/usr/lib/python3/dist-packages/ecdsa/keys.py is in python3-ecdsa 0.13-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | import binascii
from . import ecdsa
from . import der
from . import rfc6979
from .curves import NIST192p, find_curve
from .util import string_to_number, number_to_string, randrange
from .util import sigencode_string, sigdecode_string
from .util import oid_ecPublicKey, encoded_oid_ecPublicKey
from six import PY3, b
from hashlib import sha1
class BadSignatureError(Exception):
pass
class BadDigestError(Exception):
pass
class VerifyingKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def from_public_point(klass, point, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.pubkey = ecdsa.Public_key(curve.generator, point)
self.pubkey.order = curve.order
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1,
validate_point=True):
order = curve.order
assert len(string) == curve.verifying_key_length, \
(len(string), curve.verifying_key_length)
xs = string[:curve.baselen]
ys = string[curve.baselen:]
assert len(xs) == curve.baselen, (len(xs), curve.baselen)
assert len(ys) == curve.baselen, (len(ys), curve.baselen)
x = string_to_number(xs)
y = string_to_number(ys)
if validate_point:
assert ecdsa.point_is_valid(curve.generator, x, y)
from . import ellipticcurve
point = ellipticcurve.Point(curve.curve, x, y, order)
return klass.from_public_point(point, curve, hashfunc)
@classmethod
def from_pem(klass, string):
return klass.from_der(der.unpem(string))
@classmethod
def from_der(klass, string):
# [[oid_ecPublicKey,oid_curve], point_str_bitstring]
s1,empty = der.remove_sequence(string)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER pubkey: %s" %
binascii.hexlify(empty))
s2,point_str_bitstring = der.remove_sequence(s1)
# s2 = oid_ecPublicKey,oid_curve
oid_pk, rest = der.remove_object(s2)
oid_curve, empty = der.remove_object(rest)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" %
binascii.hexlify(empty))
assert oid_pk == oid_ecPublicKey, (oid_pk, oid_ecPublicKey)
curve = find_curve(oid_curve)
point_str, empty = der.remove_bitstring(point_str_bitstring)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" %
binascii.hexlify(empty))
assert point_str.startswith(b("\x00\x04"))
return klass.from_string(point_str[2:], curve)
def to_string(self):
# VerifyingKey.from_string(vk.to_string()) == vk as long as the
# curves are the same: the curve itself is not included in the
# serialized form
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
return x_str + y_str
def to_pem(self):
return der.topem(self.to_der(), "PUBLIC KEY")
def to_der(self):
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
point_str = b("\x00\x04") + x_str + y_str
return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey,
self.curve.encoded_oid),
der.encode_bitstring(point_str))
def verify(self, signature, data, hashfunc=None, sigdecode=sigdecode_string):
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.verify_digest(signature, digest, sigdecode)
def verify_digest(self, signature, digest, sigdecode=sigdecode_string):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = sigdecode(signature, self.pubkey.order)
sig = ecdsa.Signature(r, s)
if self.pubkey.verifies(number, sig):
return True
raise BadSignatureError
class SigningKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def generate(klass, curve=NIST192p, entropy=None, hashfunc=sha1):
secexp = randrange(curve.order, entropy)
return klass.from_secret_exponent(secexp, curve, hashfunc)
# to create a signing key from a short (arbitrary-length) seed, convert
# that seed into an integer with something like
# secexp=util.randrange_from_seed__X(seed, curve.order), and then pass
# that integer into SigningKey.from_secret_exponent(secexp, curve)
@classmethod
def from_secret_exponent(klass, secexp, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.baselen = curve.baselen
n = curve.order
assert 1 <= secexp < n
pubkey_point = curve.generator*secexp
pubkey = ecdsa.Public_key(curve.generator, pubkey_point)
pubkey.order = n
self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve,
hashfunc)
self.privkey = ecdsa.Private_key(pubkey, secexp)
self.privkey.order = n
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
assert len(string) == curve.baselen, (len(string), curve.baselen)
secexp = string_to_number(string)
return klass.from_secret_exponent(secexp, curve, hashfunc)
@classmethod
def from_pem(klass, string, hashfunc=sha1):
# the privkey pem file has two sections: "EC PARAMETERS" and "EC
# PRIVATE KEY". The first is redundant.
if PY3 and isinstance(string, str):
string = string.encode()
privkey_pem = string[string.index(b("-----BEGIN EC PRIVATE KEY-----")):]
return klass.from_der(der.unpem(privkey_pem), hashfunc)
@classmethod
def from_der(klass, string, hashfunc=sha1):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
s, empty = der.remove_sequence(string)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER privkey: %s" %
binascii.hexlify(empty))
one, s = der.remove_integer(s)
if one != 1:
raise der.UnexpectedDER("expected '1' at start of DER privkey,"
" got %d" % one)
privkey_str, s = der.remove_octet_string(s)
tag, curve_oid_str, s = der.remove_constructed(s)
if tag != 0:
raise der.UnexpectedDER("expected tag 0 in DER privkey,"
" got %d" % tag)
curve_oid, empty = der.remove_object(curve_oid_str)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER privkey "
"curve_oid: %s" % binascii.hexlify(empty))
curve = find_curve(curve_oid)
# we don't actually care about the following fields
#
#tag, pubkey_bitstring, s = der.remove_constructed(s)
#if tag != 1:
# raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d"
# % tag)
#pubkey_str = der.remove_bitstring(pubkey_bitstring)
#if empty != "":
# raise der.UnexpectedDER("trailing junk after DER privkey "
# "pubkeystr: %s" % binascii.hexlify(empty))
# our from_string method likes fixed-length privkey strings
if len(privkey_str) < curve.baselen:
privkey_str = b("\x00")*(curve.baselen-len(privkey_str)) + privkey_str
return klass.from_string(privkey_str, curve, hashfunc)
def to_string(self):
secexp = self.privkey.secret_multiplier
s = number_to_string(secexp, self.privkey.order)
return s
def to_pem(self):
# TODO: "BEGIN ECPARAMETERS"
return der.topem(self.to_der(), "EC PRIVATE KEY")
def to_der(self):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
encoded_vk = b("\x00\x04") + self.get_verifying_key().to_string()
return der.encode_sequence(der.encode_integer(1),
der.encode_octet_string(self.to_string()),
der.encode_constructed(0, self.curve.encoded_oid),
der.encode_constructed(1, der.encode_bitstring(encoded_vk)),
)
def get_verifying_key(self):
return self.verifying_key
def sign_deterministic(self, data, hashfunc=None, sigencode=sigencode_string):
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.sign_digest_deterministic(digest, hashfunc=hashfunc, sigencode=sigencode)
def sign_digest_deterministic(self, digest, hashfunc=None, sigencode=sigencode_string):
"""
Calculates 'k' from data itself, removing the need for strong
random generator and producing deterministic (reproducible) signatures.
See RFC 6979 for more details.
"""
secexp = self.privkey.secret_multiplier
k = rfc6979.generate_k(
self.curve.generator.order(), secexp, hashfunc, digest)
return self.sign_digest(digest, sigencode=sigencode, k=k)
def sign(self, data, entropy=None, hashfunc=None, sigencode=sigencode_string, k=None):
"""
hashfunc= should behave like hashlib.sha1 . The output length of the
hash (in bytes) must not be longer than the length of the curve order
(rounded up to the nearest byte), so using SHA256 with nist256p is
ok, but SHA256 with nist192p is not. (In the 2**-96ish unlikely event
of a hash output larger than the curve order, the hash will
effectively be wrapped mod n).
Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode,
or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256.
"""
hashfunc = hashfunc or self.default_hashfunc
h = hashfunc(data).digest()
return self.sign_digest(h, entropy, sigencode, k)
def sign_digest(self, digest, entropy=None, sigencode=sigencode_string, k=None):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = self.sign_number(number, entropy, k)
return sigencode(r, s, self.privkey.order)
def sign_number(self, number, entropy=None, k=None):
# returns a pair of numbers
order = self.privkey.order
# privkey.sign() may raise RuntimeError in the amazingly unlikely
# (2**-192) event that r=0 or s=0, because that would leak the key.
# We could re-try with a different 'k', but we couldn't test that
# code, so I choose to allow the signature to fail instead.
# If k is set, it is used directly. In other cases
# it is generated using entropy function
if k is not None:
_k = k
else:
_k = randrange(order, entropy)
assert 1 <= _k < order
sig = self.privkey.sign(number, _k)
return sig.r, sig.s
|