/usr/lib/python3/dist-packages/ccdproc/ccddata.py is in python3-ccdproc 1.3.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
"""This module implements the base CCDData class."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import copy
import numbers
import weakref
from collections import OrderedDict
import numpy as np
from astropy.nddata import (NDDataArray, StdDevUncertainty, NDUncertainty,
MissingDataAssociationException)
from astropy.io import fits, registry
from astropy import units as u
from astropy import log
from astropy.utils import minversion
from astropy.wcs import WCS
_ASTROPY_LT_1_2 = not minversion("astropy", "1.2")
_ASTROPY_LT_1_3 = not minversion("astropy", "1.3")
_ASTROPY_GT_2_0 = minversion("astropy", "2.0")
# FIXME: Remove the content of the following "if" as soon as astropy 1.1 isn't
# supported anymore. This is just a temporary workaround to fix the memory leak
# described in https://github.com/astropy/astropy/issues/4825
if _ASTROPY_LT_1_2:
class ParentNDDataDescriptor(object):
def __get__(self, obj, objtype=None):
message = "uncertainty is not associated with an NDData object."
try:
if obj._parent_nddata is None:
raise MissingDataAssociationException(message)
else:
# The NDData is saved as weak reference so we must call it
# to get the object the reference points to.
if isinstance(obj._parent_nddata, weakref.ref):
return obj._parent_nddata()
log.info("parent_nddata should be a weakref to an "
"NDData object.")
return obj._parent_nddata
except AttributeError:
raise MissingDataAssociationException(message)
def __set__(self, obj, value):
if value is not None and not isinstance(value, weakref.ref):
# Save a weak reference on the uncertainty that points to this
# instance of NDData. Direct references should NOT be used:
# https://github.com/astropy/astropy/pull/4799#discussion_r61236832
value = weakref.ref(value)
obj._parent_nddata = value
# Use the descriptor as parent_nddata property. This only affects
# instances created after importing this module.
StdDevUncertainty.parent_nddata = ParentNDDataDescriptor()
__all__ = ['CCDData', 'fits_ccddata_reader', 'fits_ccddata_writer']
# Global value which can turn on/off the unit requirements when creating a
# CCDData. Should be used with care because several functions actually break
# if the unit is None!
_config_ccd_requires_unit = True
if not _ASTROPY_LT_1_2:
from astropy.utils.decorators import sharedmethod
def _arithmetic(op):
"""Decorator factory which temporarly disables the need for a unit when
creating a new CCDData instance. The final result must have a unit.
Parameters
----------
op : function
The function to apply. Supported are:
- ``np.add``
- ``np.subtract``
- ``np.multiply``
- ``np.true_divide``
Notes
-----
Should only be used on CCDData ``add``, ``subtract``, ``divide`` or
``multiply`` because only these methods from NDArithmeticMixin are
overwritten.
"""
def decorator(func):
def inner(self, operand, operand2=None, **kwargs):
global _config_ccd_requires_unit
_config_ccd_requires_unit = False
result = self._prepare_then_do_arithmetic(op, operand,
operand2, **kwargs)
# Wrap it again as CCDData so it checks the final unit.
_config_ccd_requires_unit = True
return result.__class__(result)
inner.__doc__ = ("See `astropy.nddata.NDArithmeticMixin.{}`."
"".format(func.__name__))
return sharedmethod(inner)
return decorator
class CCDData(NDDataArray):
"""A class describing basic CCD data.
The CCDData class is based on the NDData object and includes a data array,
uncertainty frame, mask frame, meta data, units, and WCS information for a
single CCD image.
Parameters
-----------
data : `~ccdproc.CCDData`-like or `numpy.ndarray`-like
The actual data contained in this `~ccdproc.CCDData` object.
Note that the data will always be saved by *reference*, so you should
make a copy of the ``data`` before passing it in if that's the desired
behavior.
uncertainty : `~astropy.nddata.StdDevUncertainty`, `numpy.ndarray` or \
None, optional
Uncertainties on the data.
Default is ``None``.
mask : `numpy.ndarray` or None, optional
Mask for the data, given as a boolean Numpy array with a shape
matching that of the data. The values must be `False` where
the data is *valid* and `True` when it is not (like Numpy
masked arrays). If ``data`` is a numpy masked array, providing
``mask`` here will causes the mask from the masked array to be
ignored.
Default is ``None``.
flags : `numpy.ndarray` or `~astropy.nddata.FlagCollection` or None, \
optional
Flags giving information about each pixel. These can be specified
either as a Numpy array of any type with a shape matching that of the
data, or as a `~astropy.nddata.FlagCollection` instance which has a
shape matching that of the data.
Default is ``None``.
wcs : `~astropy.wcs.WCS` or None, optional
WCS-object containing the world coordinate system for the data.
Default is ``None``.
meta : dict-like object or None, optional
Metadata for this object. "Metadata" here means all information that
is included with this object but not part of any other attribute
of this particular object, e.g. creation date, unique identifier,
simulation parameters, exposure time, telescope name, etc.
unit : `~astropy.units.Unit` or str, optional
The units of the data.
Default is ``None``.
.. warning::
If the unit is ``None`` or not otherwise specified it will raise a
``ValueError``
Raises
------
ValueError
If the ``uncertainty`` or ``mask`` inputs cannot be broadcast (e.g.,
match shape) onto ``data``.
Methods
-------
read(\\*args, \\**kwargs)
``Classmethod`` to create an CCDData instance based on a ``FITS`` file.
This method uses :func:`fits_ccddata_reader` with the provided
parameters.
write(\\*args, \\**kwargs)
Writes the contents of the CCDData instance into a new ``FITS`` file.
This method uses :func:`fits_ccddata_writer` with the provided
parameters.
Notes
-----
`~ccdproc.CCDData` objects can be easily converted to a regular
Numpy array using `numpy.asarray`.
For example::
>>> from ccdproc import CCDData
>>> import numpy as np
>>> x = CCDData([1,2,3], unit='adu')
>>> np.asarray(x)
array([1, 2, 3])
This is useful, for example, when plotting a 2D image using
matplotlib.
>>> from ccdproc import CCDData
>>> from matplotlib import pyplot as plt # doctest: +SKIP
>>> x = CCDData([[1,2,3], [4,5,6]], unit='adu')
>>> plt.imshow(x) # doctest: +SKIP
"""
def __init__(self, *args, **kwd):
if 'meta' not in kwd:
kwd['meta'] = kwd.pop('header', None)
if 'header' in kwd:
raise ValueError("can't have both header and meta.")
super(CCDData, self).__init__(*args, **kwd)
# Check if a unit is set. This can be temporarly disabled by the
# _CCDDataUnit contextmanager.
if _config_ccd_requires_unit and self.unit is None:
raise ValueError("a unit for CCDData must be specified.")
@property
def data(self):
return self._data
@data.setter
def data(self, value):
self._data = value
@property
def wcs(self):
return self._wcs
@wcs.setter
def wcs(self, value):
self._wcs = value
@property
def unit(self):
return self._unit
@unit.setter
def unit(self, value):
self._unit = u.Unit(value)
@property
def header(self):
return self._meta
@header.setter
def header(self, value):
self.meta = value
@property
def meta(self):
return self._meta
@meta.setter
def meta(self, value):
if value is None:
self._meta = OrderedDict()
else:
if hasattr(value, 'keys'):
self._meta = value
else:
raise TypeError(
'the meta attribute of CCDData must be dict-like.')
@property
def uncertainty(self):
return self._uncertainty
@uncertainty.setter
def uncertainty(self, value):
if value is not None:
if isinstance(value, NDUncertainty):
if getattr(value, '_parent_nddata', None) is not None:
value = value.__class__(value, copy=False)
self._uncertainty = value
elif isinstance(value, np.ndarray):
if value.shape != self.shape:
raise ValueError("uncertainty must have same shape as "
"data.")
self._uncertainty = StdDevUncertainty(value)
log.info("array provided for uncertainty; assuming it is a "
"StdDevUncertainty.")
else:
raise TypeError("uncertainty must be an instance of a "
"NDUncertainty object or a numpy array.")
self._uncertainty.parent_nddata = self
else:
self._uncertainty = value
def to_hdu(self, hdu_mask='MASK', hdu_uncertainty='UNCERT',
hdu_flags=None, wcs_relax=True):
"""Creates an HDUList object from a CCDData object.
Parameters
----------
hdu_mask, hdu_uncertainty, hdu_flags : str or None, optional
If it is a string append this attribute to the HDUList as
`~astropy.io.fits.ImageHDU` with the string as extension name.
Flags are not supported at this time. If ``None`` this attribute
is not appended.
Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty and
``None`` for flags.
wcs_relax : bool
Value of the ``relax`` parameter to use in converting the WCS to a
FITS header using `~astropy.wcs.WCS.to_header`. The common
``CTYPE`` ``RA---TAN-SIP`` and ``DEC--TAN-SIP`` requires
``relax=True`` for the ``-SIP`` part of the ``CTYPE`` to be
preserved.
Raises
-------
ValueError
- If ``self.mask`` is set but not a `numpy.ndarray`.
- If ``self.uncertainty`` is set but not a
`~astropy.nddata.StdDevUncertainty`.
- If ``self.uncertainty`` is set but has another unit then
``self.data``.
NotImplementedError
Saving flags is not supported.
Returns
-------
hdulist : `~astropy.io.fits.HDUList`
"""
if isinstance(self.header, fits.Header):
# Copy here so that we can modify the HDU header by adding WCS
# information without changing the header of the CCDData object.
header = self.header.copy()
else:
# Because _insert_in_metadata_fits_safe is written as a method
# we need to create a dummy CCDData instance to hold the FITS
# header we are constructing. This probably indicates that
# _insert_in_metadata_fits_safe should be rewritten in a more
# sensible way...
dummy_ccd = CCDData([1], meta=fits.Header(), unit="adu")
for k, v in self.header.items():
dummy_ccd._insert_in_metadata_fits_safe(k, v)
header = dummy_ccd.header
if self.unit is not u.dimensionless_unscaled:
header['bunit'] = self.unit.to_string()
if self.wcs:
# Simply extending the FITS header with the WCS can lead to
# duplicates of the WCS keywords; iterating over the WCS
# header should be safer.
#
# Turns out if I had read the io.fits.Header.extend docs more
# carefully, I would have realized that the keywords exist to
# avoid duplicates and preserve, as much as possible, the
# structure of the commentary cards.
#
# Note that until astropy/astropy#3967 is closed, the extend
# will fail if there are comment cards in the WCS header but
# not header.
wcs_header = self.wcs.to_header(relax=wcs_relax)
header.extend(wcs_header, useblanks=False, update=True)
hdus = [fits.PrimaryHDU(self.data, header)]
if hdu_mask and self.mask is not None:
# Always assuming that the mask is a np.ndarray (check that it has
# a 'shape').
if not hasattr(self.mask, 'shape'):
raise ValueError('only a numpy.ndarray mask can be saved.')
# Convert boolean mask to uint since io.fits cannot handle bool.
hduMask = fits.ImageHDU(self.mask.astype(np.uint8), name=hdu_mask)
hdus.append(hduMask)
if hdu_uncertainty and self.uncertainty is not None:
# We need to save some kind of information which uncertainty was
# used so that loading the HDUList can infer the uncertainty type.
# No idea how this can be done so only allow StdDevUncertainty.
if self.uncertainty.__class__.__name__ != 'StdDevUncertainty':
raise ValueError('only StdDevUncertainty can be saved.')
# Assuming uncertainty is an StdDevUncertainty save just the array
# this might be problematic if the Uncertainty has a unit differing
# from the data so abort for different units. This is important for
# astropy > 1.2
if (hasattr(self.uncertainty, 'unit') and
self.uncertainty.unit is not None and
self.uncertainty.unit != self.unit):
raise ValueError('saving uncertainties with a unit differing'
'from the data unit is not supported.')
hduUncert = fits.ImageHDU(self.uncertainty.array,
name=hdu_uncertainty)
hdus.append(hduUncert)
if hdu_flags and self.flags:
raise NotImplementedError('adding the flags to a HDU is not '
'supported at this time.')
hdulist = fits.HDUList(hdus)
return hdulist
def copy(self):
"""
Return a copy of the CCDData object.
"""
try:
return self.__class__(self, copy=True)
except TypeError:
new = self.__class__(copy.deepcopy(self))
return new
def _ccddata_arithmetic(self, other, operation, scale_uncertainty=False):
"""
Perform the common parts of arithmetic operations on CCDData objects.
This should only be called when ``other`` is a Quantity or a number.
"""
# THE "1 *" IS NECESSARY to get the right result, at least in
# astropy-0.4dev. Using the np.multiply, etc, methods with a Unit
# and a Quantity is currently broken, but it works with two Quantity
# arguments.
if isinstance(other, u.Quantity):
if (operation.__name__ in ['add', 'subtract'] and
self.unit != other.unit):
# For addition and subtraction we need to convert the unit
# to the same unit otherwise operating on the values alone will
# give wrong results (#291)
other_value = other.to(self.unit).value
else:
other_value = other.value
elif isinstance(other, numbers.Number):
other_value = other
else:
raise TypeError("cannot do arithmetic with type '{0}' "
"and 'CCDData'".format(type(other)))
result_unit = operation(1 * self.unit, other).unit
result_data = operation(self.data, other_value)
if self.uncertainty:
result_uncertainty = self.uncertainty.array
if scale_uncertainty:
result_uncertainty = operation(result_uncertainty, other_value)
result_uncertainty = StdDevUncertainty(result_uncertainty)
else:
result_uncertainty = None
new_mask = copy.deepcopy(self.mask)
new_meta = copy.deepcopy(self.meta)
new_wcs = copy.deepcopy(self.wcs)
result = CCDData(result_data, unit=result_unit, mask=new_mask,
uncertainty=result_uncertainty,
meta=new_meta, wcs=new_wcs)
return result
def multiply(self, other, compare_wcs='first_found'):
if isinstance(other, CCDData):
if compare_wcs is None or compare_wcs == 'first_found':
tmp_wcs_1, tmp_wcs_2 = self.wcs, other.wcs
self.wcs, other.wcs = None, None
# Determine the WCS of the result
if compare_wcs is None:
result_wcs = None
else:
result_wcs = tmp_wcs_1 if tmp_wcs_1 else tmp_wcs_2
result = super(CCDData, self).multiply(other)
result.wcs = result_wcs
self.wcs, other.wcs = tmp_wcs_1, tmp_wcs_2
return result
else:
if hasattr(self, '_arithmetics_wcs'):
return super(CCDData, self).multiply(
other, compare_wcs=compare_wcs)
else:
raise ImportError("wcs_compare functionality requires "
"astropy 1.2 or greater.")
return self._ccddata_arithmetic(other, np.multiply,
scale_uncertainty=True)
def divide(self, other, compare_wcs='first_found'):
if isinstance(other, CCDData):
if compare_wcs is None or compare_wcs == 'first_found':
tmp_wcs_1, tmp_wcs_2 = self.wcs, other.wcs
self.wcs, other.wcs = None, None
# Determine the WCS of the result
if compare_wcs is None:
result_wcs = None
else:
result_wcs = tmp_wcs_1 if tmp_wcs_1 else tmp_wcs_2
result = super(CCDData, self).divide(other)
result.wcs = result_wcs
self.wcs, other.wcs = tmp_wcs_1, tmp_wcs_2
return result
else:
if hasattr(self, '_arithmetics_wcs'):
return super(CCDData, self).divide(
other, compare_wcs=compare_wcs)
else:
raise ImportError("wcs_compare functionality requires "
"astropy 1.2 or greater.")
return self._ccddata_arithmetic(other, np.divide,
scale_uncertainty=True)
def add(self, other, compare_wcs='first_found'):
if isinstance(other, CCDData):
if compare_wcs is None or compare_wcs == 'first_found':
tmp_wcs_1, tmp_wcs_2 = self.wcs, other.wcs
self.wcs, other.wcs = None, None
# Determine the WCS of the result
if compare_wcs is None:
result_wcs = None
else:
result_wcs = tmp_wcs_1 if tmp_wcs_1 else tmp_wcs_2
result = super(CCDData, self).add(other)
result.wcs = result_wcs
self.wcs, other.wcs = tmp_wcs_1, tmp_wcs_2
return result
else:
if hasattr(self, '_arithmetics_wcs'):
return super(CCDData, self).add(
other, compare_wcs=compare_wcs)
else:
raise ImportError("wcs_compare functionality requires "
"astropy 1.2 or greater.")
return self._ccddata_arithmetic(other, np.add,
scale_uncertainty=False)
def subtract(self, other, compare_wcs='first_found'):
if isinstance(other, CCDData):
if compare_wcs is None or compare_wcs == 'first_found':
tmp_wcs_1, tmp_wcs_2 = self.wcs, other.wcs
self.wcs, other.wcs = None, None
# Determine the WCS of the result
if compare_wcs is None:
result_wcs = None
else:
result_wcs = tmp_wcs_1 if tmp_wcs_1 else tmp_wcs_2
result = super(CCDData, self).subtract(other)
result.wcs = result_wcs
self.wcs, other.wcs = tmp_wcs_1, tmp_wcs_2
return result
else:
if hasattr(self, '_arithmetics_wcs'):
return super(CCDData, self).subtract(
other, compare_wcs=compare_wcs)
else:
raise ImportError("wcs_compare functionality requires "
"astropy 1.2 or greater.")
return self._ccddata_arithmetic(other, np.subtract,
scale_uncertainty=False)
# Use NDDataArithmetic methods if astropy version is 1.2 or greater
if not _ASTROPY_LT_1_2:
del add, subtract, divide, multiply, _ccddata_arithmetic
add = _arithmetic(np.add)(NDDataArray.add)
subtract = _arithmetic(np.subtract)(NDDataArray.subtract)
multiply = _arithmetic(np.multiply)(NDDataArray.multiply)
divide = _arithmetic(np.true_divide)(NDDataArray.divide)
def _insert_in_metadata_fits_safe(self, key, value):
"""
Insert key/value pair into metadata in a way that FITS can serialize.
Parameters
----------
key : str
Key to be inserted in dictionary.
value : str or None
Value to be inserted.
Notes
-----
This addresses a shortcoming of the FITS standard. There are length
restrictions on both the ``key`` (8 characters) and ``value`` (72
characters) in the FITS standard. There is a convention for handline
long keywords and a convention for handling long values, but the
two conventions cannot be used at the same time.
Autologging in `ccdproc` frequently creates keywords/values with this
combination. The workaround is to use a shortened name for the keyword.
"""
from .core import _short_names
if key in _short_names and isinstance(self.meta, fits.Header):
# This keyword was (hopefully) added by autologging but the
# combination of it and its value not FITS-compliant in two
# ways: the keyword name may be more than 8 characters and
# the value may be too long. FITS cannot handle both of
# those problems at once, so this fixes one of those
# problems...
# Shorten, sort of...
short_name = _short_names[key]
self.meta['HIERARCH {0}'.format(key.upper())] = (
short_name, "Shortened name for ccdproc command")
self.meta[short_name] = value
else:
self.meta[key] = value
# This needs to be importable by the tests...
_KEEP_THESE_KEYWORDS_IN_HEADER = [
'JD-OBS',
'MJD-OBS',
'DATE-OBS'
]
def _generate_wcs_and_update_header(hdr):
"""
Generate a WCS object from a header and remove the WCS-specific
keywords from the header.
Parameters
----------
hdr : astropy.io.fits.header or other dict-like
Returns
-------
new_header, wcs
"""
# Try constructing a WCS object.
try:
wcs = WCS(hdr)
except Exception as exc:
# Normally WCS only raises Warnings and doesn't fail but in rare
# cases (malformed header) it could fail...
log.info('An exception happened while extracting WCS informations from '
'the Header.\n{}: {}'.format(type(exc).__name__, str(exc)))
return hdr, None
# Test for success by checking to see if the wcs ctype has a non-empty
# value, return None for wcs if ctype is empty.
if not wcs.wcs.ctype[0]:
return hdr, None
new_hdr = hdr.copy()
# If the keywords below are in the header they are also added to WCS.
# It seems like they should *not* be removed from the header, though.
wcs_header = wcs.to_header(relax=True)
for k in wcs_header:
if k not in _KEEP_THESE_KEYWORDS_IN_HEADER:
try:
new_hdr.remove(k)
except KeyError:
pass
return new_hdr, wcs
def fits_ccddata_reader(filename, hdu=0, unit=None, hdu_uncertainty='UNCERT',
hdu_mask='MASK', hdu_flags=None, **kwd):
"""
Generate a CCDData object from a FITS file.
Parameters
----------
filename : str
Name of fits file.
hdu : int, optional
FITS extension from which CCDData should be initialized. If zero and
and no data in the primary extension, it will search for the first
extension with data. The header will be added to the primary header.
Default is ``0``.
unit : `~astropy.units.Unit`, optional
Units of the image data. If this argument is provided and there is a
unit for the image in the FITS header (the keyword ``BUNIT`` is used
as the unit, if present), this argument is used for the unit.
Default is ``None``.
hdu_uncertainty : str or None, optional
FITS extension from which the uncertainty should be initialized. If the
extension does not exist the uncertainty of the CCDData is ``None``.
Default is ``'UNCERT'``.
hdu_mask : str or None, optional
FITS extension from which the mask should be initialized. If the
extension does not exist the mask of the CCDData is ``None``.
Default is ``'MASK'``.
hdu_flags : str or None, optional
Currently not implemented.
Default is ``None``.
kwd :
Any additional keyword parameters are passed through to the FITS reader
in :mod:`astropy.io.fits`; see Notes for additional discussion.
Notes
-----
FITS files that contained scaled data (e.g. unsigned integer images) will
be scaled and the keywords used to manage scaled data in
:mod:`astropy.io.fits` are disabled.
"""
unsupport_open_keywords = {
'do_not_scale_image_data': ('Image data must be scaled to perform '
'ccdproc operations.'),
'scale_back': 'Scale information is not preserved.'
}
for key, msg in unsupport_open_keywords.items():
if key in kwd:
prefix = 'unsupported keyword: {0}.'.format(key)
raise TypeError(' '.join([prefix, msg]))
with fits.open(filename, **kwd) as hdus:
hdr = hdus[hdu].header
if hdu_uncertainty is not None and hdu_uncertainty in hdus:
uncertainty = StdDevUncertainty(hdus[hdu_uncertainty].data)
else:
uncertainty = None
if hdu_mask is not None and hdu_mask in hdus:
# Mask is saved as uint but we want it to be boolean.
mask = hdus[hdu_mask].data.astype(np.bool_)
else:
mask = None
if hdu_flags is not None and hdu_flags in hdus:
raise NotImplementedError('loading flags is currently not '
'supported.')
# search for the first instance with data if
# the primary header is empty.
if hdu == 0 and hdus[hdu].data is None:
for i in range(len(hdus)):
if hdus.fileinfo(i)['datSpan'] > 0:
hdu = i
comb_hdr = hdus[hdu].header.copy()
comb_hdr.extend(hdr, unique=True)
hdr = comb_hdr
log.info("first HDU with data is extension "
"{0}.".format(hdu))
break
if 'bunit' in hdr:
fits_unit_string = hdr['bunit']
# patch to handle FITS files using ADU for the unit instead of the
# standard version of 'adu'
if fits_unit_string.strip().lower() == 'adu':
fits_unit_string = fits_unit_string.lower()
else:
fits_unit_string = None
if unit is not None and fits_unit_string:
log.info("using the unit {0} passed to the FITS reader instead of "
"the unit {1} in the FITS file.".format(unit,
fits_unit_string))
use_unit = unit or fits_unit_string
hdr, wcs = _generate_wcs_and_update_header(hdr)
ccd_data = CCDData(hdus[hdu].data, meta=hdr, unit=use_unit,
mask=mask, uncertainty=uncertainty, wcs=wcs)
return ccd_data
def fits_ccddata_writer(ccd_data, filename, hdu_mask='MASK',
hdu_uncertainty='UNCERT', hdu_flags=None, **kwd):
"""
Write CCDData object to FITS file.
Parameters
----------
filename : str
Name of file.
hdu_mask, hdu_uncertainty, hdu_flags : str or None, optional
If it is a string append this attribute to the HDUList as
`~astropy.io.fits.ImageHDU` with the string as extension name.
Flags are not supported at this time. If ``None`` this attribute
is not appended.
Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty and
``None`` for flags.
kwd :
All additional keywords are passed to :py:mod:`astropy.io.fits`
Raises
-------
ValueError
- If ``self.mask`` is set but not a `numpy.ndarray`.
- If ``self.uncertainty`` is set but not a
`~astropy.nddata.StdDevUncertainty`.
- If ``self.uncertainty`` is set but has another unit then
``self.data``.
NotImplementedError
Saving flags is not supported.
"""
hdu = ccd_data.to_hdu(hdu_mask=hdu_mask, hdu_uncertainty=hdu_uncertainty,
hdu_flags=hdu_flags)
hdu.writeto(filename, **kwd)
# This should be be a tuple to ensure it isn't inadvertently changed
# elsewhere.
_recognized_fits_file_extensions = ('fit', 'fits', 'fts')
if _ASTROPY_LT_1_3:
def is_fits(origin, filepath, fileobj, *args, **kwargs):
"""
Wrapper around astropy.io.fits.connect.is_fits that handles the extra
extension.
Can be removed if fts is added to astropy.io as a recognized FITS
extension.
"""
if ((filepath is not None) and
filepath.lower().endswith(('.fts', '.fts.gz'))):
return True
else:
return fits.connect.is_fits(origin, filepath, fileobj,
*args, **kwargs)
else:
is_fits = fits.connect.is_fits
if _ASTROPY_LT_1_3:
registry.register_reader('fits', CCDData, fits_ccddata_reader)
registry.register_writer('fits', CCDData, fits_ccddata_writer)
registry.register_identifier('fits', CCDData, is_fits)
else:
with registry.delay_doc_updates(CCDData):
registry.register_reader('fits', CCDData, fits_ccddata_reader)
registry.register_writer('fits', CCDData, fits_ccddata_writer)
registry.register_identifier('fits', CCDData, is_fits)
try:
CCDData.read.__doc__ = fits_ccddata_reader.__doc__
except AttributeError:
CCDData.read.__func__.__doc__ = fits_ccddata_reader.__doc__
try:
CCDData.write.__doc__ = fits_ccddata_writer.__doc__
except AttributeError:
CCDData.write.__func__.__doc__ = fits_ccddata_writer.__doc__
# CCDData moved to astropy core so we just import them from there (overwriting)
# the classes defined here.
if _ASTROPY_GT_2_0:
from astropy.nddata import fits_ccddata_reader, fits_ccddata_writer, CCDData
|