This file is indexed.

/usr/lib/python3/dist-packages/dask/base.py is in python3-dask 0.16.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from __future__ import absolute_import, division, print_function

from abc import ABCMeta
from collections import OrderedDict, Iterator
from functools import partial
from hashlib import md5
import inspect
import pickle
import os
import threading
import uuid
import warnings

from toolz import merge, groupby, curry, identity
from toolz.functoolz import Compose

from .compatibility import long, unicode
from .context import _globals, thread_state
from .core import flatten
from .hashing import hash_buffer_hex
from .utils import Dispatch, ensure_dict


__all__ = ("DaskMethodsMixin",
           "is_dask_collection",
           "compute", "persist", "visualize",
           "tokenize", "normalize_token")


def is_dask_collection(x):
    """Returns ``True`` if ``x`` is a dask collection"""
    try:
        return x.__dask_graph__() is not None
    except (AttributeError, TypeError):
        return False


class DaskMethodsMixin(object):
    """A mixin adding standard dask collection methods"""
    __slots__ = ()

    def visualize(self, filename='mydask', format=None, optimize_graph=False,
                  **kwargs):
        """Render the computation of this object's task graph using graphviz.

        Requires ``graphviz`` to be installed.

        Parameters
        ----------
        filename : str or None, optional
            The name (without an extension) of the file to write to disk.  If
            `filename` is None, no file will be written, and we communicate
            with dot using only pipes.
        format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional
            Format in which to write output file.  Default is 'png'.
        optimize_graph : bool, optional
            If True, the graph is optimized before rendering.  Otherwise,
            the graph is displayed as is. Default is False.
        **kwargs
           Additional keyword arguments to forward to ``to_graphviz``.

        Returns
        -------
        result : IPython.diplay.Image, IPython.display.SVG, or None
            See dask.dot.dot_graph for more information.

        See Also
        --------
        dask.base.visualize
        dask.dot.dot_graph

        Notes
        -----
        For more information on optimization see here:

        http://dask.pydata.org/en/latest/optimize.html
        """
        return visualize(self, filename=filename, format=format,
                         optimize_graph=optimize_graph, **kwargs)

    def persist(self, **kwargs):
        """Persist this dask collection into memory

        This turns a lazy Dask collection into a Dask collection with the same
        metadata, but now with the results fully computed or actively computing
        in the background.

        Parameters
        ----------
        get : callable, optional
            A scheduler ``get`` function to use. If not provided, the default
            is to check the global settings first, and then fall back to
            the collection defaults.
        optimize_graph : bool, optional
            If True [default], the graph is optimized before computation.
            Otherwise the graph is run as is. This can be useful for debugging.
        **kwargs
            Extra keywords to forward to the scheduler ``get`` function.

        Returns
        -------
        New dask collections backed by in-memory data

        See Also
        --------
        dask.base.persist
        """
        (result,) = persist(self, **kwargs)
        return result

    def compute(self, **kwargs):
        """Compute this dask collection

        This turns a lazy Dask collection into its in-memory equivalent.
        For example a Dask.array turns into a NumPy array and a Dask.dataframe
        turns into a Pandas dataframe.  The entire dataset must fit into memory
        before calling this operation.

        Parameters
        ----------
        get : callable, optional
            A scheduler ``get`` function to use. If not provided, the default
            is to check the global settings first, and then fall back to
            the collection defaults.
        optimize_graph : bool, optional
            If True [default], the graph is optimized before computation.
            Otherwise the graph is run as is. This can be useful for debugging.
        kwargs
            Extra keywords to forward to the scheduler ``get`` function.

        See Also
        --------
        dask.base.compute
        """
        (result,) = compute(self, traverse=False, **kwargs)
        return result


def call_finalize(finalize, args, results):
    return finalize(results, *args)


def add_ABCMeta(cls):
    """Use the metaclass ABCMeta for this class"""
    return ABCMeta(cls.__name__, cls.__bases__, cls.__dict__.copy())


# TODO: this class is deprecated and should be removed in a future release.
@add_ABCMeta
class Base(DaskMethodsMixin):
    """DEPRECATED. The recommended way to create a custom dask object now is to
    implement the dask collection interface (see the docs), and optionally
    subclass from ``DaskMethodsMixin`` if desired.

    See http://dask.pydata.org/en/latest/custom-collections.html for more
    information"""
    __slots__ = ()

    @classmethod
    def __subclasshook__(cls, other):
        if cls is Base:
            warnings.warn("DeprecationWarning: `dask.base.Base` is deprecated. "
                          "To check if an object is a dask collection use "
                          "dask.base.is_dask_collection.\n\nSee http://dask."
                          "pydata.org/en/latest/custom-collections.html "
                          " for more information")
        return NotImplemented

    def __dask_graph__(self):
        # We issue a deprecation warning for the whole class here, as any
        # non-instance check usage will end up calling `__dask_graph__`.
        warnings.warn("DeprecationWarning: `dask.base.Base` is deprecated. "
                      "To create a custom dask object implement the dask "
                      "collection interface, and optionally subclass from "
                      "``DaskMethodsMixin`` if desired.\n\nSee http://dask."
                      "pydata.org/en/latest/custom-collections.html "
                      " for more information")
        return self.dask

    def _keys(self):
        warnings.warn("DeprecationWarning: the `_keys` method is deprecated, "
                      "use `__dask_keys__` instead")
        return self.__dask_keys__()

    @property
    def _finalize(self):
        warnings.warn("DeprecationWarning: the `_finalize` method is "
                      "deprecated, use `__dask_postcompute__` instead")
        f, args = self.__dask_postcompute__()
        return partial(call_finalize, f, args) if args else f

    @classmethod
    def _optimize(cls, *args, **kwargs):
        warnings.warn("DeprecationWarning: the `_optimize` method is "
                      "deprecated, use `__dask_optimize__` instead")
        return cls.__dask_optimize__(*args, **kwargs)

    @classmethod
    def _get(cls, dsk, keys, **kwargs):
        warnings.warn("DeprecationWarning: the `_get` method is "
                      "deprecated, use ``dask.base.compute_as_if_collection`` "
                      "instead")
        return compute_as_if_collection(cls, dsk, keys, **kwargs)


def compute_as_if_collection(cls, dsk, keys, get=None, **kwargs):
    """Compute a graph as if it were of type cls.

    Allows for applying the same optimizations and default scheduler."""
    get = get or _globals['get'] or cls.__dask_scheduler__
    dsk2 = optimization_function(cls)(ensure_dict(dsk), keys, **kwargs)
    return get(dsk2, keys, **kwargs)


def dont_optimize(dsk, keys, **kwargs):
    return dsk


def optimization_function(x):
    return getattr(x, '__dask_optimize__', dont_optimize)


def collections_to_dsk(collections, optimize_graph=True, **kwargs):
    """
    Convert many collections into a single dask graph, after optimization
    """
    optimizations = (kwargs.pop('optimizations', None) or
                     _globals.get('optimizations', []))

    if optimize_graph:
        groups = groupby(optimization_function, collections)
        groups = {opt: _extract_graph_and_keys(val)
                  for opt, val in groups.items()}

        for opt in optimizations:
            groups = {k: (opt(dsk, keys), keys)
                      for k, (dsk, keys) in groups.items()}

        dsk = merge(*(opt(dsk, keys, **kwargs)
                      for opt, (dsk, keys) in groups.items()))
    else:
        dsk, _ = _extract_graph_and_keys(collections)

    return dsk


def _extract_graph_and_keys(vals):
    """Given a list of dask vals, return a single graph and a list of keys such
    that ``get(dsk, keys)`` is equivalent to ``[v.compute() v in vals]``."""
    dsk = {}
    keys = []
    for v in vals:
        d = v.__dask_graph__()
        if hasattr(d, 'dicts'):
            for dd in d.dicts.values():
                dsk.update(dd)
        else:
            dsk.update(d)
        keys.append(v.__dask_keys__())

    return dsk, keys


def compute(*args, **kwargs):
    """Compute several dask collections at once.

    Parameters
    ----------
    args : object
        Any number of objects. If it is a dask object, it's computed and the
        result is returned. By default, python builtin collections are also
        traversed to look for dask objects (for more information see the
        ``traverse`` keyword). Non-dask arguments are passed through unchanged.
    traverse : bool, optional
        By default dask traverses builtin python collections looking for dask
        objects passed to ``compute``. For large collections this can be
        expensive. If none of the arguments contain any dask objects, set
        ``traverse=False`` to avoid doing this traversal.
    get : callable, optional
        A scheduler ``get`` function to use. If not provided, the default is
        to check the global settings first, and then fall back to defaults for
        the collections.
    optimize_graph : bool, optional
        If True [default], the optimizations for each collection are applied
        before computation. Otherwise the graph is run as is. This can be
        useful for debugging.
    kwargs
        Extra keywords to forward to the scheduler ``get`` function.

    Examples
    --------
    >>> import dask.array as da
    >>> a = da.arange(10, chunks=2).sum()
    >>> b = da.arange(10, chunks=2).mean()
    >>> compute(a, b)
    (45, 4.5)

    By default, dask objects inside python collections will also be computed:

    >>> compute({'a': a, 'b': b, 'c': 1})  # doctest: +SKIP
    ({'a': 45, 'b': 4.5, 'c': 1},)
    """
    from dask.delayed import delayed
    traverse = kwargs.pop('traverse', True)
    if traverse:
        args = tuple(delayed(a)
                     if isinstance(a, (list, set, tuple, dict, Iterator))
                     else a for a in args)

    optimize_graph = kwargs.pop('optimize_graph', True)
    variables = [a for a in args if is_dask_collection(a)]
    if not variables:
        return args

    get = kwargs.pop('get', None) or _globals['get']

    if get is None and getattr(thread_state, 'key', False):
        from distributed.worker import get_worker
        get = get_worker().client.get

    if not get:
        get = variables[0].__dask_scheduler__
        if not all(a.__dask_scheduler__ == get for a in variables):
            raise ValueError("Compute called on multiple collections with "
                             "differing default schedulers. Please specify a "
                             "scheduler `get` function using either "
                             "the `get` kwarg or globally with `set_options`.")

    dsk = collections_to_dsk(variables, optimize_graph, **kwargs)
    keys = [var.__dask_keys__() for var in variables]
    postcomputes = [a.__dask_postcompute__() if is_dask_collection(a)
                    else (None, a) for a in args]
    results = get(dsk, keys, **kwargs)
    results_iter = iter(results)
    return tuple(a if f is None else f(next(results_iter), *a)
                 for f, a in postcomputes)


def visualize(*args, **kwargs):
    """
    Visualize several dask graphs at once.

    Requires ``graphviz`` to be installed. All options that are not the dask
    graph(s) should be passed as keyword arguments.

    Parameters
    ----------
    dsk : dict(s) or collection(s)
        The dask graph(s) to visualize.
    filename : str or None, optional
        The name (without an extension) of the file to write to disk.  If
        `filename` is None, no file will be written, and we communicate
        with dot using only pipes.
    format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional
        Format in which to write output file.  Default is 'png'.
    optimize_graph : bool, optional
        If True, the graph is optimized before rendering.  Otherwise,
        the graph is displayed as is. Default is False.
    **kwargs
       Additional keyword arguments to forward to ``to_graphviz``.

    Returns
    -------
    result : IPython.diplay.Image, IPython.display.SVG, or None
        See dask.dot.dot_graph for more information.

    See Also
    --------
    dask.dot.dot_graph

    Notes
    -----
    For more information on optimization see here:

    http://dask.pydata.org/en/latest/optimize.html
    """
    from dask.dot import dot_graph

    filename = kwargs.pop('filename', 'mydask')
    optimize_graph = kwargs.pop('optimize_graph', False)

    dsks = [arg for arg in args if isinstance(arg, dict)]
    args = [arg for arg in args if is_dask_collection(arg)]

    dsk = collections_to_dsk(args, optimize_graph=optimize_graph)
    for d in dsks:
        dsk.update(d)

    return dot_graph(dsk, filename=filename, **kwargs)


def persist(*args, **kwargs):
    """ Persist multiple Dask collections into memory

    This turns lazy Dask collections into Dask collections with the same
    metadata, but now with their results fully computed or actively computing
    in the background.

    For example a lazy dask.array built up from many lazy calls will now be a
    dask.array of the same shape, dtype, chunks, etc., but now with all of
    those previously lazy tasks either computed in memory as many small NumPy
    arrays (in the single-machine case) or asynchronously running in the
    background on a cluster (in the distributed case).

    This function operates differently if a ``dask.distributed.Client`` exists
    and is connected to a distributed scheduler.  In this case this function
    will return as soon as the task graph has been submitted to the cluster,
    but before the computations have completed.  Computations will continue
    asynchronously in the background.  When using this function with the single
    machine scheduler it blocks until the computations have finished.

    When using Dask on a single machine you should ensure that the dataset fits
    entirely within memory.

    Examples
    --------
    >>> df = dd.read_csv('/path/to/*.csv')  # doctest: +SKIP
    >>> df = df[df.name == 'Alice']  # doctest: +SKIP
    >>> df['in-debt'] = df.balance < 0  # doctest: +SKIP
    >>> df = df.persist()  # triggers computation  # doctest: +SKIP

    >>> df.value().min()  # future computations are now fast  # doctest: +SKIP
    -10
    >>> df.value().max()  # doctest: +SKIP
    100

    >>> from dask import persist  # use persist function on multiple collections
    >>> a, b = persist(a, b)  # doctest: +SKIP

    Parameters
    ----------
    *args: Dask collections
    get : callable, optional
        A scheduler ``get`` function to use. If not provided, the default
        is to check the global settings first, and then fall back to
        the collection defaults.
    optimize_graph : bool, optional
        If True [default], the graph is optimized before computation.
        Otherwise the graph is run as is. This can be useful for debugging.
    **kwargs
        Extra keywords to forward to the scheduler ``get`` function.

    Returns
    -------
    New dask collections backed by in-memory data
    """
    collections = [a for a in args if is_dask_collection(a)]
    if not collections:
        return args

    get = kwargs.pop('get', None) or _globals['get']

    if get is None and getattr(thread_state, 'key', False):
        from distributed.worker import get_worker
        get = get_worker().client.get

    if inspect.ismethod(get):
        try:
            from distributed.client import default_client
        except ImportError:
            pass
        else:
            try:
                client = default_client()
            except ValueError:
                pass
            else:
                if client.get == _globals['get']:
                    collections = client.persist(collections, **kwargs)
                    if isinstance(collections, list):  # distributed is inconsistent here
                        collections = tuple(collections)
                    else:
                        collections = (collections,)
                    results_iter = iter(collections)
                    return tuple(a if not is_dask_collection(a)
                                 else next(results_iter)
                                 for a in args)

    optimize_graph = kwargs.pop('optimize_graph', True)

    if not get:
        get = collections[0].__dask_scheduler__
        if not all(a.__dask_scheduler__ == get for a in collections):
            raise ValueError("Compute called on multiple collections with "
                             "differing default schedulers. Please specify a "
                             "scheduler `get` function using either "
                             "the `get` kwarg or globally with `set_options`.")

    dsk = collections_to_dsk(collections, optimize_graph, **kwargs)

    keys, postpersists = [], []
    for a in args:
        if is_dask_collection(a):
            a_keys = list(flatten(a.__dask_keys__()))
            rebuild, state = a.__dask_postpersist__()
            keys.extend(a_keys)
            postpersists.append((rebuild, a_keys, state))
        else:
            postpersists.append((None, None, a))

    results = get(dsk, keys, **kwargs)
    d = dict(zip(keys, results))
    return tuple(s if r is None else r({k: d[k] for k in ks}, *s)
                 for r, ks, s in postpersists)


############
# Tokenize #
############

def tokenize(*args, **kwargs):
    """ Deterministic token

    >>> tokenize([1, 2, '3'])
    '7d6a880cd9ec03506eee6973ff551339'

    >>> tokenize('Hello') == tokenize('Hello')
    True
    """
    if kwargs:
        args = args + (kwargs,)
    return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest()


normalize_token = Dispatch()
normalize_token.register((int, long, float, str, unicode, bytes, type(None),
                          type, slice, complex, type(Ellipsis)),
                         identity)


@normalize_token.register(dict)
def normalize_dict(d):
    return normalize_token(sorted(d.items(), key=str))


@normalize_token.register(OrderedDict)
def normalize_ordered_dict(d):
    return type(d).__name__, normalize_token(list(d.items()))


@normalize_token.register(set)
def normalize_set(s):
    return normalize_token(sorted(s, key=str))


@normalize_token.register((tuple, list))
def normalize_seq(seq):
    return type(seq).__name__, list(map(normalize_token, seq))


@normalize_token.register(object)
def normalize_object(o):
    method = getattr(o, '__dask_tokenize__', None)
    if method is not None:
        return method()
    return normalize_function(o) if callable(o) else uuid.uuid4().hex


function_cache = {}
function_cache_lock = threading.Lock()


def normalize_function(func):
    try:
        return function_cache[func]
    except KeyError:
        result = _normalize_function(func)
        if len(function_cache) >= 500:  # clear half of cache if full
            with function_cache_lock:
                if len(function_cache) >= 500:
                    for k in list(function_cache)[::2]:
                        del function_cache[k]
        function_cache[func] = result
        return result
    except TypeError:  # not hashable
        return _normalize_function(func)


def _normalize_function(func):
    if isinstance(func, curry):
        func = func._partial
    if isinstance(func, Compose):
        first = getattr(func, 'first', None)
        funcs = reversed((first,) + func.funcs) if first else func.funcs
        return tuple(normalize_function(f) for f in funcs)
    elif isinstance(func, partial):
        kws = tuple(sorted(func.keywords.items())) if func.keywords else ()
        return (normalize_function(func.func), func.args, kws)
    else:
        try:
            result = pickle.dumps(func, protocol=0)
            if b'__main__' not in result:  # abort on dynamic functions
                return result
        except Exception:
            pass
        try:
            import cloudpickle
            return cloudpickle.dumps(func, protocol=0)
        except Exception:
            return str(func)


@normalize_token.register_lazy("pandas")
def register_pandas():
    import pandas as pd

    @normalize_token.register(pd.Index)
    def normalize_index(ind):
        return [ind.name, normalize_token(ind.values)]

    @normalize_token.register(pd.Categorical)
    def normalize_categorical(cat):
        return [normalize_token(cat.codes),
                normalize_token(cat.categories),
                cat.ordered]

    @normalize_token.register(pd.Series)
    def normalize_series(s):
        return [s.name, s.dtype,
                normalize_token(s._data.blocks[0].values),
                normalize_token(s.index)]

    @normalize_token.register(pd.DataFrame)
    def normalize_dataframe(df):
        data = [block.values for block in df._data.blocks]
        data += [df.columns, df.index]
        return list(map(normalize_token, data))


@normalize_token.register_lazy("numpy")
def register_numpy():
    import numpy as np

    @normalize_token.register(np.ndarray)
    def normalize_array(x):
        if not x.shape:
            return (str(x), x.dtype)
        if hasattr(x, 'mode') and getattr(x, 'filename', None):
            if hasattr(x.base, 'ctypes'):
                offset = (x.ctypes.get_as_parameter().value -
                          x.base.ctypes.get_as_parameter().value)
            else:
                offset = 0  # root memmap's have mmap object as base
            return (x.filename, os.path.getmtime(x.filename), x.dtype,
                    x.shape, x.strides, offset)
        if x.dtype.hasobject:
            try:
                data = hash_buffer_hex('-'.join(x.flat).encode('utf-8'))
            except TypeError:
                data = hash_buffer_hex(b'-'.join([unicode(item).encode('utf-8') for item in
                                                  x.flat]))
        else:
            try:
                data = hash_buffer_hex(x.ravel(order='K').view('i1'))
            except (BufferError, AttributeError, ValueError):
                data = hash_buffer_hex(x.copy().ravel(order='K').view('i1'))
        return (data, x.dtype, x.shape, x.strides)

    normalize_token.register(np.dtype, repr)
    normalize_token.register(np.generic, repr)

    @normalize_token.register(np.ufunc)
    def normalize_ufunc(x):
        try:
            name = x.__name__
            if getattr(np, name) is x:
                return 'np.' + name
        except AttributeError:
            return normalize_function(x)