This file is indexed.

/usr/lib/python3/dist-packages/emcee/mh.py is in python3-emcee 2.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
A vanilla Metropolis-Hastings sampler

"""

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__all__ = ["MHSampler"]

import numpy as np

from . import autocorr
from .sampler import Sampler


# === MHSampler ===
class MHSampler(Sampler):
    """
    The most basic possible Metropolis-Hastings style MCMC sampler

    :param cov:
        The covariance matrix to use for the proposal distribution.

    :param dim:
        Number of dimensions in the parameter space.

    :param lnpostfn:
        A function that takes a vector in the parameter space as input and
        returns the natural logarithm of the posterior probability for that
        position.

    :param args: (optional)
        A list of extra positional arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    :param kwargs: (optional)
        A list of extra keyword arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    """
    def __init__(self, cov, *args, **kwargs):
        super(MHSampler, self).__init__(*args, **kwargs)
        self.cov = cov

    def reset(self):
        super(MHSampler, self).reset()
        self._chain = np.empty((0, self.dim))
        self._lnprob = np.empty(0)

    def sample(self, p0, lnprob=None, randomstate=None, thin=1,
               storechain=True, iterations=1):
        """
        Advances the chain ``iterations`` steps as an iterator

        :param p0:
            The initial position vector.

        :param lnprob0: (optional)
            The log posterior probability at position ``p0``. If ``lnprob``
            is not provided, the initial value is calculated.

        :param rstate0: (optional)
            The state of the random number generator. See the
            :func:`random_state` property for details.

        :param iterations: (optional)
            The number of steps to run.

        :param thin: (optional)
            If you only want to store and yield every ``thin`` samples in the
            chain, set thin to an integer greater than 1.

        :param storechain: (optional)
            By default, the sampler stores (in memory) the positions and
            log-probabilities of the samples in the chain. If you are
            using another method to store the samples to a file or if you
            don't need to analyse the samples after the fact (for burn-in
            for example) set ``storechain`` to ``False``.

        At each iteration, this generator yields:

        * ``pos`` - The current positions of the chain in the parameter
          space.

        * ``lnprob`` - The value of the log posterior at ``pos`` .

        * ``rstate`` - The current state of the random number generator.

        """

        self.random_state = randomstate

        p = np.array(p0)
        if lnprob is None:
            lnprob = self.get_lnprob(p)

        # Resize the chain in advance.
        if storechain:
            N = int(iterations / thin)
            self._chain = np.concatenate((self._chain,
                                          np.zeros((N, self.dim))), axis=0)
            self._lnprob = np.append(self._lnprob, np.zeros(N))

        i0 = self.iterations
        # Use range instead of xrange for python 3 compatability
        for i in range(int(iterations)):
            self.iterations += 1

            # Calculate the proposal distribution.
            q = self._random.multivariate_normal(p, self.cov)
            newlnprob = self.get_lnprob(q)
            diff = newlnprob - lnprob

            # M-H acceptance ratio
            if diff < 0:
                diff = np.exp(diff) - self._random.rand()

            if diff > 0:
                p = q
                lnprob = newlnprob
                self.naccepted += 1

            if storechain and i % thin == 0:
                ind = i0 + int(i / thin)
                self._chain[ind, :] = p
                self._lnprob[ind] = lnprob

            # Heavy duty iterator action going on right here...
            yield p, lnprob, self.random_state

    @property
    def acor(self):
        """
        An estimate of the autocorrelation time for each parameter (length:
        ``dim``).

        """
        return self.get_autocorr_time()

    def get_autocorr_time(self, low=10, high=None, step=1, c=10, fast=False):
        """
        Compute an estimate of the autocorrelation time for each parameter
        (length: ``dim``).

        :param low: (Optional[int])
            The minimum window size to test.
            (default: ``10``)
        :param high: (Optional[int])
            The maximum window size to test.
            (default: ``x.shape[axis] / (2*c)``)
        :param step: (Optional[int])
            The step size for the window search.
            (default: ``1``)
        :param c: (Optional[float])
            The minimum number of autocorrelation times needed to trust the
            estimate.
            (default: ``10``)
        :param fast: (Optional[bool])
            If ``True``, only use the first ``2^n`` (for the largest power)
            entries for efficiency.
            (default: False)
        """
        return autocorr.integrated_time(self.chain, axis=0, low=low,
                                        high=high, step=step, c=c, fast=fast)