/usr/lib/python3/dist-packages/emcee/ensemble.py is in python3-emcee 2.2.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
An affine invariant Markov chain Monte Carlo (MCMC) sampler.
Goodman & Weare, Ensemble Samplers With Affine Invariance
Comm. App. Math. Comp. Sci., Vol. 5 (2010), No. 1, 65–80
"""
from __future__ import (division, print_function, absolute_import,
unicode_literals)
__all__ = ["EnsembleSampler"]
import numpy as np
from . import autocorr
from .sampler import Sampler
from .interruptible_pool import InterruptiblePool
class EnsembleSampler(Sampler):
"""
A generalized Ensemble sampler that uses 2 ensembles for parallelization.
The ``__init__`` function will raise an ``AssertionError`` if
``k < 2 * dim`` (and you haven't set the ``live_dangerously`` parameter)
or if ``k`` is odd.
**Warning**: The :attr:`chain` member of this object has the shape:
``(nwalkers, nlinks, dim)`` where ``nlinks`` is the number of steps
taken by the chain and ``k`` is the number of walkers. Use the
:attr:`flatchain` property to get the chain flattened to
``(nlinks, dim)``. For users of pre-1.0 versions, this shape is
different so be careful!
:param nwalkers:
The number of Goodman & Weare "walkers".
:param dim:
Number of dimensions in the parameter space.
:param lnpostfn:
A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.
:param a: (optional)
The proposal scale parameter. (default: ``2.0``)
:param args: (optional)
A list of extra positional arguments for ``lnpostfn``. ``lnpostfn``
will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.
:param kwargs: (optional)
A list of extra keyword arguments for ``lnpostfn``. ``lnpostfn``
will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.
:param postargs: (optional)
Alias of ``args`` for backwards compatibility.
:param threads: (optional)
The number of threads to use for parallelization. If ``threads == 1``,
then the ``multiprocessing`` module is not used but if
``threads > 1``, then a ``Pool`` object is created and calls to
``lnpostfn`` are run in parallel.
:param pool: (optional)
An alternative method of using the parallelized algorithm. If
provided, the value of ``threads`` is ignored and the
object provided by ``pool`` is used for all parallelization. It
can be any object with a ``map`` method that follows the same
calling sequence as the built-in ``map`` function.
:param runtime_sortingfn: (optional)
A function implementing custom runtime load-balancing. See
:ref:`loadbalance` for more information.
"""
def __init__(self, nwalkers, dim, lnpostfn, a=2.0, args=[], kwargs={},
postargs=None, threads=1, pool=None, live_dangerously=False,
runtime_sortingfn=None):
self.k = nwalkers
self.a = a
self.threads = threads
self.pool = pool
self.runtime_sortingfn = runtime_sortingfn
if postargs is not None:
args = postargs
super(EnsembleSampler, self).__init__(dim, lnpostfn, args=args,
kwargs=kwargs)
# Do a little bit of _magic_ to make the likelihood call with
# ``args`` and ``kwargs`` pickleable.
self.lnprobfn = _function_wrapper(self.lnprobfn, self.args,
self.kwargs)
assert self.k % 2 == 0, "The number of walkers must be even."
if not live_dangerously:
assert self.k >= 2 * self.dim, (
"The number of walkers needs to be more than twice the "
"dimension of your parameter space... unless you're "
"crazy!")
if self.threads > 1 and self.pool is None:
self.pool = InterruptiblePool(self.threads)
def clear_blobs(self):
"""
Clear the ``blobs`` list.
"""
self._blobs = []
def reset(self):
"""
Clear the ``chain`` and ``lnprobability`` array. Also reset the
bookkeeping parameters.
"""
super(EnsembleSampler, self).reset()
self.naccepted = np.zeros(self.k)
self._chain = np.empty((self.k, 0, self.dim))
self._lnprob = np.empty((self.k, 0))
# Initialize list for storing optional metadata blobs.
self.clear_blobs()
def sample(self, p0, lnprob0=None, rstate0=None, blobs0=None,
iterations=1, thin=1, storechain=True, mh_proposal=None):
"""
Advance the chain ``iterations`` steps as a generator.
:param p0:
A list of the initial positions of the walkers in the
parameter space. It should have the shape ``(nwalkers, dim)``.
:param lnprob0: (optional)
The list of log posterior probabilities for the walkers at
positions given by ``p0``. If ``lnprob is None``, the initial
values are calculated. It should have the shape ``(k, dim)``.
:param rstate0: (optional)
The state of the random number generator.
See the :attr:`Sampler.random_state` property for details.
:param iterations: (optional)
The number of steps to run.
:param thin: (optional)
If you only want to store and yield every ``thin`` samples in the
chain, set thin to an integer greater than 1.
:param storechain: (optional)
By default, the sampler stores (in memory) the positions and
log-probabilities of the samples in the chain. If you are
using another method to store the samples to a file or if you
don't need to analyse the samples after the fact (for burn-in
for example) set ``storechain`` to ``False``.
:param mh_proposal: (optional)
A function that returns a list of positions for ``nwalkers``
walkers given a current list of positions of the same size. See
:class:`utils.MH_proposal_axisaligned` for an example.
At each iteration, this generator yields:
* ``pos`` - A list of the current positions of the walkers in the
parameter space. The shape of this object will be
``(nwalkers, dim)``.
* ``lnprob`` - The list of log posterior probabilities for the
walkers at positions given by ``pos`` . The shape of this object
is ``(nwalkers, dim)``.
* ``rstate`` - The current state of the random number generator.
* ``blobs`` - (optional) The metadata "blobs" associated with the
current position. The value is only returned if ``lnpostfn``
returns blobs too.
"""
# Try to set the initial value of the random number generator. This
# fails silently if it doesn't work but that's what we want because
# we'll just interpret any garbage as letting the generator stay in
# it's current state.
self.random_state = rstate0
p = np.array(p0)
halfk = int(self.k / 2)
# If the initial log-probabilities were not provided, calculate them
# now.
lnprob = lnprob0
blobs = blobs0
if lnprob is None:
lnprob, blobs = self._get_lnprob(p)
# Check to make sure that the probability function didn't return
# ``np.nan``.
if np.any(np.isnan(lnprob)):
raise ValueError("The initial lnprob was NaN.")
# Store the initial size of the stored chain.
i0 = self._chain.shape[1]
# Here, we resize chain in advance for performance. This actually
# makes a pretty big difference.
if storechain:
N = int(iterations / thin)
self._chain = np.concatenate((self._chain,
np.zeros((self.k, N, self.dim))),
axis=1)
self._lnprob = np.concatenate((self._lnprob,
np.zeros((self.k, N))), axis=1)
for i in range(int(iterations)):
self.iterations += 1
# If we were passed a Metropolis-Hastings proposal
# function, use it.
if mh_proposal is not None:
# Draw proposed positions & evaluate lnprob there
q = mh_proposal(p)
newlnp, blob = self._get_lnprob(q)
# Accept if newlnp is better; and ...
acc = (newlnp > lnprob)
# ... sometimes accept for steps that got worse
worse = np.flatnonzero(~acc)
acc[worse] = ((newlnp[worse] - lnprob[worse]) >
np.log(self._random.rand(len(worse))))
del worse
# Update the accepted walkers.
lnprob[acc] = newlnp[acc]
p[acc] = q[acc]
self.naccepted[acc] += 1
if blob is not None:
assert blobs is not None, (
"If you start sampling with a given lnprob, you also "
"need to provide the current list of blobs at that "
"position.")
ind = np.arange(self.k)[acc]
for j in ind:
blobs[j] = blob[j]
else:
# Loop over the two ensembles, calculating the proposed
# positions.
# Slices for the first and second halves
first, second = slice(halfk), slice(halfk, self.k)
for S0, S1 in [(first, second), (second, first)]:
q, newlnp, acc, blob = self._propose_stretch(p[S0], p[S1],
lnprob[S0])
if np.any(acc):
# Update the positions, log probabilities and
# acceptance counts.
lnprob[S0][acc] = newlnp[acc]
p[S0][acc] = q[acc]
self.naccepted[S0][acc] += 1
if blob is not None:
assert blobs is not None, (
"If you start sampling with a given lnprob, "
"you also need to provide the current list of "
"blobs at that position.")
ind = np.arange(len(acc))[acc]
indfull = np.arange(self.k)[S0][acc]
for j in range(len(ind)):
blobs[indfull[j]] = blob[ind[j]]
if storechain and i % thin == 0:
ind = i0 + int(i / thin)
self._chain[:, ind, :] = p
self._lnprob[:, ind] = lnprob
if blobs is not None:
self._blobs.append(list(blobs))
# Yield the result as an iterator so that the user can do all
# sorts of fun stuff with the results so far.
if blobs is not None:
# This is a bit of a hack to keep things backwards compatible.
yield p, lnprob, self.random_state, blobs
else:
yield p, lnprob, self.random_state
def _propose_stretch(self, p0, p1, lnprob0):
"""
Propose a new position for one sub-ensemble given the positions of
another.
:param p0:
The positions from which to jump.
:param p1:
The positions of the other ensemble.
:param lnprob0:
The log-probabilities at ``p0``.
This method returns:
* ``q`` - The new proposed positions for the walkers in ``ensemble``.
* ``newlnprob`` - The vector of log-probabilities at the positions
given by ``q``.
* ``accept`` - A vector of type ``bool`` indicating whether or not
the proposed position for each walker should be accepted.
* ``blob`` - The new meta data blobs or ``None`` if nothing was
returned by ``lnprobfn``.
"""
s = np.atleast_2d(p0)
Ns = len(s)
c = np.atleast_2d(p1)
Nc = len(c)
# Generate the vectors of random numbers that will produce the
# proposal.
zz = ((self.a - 1.) * self._random.rand(Ns) + 1) ** 2. / self.a
rint = self._random.randint(Nc, size=(Ns,))
# Calculate the proposed positions and the log-probability there.
q = c[rint] - zz[:, np.newaxis] * (c[rint] - s)
newlnprob, blob = self._get_lnprob(q)
# Decide whether or not the proposals should be accepted.
lnpdiff = (self.dim - 1.) * np.log(zz) + newlnprob - lnprob0
accept = (lnpdiff > np.log(self._random.rand(len(lnpdiff))))
return q, newlnprob, accept, blob
def _get_lnprob(self, pos=None):
"""
Calculate the vector of log-probability for the walkers.
:param pos: (optional)
The position vector in parameter space where the probability
should be calculated. This defaults to the current position
unless a different one is provided.
This method returns:
* ``lnprob`` - A vector of log-probabilities with one entry for each
walker in this sub-ensemble.
* ``blob`` - The list of meta data returned by the ``lnpostfn`` at
this position or ``None`` if nothing was returned.
"""
if pos is None:
p = self.pos
else:
p = pos
# Check that the parameters are in physical ranges.
if np.any(np.isinf(p)):
raise ValueError("At least one parameter value was infinite.")
if np.any(np.isnan(p)):
raise ValueError("At least one parameter value was NaN.")
# If the `pool` property of the sampler has been set (i.e. we want
# to use `multiprocessing`), use the `pool`'s map method. Otherwise,
# just use the built-in `map` function.
if self.pool is not None:
M = self.pool.map
else:
M = map
# sort the tasks according to (user-defined) some runtime guess
if self.runtime_sortingfn is not None:
p, idx = self.runtime_sortingfn(p)
# Run the log-probability calculations (optionally in parallel).
results = list(M(self.lnprobfn, [p[i] for i in range(len(p))]))
try:
lnprob = np.array([float(l[0]) for l in results])
blob = [l[1] for l in results]
except (IndexError, TypeError):
lnprob = np.array([float(l) for l in results])
blob = None
# sort it back according to the original order - get the same
# chain irrespective of the runtime sorting fn
if self.runtime_sortingfn is not None:
orig_idx = np.argsort(idx)
lnprob = lnprob[orig_idx]
p = [p[i] for i in orig_idx]
if blob is not None:
blob = [blob[i] for i in orig_idx]
# Check for lnprob returning NaN.
if np.any(np.isnan(lnprob)):
# Print some debugging stuff.
print("NaN value of lnprob for parameters: ")
for pars in p[np.isnan(lnprob)]:
print(pars)
# Finally raise exception.
raise ValueError("lnprob returned NaN.")
return lnprob, blob
@property
def blobs(self):
"""
Get the list of "blobs" produced by sampling. The result is a list
(of length ``iterations``) of ``list`` s (of length ``nwalkers``) of
arbitrary objects. **Note**: this will actually be an empty list if
your ``lnpostfn`` doesn't return any metadata.
"""
return self._blobs
@property
def chain(self):
"""
A pointer to the Markov chain itself. The shape of this array is
``(k, iterations, dim)``.
"""
return super(EnsembleSampler, self).chain
@property
def flatchain(self):
"""
A shortcut for accessing chain flattened along the zeroth (walker)
axis.
"""
s = self.chain.shape
return self.chain.reshape(s[0] * s[1], s[2])
@property
def lnprobability(self):
"""
A pointer to the matrix of the value of ``lnprobfn`` produced at each
step for each walker. The shape is ``(k, iterations)``.
"""
return super(EnsembleSampler, self).lnprobability
@property
def flatlnprobability(self):
"""
A shortcut to return the equivalent of ``lnprobability`` but aligned
to ``flatchain`` rather than ``chain``.
"""
return super(EnsembleSampler, self).lnprobability.flatten()
@property
def acceptance_fraction(self):
"""
An array (length: ``k``) of the fraction of steps accepted for each
walker.
"""
return super(EnsembleSampler, self).acceptance_fraction
@property
def acor(self):
"""
An estimate of the autocorrelation time for each parameter (length:
``dim``).
"""
return self.get_autocorr_time()
def get_autocorr_time(self, low=10, high=None, step=1, c=10, fast=False):
"""
Compute an estimate of the autocorrelation time for each parameter
(length: ``dim``).
:param low: (Optional[int])
The minimum window size to test.
(default: ``10``)
:param high: (Optional[int])
The maximum window size to test.
(default: ``x.shape[axis] / (2*c)``)
:param step: (Optional[int])
The step size for the window search.
(default: ``1``)
:param c: (Optional[float])
The minimum number of autocorrelation times needed to trust the
estimate.
(default: ``10``)
:param fast: (Optional[bool])
If ``True``, only use the first ``2^n`` (for the largest power)
entries for efficiency.
(default: False)
"""
return autocorr.integrated_time(np.mean(self.chain, axis=0), axis=0,
low=low, high=high, step=step, c=c,
fast=fast)
class _function_wrapper(object):
"""
This is a hack to make the likelihood function pickleable when ``args``
or ``kwargs`` are also included.
"""
def __init__(self, f, args, kwargs):
self.f = f
self.args = args
self.kwargs = kwargs
def __call__(self, x):
try:
return self.f(x, *self.args, **self.kwargs)
except:
import traceback
print("emcee: Exception while calling your likelihood function:")
print(" params:", x)
print(" args:", self.args)
print(" kwargs:", self.kwargs)
print(" exception:")
traceback.print_exc()
raise
|