), six.unichr(0x03B2)
                elif system == 'helioprojective':
                    ra_txt = "%+5.3f" % (lon_deg * 3600)
                    dec_txt = "%+5.3f" % (lat_deg * 3600)
                    ra_lbl, dec_lbl = "x-Solar", "y-Solar"

        except Exception as e:
            self.logger.warning("Bad coordinate conversion: %s" % (
                str(e)))
            ra_txt = dec_txt = 'BAD WCS'
            try:
                # log traceback, if possible
                (type_, value_, tb) = sys.exc_info()
                tb_str = "".join(traceback.format_tb(tb))
                self.logger.error("Traceback:\n%s" % (tb_str))
            except Exception:
                tb_str = "Traceback information unavailable."
                self.logger.error(tb_str)

        info = Bunch.Bunch(itype='astro', data_x=data_x, data_y=data_y,
                           x=data_x, y=data_y,
                           ra_txt=ra_txt, dec_txt=dec_txt,
                           ra_lbl=ra_lbl, dec_lbl=dec_lbl,
                           value=value)
        return info

# END