This file is indexed.

/usr/lib/python3/dist-packages/dask/optimize.py is in python3-dask 0.16.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
from __future__ import absolute_import, division, print_function

import math
import re
from operator import getitem

from .compatibility import unicode
from .context import _globals
from .core import (istask, get_dependencies, subs, toposort, flatten,
                   reverse_dict, ishashable)
from .utils_test import add, inc  # noqa: F401


def cull(dsk, keys):
    """ Return new dask with only the tasks required to calculate keys.

    In other words, remove unnecessary tasks from dask.
    ``keys`` may be a single key or list of keys.

    Examples
    --------
    >>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)}
    >>> dsk, dependencies = cull(d, 'out')  # doctest: +SKIP
    >>> dsk  # doctest: +SKIP
    {'x': 1, 'out': (add, 'x', 10)}
    >>> dependencies  # doctest: +SKIP
    {'x': set(), 'out': set(['x'])}

    Returns
    -------
    dsk: culled dask graph
    dependencies: Dict mapping {key: [deps]}.  Useful side effect to accelerate
        other optimizations, notably fuse.
    """
    if not isinstance(keys, (list, set)):
        keys = [keys]
    out_keys = []
    seen = set()
    dependencies = dict()

    work = list(set(flatten(keys)))
    while work:
        new_work = []
        out_keys += work
        deps = [(k, get_dependencies(dsk, k, as_list=True))  # fuse needs lists
                for k in work]
        dependencies.update(deps)
        for _, deplist in deps:
            for d in deplist:
                if d not in seen:
                    seen.add(d)
                    new_work.append(d)
        work = new_work

    out = {k: dsk[k] for k in out_keys}

    return out, dependencies


def default_fused_linear_keys_renamer(keys):
    """Create new keys for fused tasks"""
    typ = type(keys[0])
    if typ is str or typ is unicode:
        names = [key_split(x) for x in keys[:0:-1]]
        names.append(keys[0])
        return '-'.join(names)
    elif (typ is tuple and len(keys[0]) > 0 and
          isinstance(keys[0][0], (str, unicode))):
        names = [key_split(x) for x in keys[:0:-1]]
        names.append(keys[0][0])
        return ('-'.join(names),) + keys[0][1:]
    else:
        return None


def fuse_linear(dsk, keys=None, dependencies=None, rename_keys=True):
    """ Return new dask graph with linear sequence of tasks fused together.

    If specified, the keys in ``keys`` keyword argument are *not* fused.
    Supply ``dependencies`` from output of ``cull`` if available to avoid
    recomputing dependencies.

    **This function is mostly superseded by ``fuse``**

    Parameters
    ----------
    dsk: dict
    keys: list
    dependencies: dict, optional
        {key: [list-of-keys]}.  Must be a list to provide count of each key
        This optional input often comes from ``cull``
    rename_keys: bool or func, optional
        Whether to rename fused keys with ``default_fused_linear_keys_renamer``
        or not.  Renaming fused keys can keep the graph more understandable
        and comprehensive, but it comes at the cost of additional processing.
        If False, then the top-most key will be used.  For advanced usage, a
        func is also accepted, ``new_key = rename_keys(fused_key_list)``.

    Examples
    --------
    >>> d = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')}
    >>> dsk, dependencies = fuse(d)
    >>> dsk # doctest: +SKIP
    {'a-b-c': (inc, (inc, 1)), 'c': 'a-b-c'}
    >>> dsk, dependencies = fuse(d, rename_keys=False)
    >>> dsk # doctest: +SKIP
    {'c': (inc, (inc, 1))}
    >>> dsk, dependencies = fuse(d, keys=['b'], rename_keys=False)
    >>> dsk  # doctest: +SKIP
    {'b': (inc, 1), 'c': (inc, 'b')}

    Returns
    -------
    dsk: output graph with keys fused
    dependencies: dict mapping dependencies after fusion.  Useful side effect
        to accelerate other downstream optimizations.
    """
    if keys is not None and not isinstance(keys, set):
        if not isinstance(keys, list):
            keys = [keys]
        keys = set(flatten(keys))

    if dependencies is None:
        dependencies = {k: get_dependencies(dsk, k, as_list=True)
                        for k in dsk}

    # locate all members of linear chains
    child2parent = {}
    unfusible = set()
    for parent in dsk:
        deps = dependencies[parent]
        has_many_children = len(deps) > 1
        for child in deps:
            if keys is not None and child in keys:
                unfusible.add(child)
            elif child in child2parent:
                del child2parent[child]
                unfusible.add(child)
            elif has_many_children:
                unfusible.add(child)
            elif child not in unfusible:
                child2parent[child] = parent

    # construct the chains from ancestor to descendant
    chains = []
    parent2child = dict(map(reversed, child2parent.items()))
    while child2parent:
        child, parent = child2parent.popitem()
        chain = [child, parent]
        while parent in child2parent:
            parent = child2parent.pop(parent)
            del parent2child[parent]
            chain.append(parent)
        chain.reverse()
        while child in parent2child:
            child = parent2child.pop(child)
            del child2parent[child]
            chain.append(child)
        chains.append(chain)

    dependencies = {k: set(v) for k, v in dependencies.items()}

    if rename_keys is True:
        key_renamer = default_fused_linear_keys_renamer
    elif rename_keys is False:
        key_renamer = None
    else:
        key_renamer = rename_keys

    # create a new dask with fused chains
    rv = {}
    fused = set()
    aliases = set()
    is_renamed = False
    for chain in chains:
        if key_renamer is not None:
            new_key = key_renamer(chain)
            is_renamed = (new_key is not None and new_key not in dsk and
                          new_key not in rv)
        child = chain.pop()
        val = dsk[child]
        while chain:
            parent = chain.pop()
            dependencies[parent].update(dependencies.pop(child))
            dependencies[parent].remove(child)
            val = subs(dsk[parent], child, val)
            fused.add(child)
            child = parent
        fused.add(child)
        if is_renamed:
            rv[new_key] = val
            rv[child] = new_key
            dependencies[new_key] = dependencies[child]
            dependencies[child] = {new_key}
            aliases.add(child)
        else:
            rv[child] = val
    for key, val in dsk.items():
        if key not in fused:
            rv[key] = val
    if aliases:
        for key, deps in dependencies.items():
            for old_key in deps & aliases:
                new_key = rv[old_key]
                deps.remove(old_key)
                deps.add(new_key)
                rv[key] = subs(rv[key], old_key, new_key)
        if keys is not None:
            for key in aliases - keys:
                del rv[key]
                del dependencies[key]
    return rv, dependencies


def _flat_set(x):
    if x is None:
        return set()
    elif isinstance(x, set):
        return x
    elif not isinstance(x, (list, set)):
        x = [x]
    return set(x)


def inline(dsk, keys=None, inline_constants=True, dependencies=None):
    """ Return new dask with the given keys inlined with their values.

    Inlines all constants if ``inline_constants`` keyword is True. Note that
    the constant keys will remain in the graph, to remove them follow
    ``inline`` with ``cull``.

    Examples
    --------
    >>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')}
    >>> inline(d)  # doctest: +SKIP
    {'x': 1, 'y': (inc, 1), 'z': (add, 1, 'y')}

    >>> inline(d, keys='y')  # doctest: +SKIP
    {'x': 1, 'y': (inc, 1), 'z': (add, 1, (inc, 1))}

    >>> inline(d, keys='y', inline_constants=False)  # doctest: +SKIP
    {'x': 1, 'y': (inc, 1), 'z': (add, 'x', (inc, 'x'))}
    """
    if dependencies and isinstance(next(iter(dependencies.values())), list):
        dependencies = {k: set(v) for k, v in dependencies.items()}

    keys = _flat_set(keys)

    if dependencies is None:
        dependencies = {k: get_dependencies(dsk, k)
                        for k in dsk}

    if inline_constants:
        keys.update(k for k, v in dsk.items() if
                    (ishashable(v) and v in dsk) or
                    (not dependencies[k] and not istask(v)))

    # Keys may depend on other keys, so determine replace order with toposort.
    # The values stored in `keysubs` do not include other keys.
    replaceorder = toposort(dict((k, dsk[k]) for k in keys if k in dsk),
                            dependencies=dependencies)
    keysubs = {}
    for key in replaceorder:
        val = dsk[key]
        for dep in keys & dependencies[key]:
            if dep in keysubs:
                replace = keysubs[dep]
            else:
                replace = dsk[dep]
            val = subs(val, dep, replace)
        keysubs[key] = val

    # Make new dask with substitutions
    dsk2 = keysubs.copy()
    for key, val in dsk.items():
        if key not in dsk2:
            for item in keys & dependencies[key]:
                val = subs(val, item, keysubs[item])
            dsk2[key] = val
    return dsk2


def inline_functions(dsk, output, fast_functions=None, inline_constants=False,
                     dependencies=None):
    """ Inline cheap functions into larger operations

    Examples
    --------
    >>> dsk = {'out': (add, 'i', 'd'),  # doctest: +SKIP
    ...        'i': (inc, 'x'),
    ...        'd': (double, 'y'),
    ...        'x': 1, 'y': 1}
    >>> inline_functions(dsk, [], [inc])  # doctest: +SKIP
    {'out': (add, (inc, 'x'), 'd'),
     'd': (double, 'y'),
     'x': 1, 'y': 1}

    Protect output keys.  In the example below ``i`` is not inlined because it
    is marked as an output key.

    >>> inline_functions(dsk, ['i', 'out'], [inc, double])  # doctest: +SKIP
    {'out': (add, 'i', (double, 'y')),
     'i': (inc, 'x'),
     'x': 1, 'y': 1}
    """
    if not fast_functions:
        return dsk

    output = set(output)

    fast_functions = set(fast_functions)

    if dependencies is None:
        dependencies = {k: get_dependencies(dsk, k)
                        for k in dsk}
    dependents = reverse_dict(dependencies)

    keys = [k for k, v in dsk.items()
            if istask(v) and functions_of(v).issubset(fast_functions) and
            dependents[k] and k not in output
            ]

    if keys:
        dsk = inline(dsk, keys, inline_constants=inline_constants,
                     dependencies=dependencies)
        for k in keys:
            del dsk[k]
    return dsk


def unwrap_partial(func):
    while hasattr(func, 'func'):
        func = func.func
    return func


def functions_of(task):
    """ Set of functions contained within nested task

    Examples
    --------
    >>> task = (add, (mul, 1, 2), (inc, 3))  # doctest: +SKIP
    >>> functions_of(task)  # doctest: +SKIP
    set([add, mul, inc])
    """
    funcs = set()

    work = [task]
    sequence_types = {list, tuple}

    while work:
        new_work = []
        for task in work:
            if type(task) in sequence_types:
                if istask(task):
                    funcs.add(unwrap_partial(task[0]))
                    new_work += task[1:]
                else:
                    new_work += task
        work = new_work

    return funcs


def fuse_selections(dsk, head1, head2, merge):
    """Fuse selections with lower operation.

    Handles graphs of the form:
    ``{key1: (head1, key2, ...), key2: (head2, ...)}``

    Parameters
    ----------
    dsk : dict
        dask graph
    head1 : function
        The first element of task1
    head2 : function
        The first element of task2
    merge : function
        Takes ``task1`` and ``task2`` and returns a merged task to
        replace ``task1``.

    Examples
    --------
    >>> def load(store, partition, columns):
    ...     pass
    >>> dsk = {'x': (load, 'store', 'part', ['a', 'b']),
    ...        'y': (getitem, 'x', 'a')}
    >>> merge = lambda t1, t2: (load, t2[1], t2[2], t1[2])
    >>> dsk2 = fuse_selections(dsk, getitem, load, merge)
    >>> cull(dsk2, 'y')[0]
    {'y': (<function load at ...>, 'store', 'part', 'a')}
    """
    dsk2 = dict()
    for k, v in dsk.items():
        try:
            if (istask(v) and v[0] == head1 and v[1] in dsk and
                    istask(dsk[v[1]]) and dsk[v[1]][0] == head2):
                dsk2[k] = merge(v, dsk[v[1]])
            else:
                dsk2[k] = v
        except TypeError:
            dsk2[k] = v
    return dsk2


def fuse_getitem(dsk, func, place):
    """ Fuse getitem with lower operation

    Parameters
    ----------
    dsk: dict
        dask graph
    func: function
        A function in a task to merge
    place: int
        Location in task to insert the getitem key

    Examples
    --------
    >>> def load(store, partition, columns):
    ...     pass
    >>> dsk = {'x': (load, 'store', 'part', ['a', 'b']),
    ...        'y': (getitem, 'x', 'a')}
    >>> dsk2 = fuse_getitem(dsk, load, 3)  # columns in arg place 3
    >>> cull(dsk2, 'y')[0]
    {'y': (<function load at ...>, 'store', 'part', 'a')}
    """
    return fuse_selections(dsk, getitem, func,
                           lambda a, b: tuple(b[:place]) + (a[2], ) + tuple(b[place + 1:]))


def default_fused_keys_renamer(keys):
    """Create new keys for ``fuse`` tasks"""
    it = reversed(keys)
    first_key = next(it)
    typ = type(first_key)
    if typ is str or typ is unicode:
        first_name = key_split(first_key)
        names = {key_split(k) for k in it}
        names.discard(first_name)
        names = sorted(names)
        names.append(first_key)
        return '-'.join(names)
    elif (typ is tuple and len(first_key) > 0 and
          isinstance(first_key[0], (str, unicode))):
        first_name = key_split(first_key)
        names = {key_split(k) for k in it}
        names.discard(first_name)
        names = sorted(names)
        names.append(first_key[0])
        return ('-'.join(names),) + first_key[1:]


def fuse(dsk, keys=None, dependencies=None, ave_width=None, max_width=None,
         max_height=None, max_depth_new_edges=None, rename_keys=None):
    """ Fuse tasks that form reductions; more advanced than ``fuse_linear``

    This trades parallelism opportunities for faster scheduling by making tasks
    less granular.  It can replace ``fuse_linear`` in optimization passes.

    This optimization applies to all reductions--tasks that have at most one
    dependent--so it may be viewed as fusing "multiple input, single output"
    groups of tasks into a single task.  There are many parameters to fine
    tune the behavior, which are described below.  ``ave_width`` is the
    natural parameter with which to compare parallelism to granularity, so
    it should always be specified.  Reasonable values for other parameters
    with be determined using ``ave_width`` if necessary.

    Parameters
    ----------
    dsk: dict
        dask graph
    keys: list or set, optional
        Keys that must remain in the returned dask graph
    dependencies: dict, optional
        {key: [list-of-keys]}.  Must be a list to provide count of each key
        This optional input often comes from ``cull``
    ave_width: float (default 2)
        Upper limit for ``width = num_nodes / height``, a good measure of
        parallelizability
    max_width: int
        Don't fuse if total width is greater than this
    max_height: int
        Don't fuse more than this many levels
    max_depth_new_edges: int
        Don't fuse if new dependencies are added after this many levels
    rename_keys: bool or func, optional
        Whether to rename the fused keys with ``default_fused_keys_renamer``
        or not.  Renaming fused keys can keep the graph more understandable
        and comprehensive, but it comes at the cost of additional processing.
        If False, then the top-most key will be used.  For advanced usage, a
        function to create the new name is also accepted.

    Returns
    -------
    dsk: output graph with keys fused
    dependencies: dict mapping dependencies after fusion.  Useful side effect
        to accelerate other downstream optimizations.
    """
    if keys is not None and not isinstance(keys, set):
        if not isinstance(keys, list):
            keys = [keys]
        keys = set(flatten(keys))

    # Assign reasonable, not too restrictive defaults
    if ave_width is None:
        if _globals.get('fuse_ave_width') is None:
            ave_width = 1
        else:
            ave_width = _globals['fuse_ave_width']

    if max_height is None:
        if _globals.get('fuse_max_height') is None:
            max_height = len(dsk)
        else:
            max_height = _globals['fuse_max_height']

    max_depth_new_edges = (
        max_depth_new_edges or
        _globals.get('fuse_max_depth_new_edges') or
        ave_width + 1.5
    )
    max_width = (
        max_width or
        _globals.get('fuse_max_width') or
        1.5 + ave_width * math.log(ave_width + 1)
    )

    if not ave_width or not max_height:
        return dsk, dependencies

    if rename_keys is None:
        rename_keys = _globals.get('fuse_rename_keys', True)
    if rename_keys is True:
        key_renamer = default_fused_keys_renamer
    elif rename_keys is False:
        key_renamer = None
    else:
        key_renamer = rename_keys

    if dependencies is None:
        deps = {k: get_dependencies(dsk, k, as_list=True) for k in dsk}
    else:
        deps = dict(dependencies)

    rdeps = {}
    for k, vals in deps.items():
        for v in vals:
            if v not in rdeps:
                rdeps[v] = [k]
            else:
                rdeps[v].append(k)
        deps[k] = set(vals)

    reducible = {k for k, vals in rdeps.items() if len(vals) == 1}
    if keys:
        reducible -= keys
    if not reducible:
        return dsk, deps

    rv = dsk.copy()
    fused_trees = {}
    # These are the stacks we use to store data as we traverse the graph
    info_stack = []
    children_stack = []
    # For speed
    deps_pop = deps.pop
    reducible_add = reducible.add
    reducible_pop = reducible.pop
    reducible_remove = reducible.remove
    fused_trees_pop = fused_trees.pop
    info_stack_append = info_stack.append
    info_stack_pop = info_stack.pop
    children_stack_append = children_stack.append
    children_stack_extend = children_stack.extend
    children_stack_pop = children_stack.pop
    while reducible:
        parent = reducible_pop()
        reducible_add(parent)
        while parent in reducible:
            # Go to the top
            parent = rdeps[parent][0]
        children_stack_append(parent)
        children_stack_extend(reducible & deps[parent])
        while True:
            child = children_stack[-1]
            if child != parent:
                children = reducible & deps[child]
                while children:
                    # Depth-first search
                    children_stack_extend(children)
                    parent = child
                    child = children_stack[-1]
                    children = reducible & deps[child]
                children_stack_pop()
                # This is a leaf node in the reduction region
                # key, task, fused_keys, height, width, number of nodes, fudge, set of edges
                info_stack_append((child, rv[child], None if key_renamer is None else [child],
                                   1, 1, 1, 0, deps[child] - reducible))
            else:
                children_stack_pop()
                # Calculate metrics and fuse as appropriate
                deps_parent = deps[parent]
                edges = deps_parent - reducible
                children = deps_parent - edges
                num_children = len(children)

                if num_children == 1:
                    (child_key, child_task, child_keys, height, width, num_nodes, fudge,
                     children_edges) = info_stack_pop()
                    num_children_edges = len(children_edges)

                    if fudge > num_children_edges - 1 >= 0:
                        fudge = num_children_edges - 1
                    edges |= children_edges
                    no_new_edges = len(edges) == num_children_edges
                    if not no_new_edges:
                        fudge += 1
                    if (
                        (num_nodes + fudge) / height <= ave_width and
                        # Sanity check; don't go too deep if new levels introduce new edge dependencies
                        (no_new_edges or height < max_depth_new_edges)
                    ):
                        # Perform substitutions as we go
                        val = subs(dsk[parent], child_key, child_task)
                        deps_parent.remove(child_key)
                        deps_parent |= deps_pop(child_key)
                        del rv[child_key]
                        reducible_remove(child_key)
                        if key_renamer is not None:
                            child_keys.append(parent)
                            fused_trees[parent] = child_keys
                            fused_trees_pop(child_key, None)

                        if children_stack:
                            if no_new_edges:
                                # Linear fuse
                                info_stack_append((parent, val, child_keys, height, width, num_nodes, fudge, edges))
                            else:
                                info_stack_append((parent, val, child_keys, height + 1, width, num_nodes + 1, fudge,
                                                   edges))
                        else:
                            rv[parent] = val
                            break
                    else:
                        rv[child_key] = child_task
                        reducible_remove(child_key)
                        if children_stack:
                            # Allow the parent to be fused, but only under strict circumstances.
                            # Ensure that linear chains may still be fused.
                            if fudge > int(ave_width - 1):
                                fudge = int(ave_width - 1)
                            # This task *implicitly* depends on `edges`
                            info_stack_append((parent, rv[parent], None if key_renamer is None else [parent],
                                               1, width, 1, fudge, edges))
                        else:
                            break
                else:
                    child_keys = []
                    height = 1
                    width = 0
                    num_single_nodes = 0
                    num_nodes = 0
                    fudge = 0
                    children_edges = set()
                    max_num_edges = 0
                    children_info = info_stack[-num_children:]
                    del info_stack[-num_children:]
                    for cur_key, cur_task, cur_keys, cur_height, cur_width, cur_num_nodes, cur_fudge, \
                            cur_edges in children_info:
                        if cur_height == 1:
                            num_single_nodes += 1
                        elif cur_height > height:
                            height = cur_height
                        width += cur_width
                        num_nodes += cur_num_nodes
                        fudge += cur_fudge
                        if len(cur_edges) > max_num_edges:
                            max_num_edges = len(cur_edges)
                        children_edges |= cur_edges
                    # Fudge factor to account for possible parallelism with the boundaries
                    num_children_edges = len(children_edges)
                    fudge += min(num_children - 1, max(0, num_children_edges - max_num_edges))

                    if fudge > num_children_edges - 1 >= 0:
                        fudge = num_children_edges - 1
                    edges |= children_edges
                    no_new_edges = len(edges) == num_children_edges
                    if not no_new_edges:
                        fudge += 1
                    if (
                        (num_nodes + fudge) / height <= ave_width and
                        num_single_nodes <= ave_width and
                        width <= max_width and
                        height <= max_height and
                        # Sanity check; don't go too deep if new levels introduce new edge dependencies
                        (no_new_edges or height < max_depth_new_edges)
                    ):
                        # Perform substitutions as we go
                        val = dsk[parent]
                        children_deps = set()
                        for child_info in children_info:
                            cur_child = child_info[0]
                            val = subs(val, cur_child, child_info[1])
                            del rv[cur_child]
                            children_deps |= deps_pop(cur_child)
                            reducible_remove(cur_child)
                            if key_renamer is not None:
                                fused_trees_pop(cur_child, None)
                                child_keys.extend(child_info[2])
                        deps_parent -= children
                        deps_parent |= children_deps

                        if key_renamer is not None:
                            child_keys.append(parent)
                            fused_trees[parent] = child_keys

                        if children_stack:
                            info_stack_append((parent, val, child_keys, height + 1, width, num_nodes + 1, fudge, edges))
                        else:
                            rv[parent] = val
                            break
                    else:
                        for child_info in children_info:
                            rv[child_info[0]] = child_info[1]
                            reducible_remove(child_info[0])
                        if children_stack:
                            # Allow the parent to be fused, but only under strict circumstances.
                            # Ensure that linear chains may still be fused.
                            if width > max_width:
                                width = max_width
                            if fudge > int(ave_width - 1):
                                fudge = int(ave_width - 1)
                            # key, task, height, width, number of nodes, fudge, set of edges
                            # This task *implicitly* depends on `edges`
                            info_stack_append((parent, rv[parent], None if key_renamer is None else [parent],
                                               1, width, 1, fudge, edges))
                        else:
                            break
                # Traverse upwards
                parent = rdeps[parent][0]

    if key_renamer is not None:
        for root_key, fused_keys in fused_trees.items():
            alias = key_renamer(fused_keys)
            if alias is not None and alias not in rv:
                rv[alias] = rv[root_key]
                rv[root_key] = alias
                deps[alias] = deps[root_key]
                deps[root_key] = {alias}
    return rv, deps


# Defining `key_split` (used by key renamers in `fuse`) in utils.py
# results in messy circular imports, so define it here instead.
hex_pattern = re.compile('[a-f]+')


def key_split(s):
    """
    >>> key_split('x')
    u'x'
    >>> key_split('x-1')
    u'x'
    >>> key_split('x-1-2-3')
    u'x'
    >>> key_split(('x-2', 1))
    'x'
    >>> key_split("('x-2', 1)")
    u'x'
    >>> key_split('hello-world-1')
    u'hello-world'
    >>> key_split(b'hello-world-1')
    u'hello-world'
    >>> key_split('ae05086432ca935f6eba409a8ecd4896')
    'data'
    >>> key_split('<module.submodule.myclass object at 0xdaf372')
    u'myclass'
    >>> key_split(None)
    'Other'
    >>> key_split('x-abcdefab')  # ignores hex
    u'x'
    """
    if type(s) is bytes:
        s = s.decode()
    if type(s) is tuple:
        s = s[0]
    try:
        words = s.split('-')
        if not words[0][0].isalpha():
            result = words[0].lstrip("'(\"")
        else:
            result = words[0]
        for word in words[1:]:
            if word.isalpha() and not (len(word) == 8 and
                                       hex_pattern.match(word) is not None):
                result += '-' + word
            else:
                break
        if len(result) == 32 and re.match(r'[a-f0-9]{32}', result):
            return 'data'
        else:
            if result[0] == '<':
                result = result.strip('<>').split()[0].split('.')[-1]
            return result
    except Exception:
        return 'Other'