This file is indexed.

/usr/lib/python3/dist-packages/dask/multiprocessing.py is in python3-dask 0.16.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import absolute_import, division, print_function

import multiprocessing
import traceback
import pickle
import sys

from .local import get_async  # TODO: get better get
from .context import _globals
from .optimize import fuse, cull

import cloudpickle


if sys.version_info.major < 3:
    import copy_reg as copyreg
else:
    import copyreg


def _reduce_method_descriptor(m):
    return getattr, (m.__objclass__, m.__name__)


# type(set.union) is used as a proxy to <class 'method_descriptor'>
copyreg.pickle(type(set.union), _reduce_method_descriptor)


def _dumps(x):
    return cloudpickle.dumps(x, protocol=pickle.HIGHEST_PROTOCOL)


_loads = pickle.loads


def _process_get_id():
    return multiprocessing.current_process().ident


# -- Remote Exception Handling --
# By default, tracebacks can't be serialized using pickle. However, the
# `tblib` library can enable support for this. Since we don't mandate
# that tblib is installed, we do the following:
#
# - If tblib is installed, use it to serialize the traceback and reraise
#   in the scheduler process
# - Otherwise, use a ``RemoteException`` class to contain a serialized
#   version of the formatted traceback, which will then print in the
#   scheduler process.
#
# To enable testing of the ``RemoteException`` class even when tblib is
# installed, we don't wrap the class in the try block below
class RemoteException(Exception):
    """ Remote Exception

    Contains the exception and traceback from a remotely run task
    """
    def __init__(self, exception, traceback):
        self.exception = exception
        self.traceback = traceback

    def __str__(self):
        return (str(self.exception) + "\n\n"
                "Traceback\n"
                "---------\n" +
                self.traceback)

    def __dir__(self):
        return sorted(set(dir(type(self)) +
                      list(self.__dict__) +
                      dir(self.exception)))

    def __getattr__(self, key):
        try:
            return object.__getattribute__(self, key)
        except AttributeError:
            return getattr(self.exception, key)


exceptions = dict()


def remote_exception(exc, tb):
    """ Metaclass that wraps exception type in RemoteException """
    if type(exc) in exceptions:
        typ = exceptions[type(exc)]
        return typ(exc, tb)
    else:
        try:
            typ = type(exc.__class__.__name__,
                       (RemoteException, type(exc)),
                       {'exception_type': type(exc)})
            exceptions[type(exc)] = typ
            return typ(exc, tb)
        except TypeError:
            return exc


try:
    import tblib.pickling_support
    tblib.pickling_support.install()
    from dask.compatibility import reraise

    def _pack_traceback(tb):
        return tb

except ImportError:
    def _pack_traceback(tb):
        return ''.join(traceback.format_tb(tb))

    def reraise(exc, tb):
        exc = remote_exception(exc, tb)
        raise exc


def pack_exception(e, dumps):
    exc_type, exc_value, exc_traceback = sys.exc_info()
    tb = _pack_traceback(exc_traceback)
    try:
        result = dumps((e, tb))
    except BaseException as e:
        exc_type, exc_value, exc_traceback = sys.exc_info()
        tb = _pack_traceback(exc_traceback)
        result = dumps((e, tb))
    return result


def get(dsk, keys, num_workers=None, func_loads=None, func_dumps=None,
        optimize_graph=True, **kwargs):
    """ Multiprocessed get function appropriate for Bags

    Parameters
    ----------
    dsk : dict
        dask graph
    keys : object or list
        Desired results from graph
    num_workers : int
        Number of worker processes (defaults to number of cores)
    func_dumps : function
        Function to use for function serialization
        (defaults to cloudpickle.dumps)
    func_loads : function
        Function to use for function deserialization
        (defaults to cloudpickle.loads)
    optimize_graph : bool
        If True [default], `fuse` is applied to the graph before computation.
    """
    pool = _globals['pool']
    if pool is None:
        pool = multiprocessing.Pool(num_workers,
                                    initializer=initialize_worker_process)
        cleanup = True
    else:
        cleanup = False

    # Optimize Dask
    dsk2, dependencies = cull(dsk, keys)
    if optimize_graph:
        dsk3, dependencies = fuse(dsk2, keys, dependencies)
    else:
        dsk3 = dsk2

    # We specify marshalling functions in order to catch serialization
    # errors and report them to the user.
    loads = func_loads or _globals.get('func_loads') or _loads
    dumps = func_dumps or _globals.get('func_dumps') or _dumps

    # Note former versions used a multiprocessing Manager to share
    # a Queue between parent and workers, but this is fragile on Windows
    # (issue #1652).
    try:
        # Run
        result = get_async(pool.apply_async, len(pool._pool), dsk3, keys,
                           get_id=_process_get_id, dumps=dumps, loads=loads,
                           pack_exception=pack_exception,
                           raise_exception=reraise, **kwargs)
    finally:
        if cleanup:
            pool.close()
    return result


def initialize_worker_process():
    """
    Initialize a worker process before running any tasks in it.
    """
    # If Numpy is already imported, presumably its random state was
    # inherited from the parent => re-seed it.
    np = sys.modules.get('numpy')
    if np is not None:
        np.random.seed()