This file is indexed.

/usr/lib/python3/dist-packages/fontTools/varLib/models.py is in python3-fonttools 3.21.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""Variation fonts interpolation models."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *

__all__ = ['normalizeValue', 'normalizeLocation', 'supportScalar', 'VariationModel']

def normalizeValue(v, triple):
	"""Normalizes value based on a min/default/max triple.
	>>> normalizeValue(400, (100, 400, 900))
	0.0
	>>> normalizeValue(100, (100, 400, 900))
	-1.0
	>>> normalizeValue(650, (100, 400, 900))
	0.5
	"""
	lower, default, upper = triple
	assert lower <= default <= upper, "invalid axis values: %3.3f, %3.3f %3.3f"%(lower, default, upper)
	v = max(min(v, upper), lower)
	if v == default:
		v = 0.
	elif v < default:
		v = (v - default) / (default - lower)
	else:
		v = (v - default) / (upper - default)
	return v

def normalizeLocation(location, axes):
	"""Normalizes location based on axis min/default/max values from axes.
	>>> axes = {"wght": (100, 400, 900)}
	>>> normalizeLocation({"wght": 400}, axes)
	{'wght': 0.0}
	>>> normalizeLocation({"wght": 100}, axes)
	{'wght': -1.0}
	>>> normalizeLocation({"wght": 900}, axes)
	{'wght': 1.0}
	>>> normalizeLocation({"wght": 650}, axes)
	{'wght': 0.5}
	>>> normalizeLocation({"wght": 1000}, axes)
	{'wght': 1.0}
	>>> normalizeLocation({"wght": 0}, axes)
	{'wght': -1.0}
	>>> axes = {"wght": (0, 0, 1000)}
	>>> normalizeLocation({"wght": 0}, axes)
	{'wght': 0.0}
	>>> normalizeLocation({"wght": -1}, axes)
	{'wght': 0.0}
	>>> normalizeLocation({"wght": 1000}, axes)
	{'wght': 1.0}
	>>> normalizeLocation({"wght": 500}, axes)
	{'wght': 0.5}
	>>> normalizeLocation({"wght": 1001}, axes)
	{'wght': 1.0}
	>>> axes = {"wght": (0, 1000, 1000)}
	>>> normalizeLocation({"wght": 0}, axes)
	{'wght': -1.0}
	>>> normalizeLocation({"wght": -1}, axes)
	{'wght': -1.0}
	>>> normalizeLocation({"wght": 500}, axes)
	{'wght': -0.5}
	>>> normalizeLocation({"wght": 1000}, axes)
	{'wght': 0.0}
	>>> normalizeLocation({"wght": 1001}, axes)
	{'wght': 0.0}
	"""
	out = {}
	for tag,triple in axes.items():
		v = location.get(tag, triple[1])
		out[tag] = normalizeValue(v, triple)
	return out

def supportScalar(location, support, ot=True):
	"""Returns the scalar multiplier at location, for a master
	with support.  If ot is True, then a peak value of zero
	for support of an axis means "axis does not participate".  That
	is how OpenType Variation Font technology works.
	>>> supportScalar({}, {})
	1.0
	>>> supportScalar({'wght':.2}, {})
	1.0
	>>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
	0.1
	>>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
	0.75
	>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
	0.75
	>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
	0.375
	>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
	0.75
	>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
	0.75
	"""
	scalar = 1.
	for axis,(lower,peak,upper) in support.items():
		if ot:
			# OpenType-specific case handling
			if peak == 0.:
				continue
			if lower > peak or peak > upper:
				continue
			if lower < 0. and upper > 0.:
				continue
			v = location.get(axis, 0.)
		else:
			assert axis in location
			v = location[axis]
		if v == peak:
			continue
		if v <= lower or upper <= v:
			scalar = 0.
			break;
		if v < peak:
			scalar *= (v - lower) / (peak - lower)
		else: # v > peak
			scalar *= (v - upper) / (peak - upper)
	return scalar


class VariationModel(object):

	"""
	Locations must be in normalized space.  Ie. base master
	is at origin (0).
	>>> from pprint import pprint
	>>> locations = [ \
	{'wght':100}, \
	{'wght':-100}, \
	{'wght':-180}, \
	{'wdth':+.3}, \
	{'wght':+120,'wdth':.3}, \
	{'wght':+120,'wdth':.2}, \
	{}, \
	{'wght':+180,'wdth':.3}, \
	{'wght':+180}, \
	]
	>>> model = VariationModel(locations, axisOrder=['wght'])
	>>> pprint(model.locations)
	[{},
	 {'wght': -100},
	 {'wght': -180},
	 {'wght': 100},
	 {'wght': 180},
	 {'wdth': 0.3},
	 {'wdth': 0.3, 'wght': 180},
	 {'wdth': 0.3, 'wght': 120},
	 {'wdth': 0.2, 'wght': 120}]
	>>> pprint(model.deltaWeights)
	[{},
	 {0: 1.0},
	 {0: 1.0},
	 {0: 1.0},
	 {0: 1.0},
	 {0: 1.0},
	 {0: 1.0, 4: 1.0, 5: 1.0},
	 {0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.25},
	 {0: 1.0,
	  3: 0.75,
	  4: 0.25,
	  5: 0.6666666666666667,
	  6: 0.16666666666666669,
	  7: 0.6666666666666667}]
	"""

	def __init__(self, locations, axisOrder=[]):
		locations = [{k:v for k,v in loc.items() if v != 0.} for loc in locations]
		keyFunc = self.getMasterLocationsSortKeyFunc(locations, axisOrder=axisOrder)
		axisPoints = keyFunc.axisPoints
		self.locations = sorted(locations, key=keyFunc)
		# TODO Assert that locations are unique.
		self.mapping = [self.locations.index(l) for l in locations] # Mapping from user's master order to our master order
		self.reverseMapping = [locations.index(l) for l in self.locations] # Reverse of above

		self._computeMasterSupports(axisPoints)

	@staticmethod
	def getMasterLocationsSortKeyFunc(locations, axisOrder=[]):
		assert {} in locations, "Base master not found."
		axisPoints = {}
		for loc in locations:
			if len(loc) != 1:
				continue
			axis = next(iter(loc))
			value = loc[axis]
			if axis not in axisPoints:
				axisPoints[axis] = {0.}
			assert value not in axisPoints[axis]
			axisPoints[axis].add(value)

		def getKey(axisPoints, axisOrder):
			def sign(v):
				return -1 if v < 0 else +1 if v > 0 else 0
			def key(loc):
				rank = len(loc)
				onPointAxes = [axis for axis,value in loc.items() if value in axisPoints[axis]]
				orderedAxes = [axis for axis in axisOrder if axis in loc]
				orderedAxes.extend([axis for axis in sorted(loc.keys()) if axis not in axisOrder])
				return (
					rank, # First, order by increasing rank
					-len(onPointAxes), # Next, by decreasing number of onPoint axes
					tuple(axisOrder.index(axis) if axis in axisOrder else 0x10000 for axis in orderedAxes), # Next, by known axes
					tuple(orderedAxes), # Next, by all axes
					tuple(sign(loc[axis]) for axis in orderedAxes), # Next, by signs of axis values
					tuple(abs(loc[axis]) for axis in orderedAxes), # Next, by absolute value of axis values
				)
			return key

		ret = getKey(axisPoints, axisOrder)
		ret.axisPoints = axisPoints
		return ret

	@staticmethod
	def lowerBound(value, lst):
		if any(v < value for v in lst):
			return max(v for v in lst if v < value)
		else:
			return value
	@staticmethod
	def upperBound(value, lst):
		if any(v > value for v in lst):
			return min(v for v in lst if v > value)
		else:
			return value

	def _computeMasterSupports(self, axisPoints):
		supports = []
		deltaWeights = []
		locations = self.locations
		for i,loc in enumerate(locations):
			box = {}

			# Account for axisPoints first
			for axis,values in axisPoints.items():
				if not axis in loc:
					continue
				locV = loc[axis]
				box[axis] = (self.lowerBound(locV, values), locV, self.upperBound(locV, values))

			locAxes = set(loc.keys())
			# Walk over previous masters now
			for j,m in enumerate(locations[:i]):
				# Master with extra axes do not participte
				if not set(m.keys()).issubset(locAxes):
					continue
				# If it's NOT in the current box, it does not participate
				relevant = True
				for axis, (lower,_,upper) in box.items():
					if axis in m and not (lower < m[axis] < upper):
						relevant = False
						break
				if not relevant:
					continue
				# Split the box for new master
				for axis,val in m.items():
					assert axis in box
					lower,locV,upper = box[axis]
					if val < locV:
						lower = val
					elif locV < val:
						upper = val
					box[axis] = (lower,locV,upper)
			supports.append(box)

			deltaWeight = {}
			# Walk over previous masters now, populate deltaWeight
			for j,m in enumerate(locations[:i]):
				scalar = supportScalar(loc, supports[j])
				if scalar:
					deltaWeight[j] = scalar
			deltaWeights.append(deltaWeight)

		self.supports = supports
		self.deltaWeights = deltaWeights

	def getDeltas(self, masterValues):
		assert len(masterValues) == len(self.deltaWeights)
		mapping = self.reverseMapping
		out = []
		for i,weights in enumerate(self.deltaWeights):
			delta = masterValues[mapping[i]]
			for j,weight in weights.items():
				delta -= out[j] * weight
			out.append(delta)
		return out

	def getScalars(self, loc):
		return [supportScalar(loc, support) for support in self.supports]

	@staticmethod
	def interpolateFromDeltasAndScalars(deltas, scalars):
		v = None
		assert len(deltas) == len(scalars)
		for i,(delta,scalar) in enumerate(zip(deltas, scalars)):
			if not scalar: continue
			contribution = delta * scalar
			if v is None:
				v = contribution
			else:
				v += contribution
		return v

	def interpolateFromDeltas(self, loc, deltas):
		scalars = self.getScalars(loc)
		return self.interpolateFromDeltasAndScalars(deltas, scalars)

	def interpolateFromMasters(self, loc, masterValues):
		deltas = self.getDeltas(masterValues)
		return self.interpolateFromDeltas(loc, deltas)

	def interpolateFromMastersAndScalars(self, masterValues, scalars):
		deltas = self.getDeltas(masterValues)
		return self.interpolateFromDeltasAndScalars(deltas, scalars)


if __name__ == "__main__":
	import doctest, sys
	sys.exit(doctest.testmod().failed)