/usr/lib/python3/dist-packages/bumps/wsolve.py is in python3-bumps 0.7.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | r"""
Weighted linear and polynomial solver with uncertainty.
Given $A \bar x = \bar y \pm \delta \bar y$, solve using *s = wsolve(A,y,dy)*
*wsolve* uses the singular value decomposition for increased accuracy.
The uncertainty in the solution is estimated from the scatter in the data.
Estimates the uncertainty for the solution from the scatter in the data.
The returned model object *s* provides:
======== ============================================
======== ============================================
s.x solution
s.std uncertainty estimate assuming no correlation
s.rnorm residual norm
s.DoF degrees of freedom
s.cov covariance matrix
s.ci(p) confidence intervals at point p
s.pi(p) prediction intervals at point p
s(p) predicted value at point p
======== ============================================
Example
=======
Weighted system::
>>> import numpy as np
>>> from bumps import wsolve
>>> A = np.matrix("1,2,3;2,1,3;1,1,1",'d').A
>>> dy = [0.2,0.01,0.1]
>>> y = [ 14.16, 13.01, 6.15]
>>> s = wsolve.wsolve(A,y,dy)
>>> print(", ".join("%0.2f +/- %0.2f"%(a,b) for a,b in zip(s.x,s.std)))
1.05 +/- 0.17, 2.20 +/- 0.12, 2.91 +/- 0.12
Note there is a counter-intuitive result that scaling the estimated
uncertainty in the data does not affect the computed uncertainty in
the fit. This is the correct result --- if the data were indeed
selected from a process with ten times the uncertainty, you would
expect the scatter in the data to increase by a factor of ten as
well. When this new data set is fitted, it will show a computed
uncertainty increased by the same factor. Monte carlo simulations
bear this out. The conclusion is that the dataset carries its own
information about the variance in the data, and the weight vector
serves only to provide relative weighting between the points.
"""
__all__ = ['wsolve', 'wpolyfit', 'LinearModel', 'PolynomialModel']
# FIXME: test second example
#
# Example 2: weighted overdetermined system y = x1 + 2*x2 + 3*x3 + e
#
# A = fullfact([3,3,3]); xin=[1;2;3];
# y = A*xin; dy = rand(size(y))/50; y+=dy.*randn(size(y));
# [x,s] = wsolve(A,y,dy);
# dx = s.normr*sqrt(sumsq(inv(s.R'))'/s.df);
# res = [xin, x, dx]
import numpy as np
class LinearModel(object):
r"""
Model evaluator for linear solution to $Ax = y$.
Use *s(A)* to compute the predicted value of the linear model *s*
at points given on the rows of $A$.
Computes a confidence interval (range of likely values for the
mean at $x$) or a prediction interval (range of likely values
seen when measuring at $x$). The prediction interval gives
the width of the distribution at $x$. This should be the same
regardless of the number of measurements you have for the value
at $x$. The confidence interval gives the uncertainty in the
mean at $x$. It should get smaller as you increase the number of
measurements. Error bars in the physical sciences usually show
a $1-\alpha$ confidence value of $\text{erfc}(1/\sqrt{2})$, representing
a $1-\sigma$ standand deviation of uncertainty in the mean.
Confidence intervals for the expected value of the linear system
evaluated at a new point $w$ are given by the $t$ distribution for
the selected interval $1-\alpha$, the solution $x$, and the number
of degrees of freedom $n-p$:
.. math::
w^T x \pm t^{\alpha/2}_{n-p} \sqrt{ \text{var}(w) }
where the variance $\text{var}(w)$ is given by:
.. math::
\text{var}(w) = \sigma^2 (w^T (A^TA)^{-1} w)
Prediction intervals are similar, except the variance term increases to
include both the uncertainty in the predicted value and the variance in
the data:
.. math::
\text{var}(w) = \sigma^2 (1 + w^T (A^TA)^{-1} w)
"""
def __init__(self, x=None, DoF=None, SVinv=None, rnorm=None):
# Note: SVinv should be computed from S,V where USV' = A
#: solution to the equation $Ax = y$
self.x = x
#: number of degrees of freedom in the solution
self.DoF = DoF
#: 2-norm of the residuals $||y-Ax||_2$
self.rnorm = rnorm
self._SVinv = SVinv
def __call__(self, A):
"""
Return the prediction for a linear system at points in the rows of A.
"""
return np.dot(np.asarray(A), self.x)
# covariance matrix invC = A'A = (USV')'USV' = VSU'USV' = VSSV'
# C = inv(A'A) = inv(VSSV') = inv(V')inv(SS)inv(V) = Vinv(SS)V'
# diag(inv(A'A)) is sum of the squares of the columns inv(S) V'
# and is also the sum of the squares of the rows of V inv(S)
@property
def cov(self):
"""covariance matrix [inv(A'A); O(n^3)]"""
# FIXME: don't know if we need to scale by C, but it will
# at least make things consistent
C = self.rnorm**2/self.DoF if self.DoF > 0 else 1
return C * np.dot(self._SVinv, self._SVinv.T)
@property
def var(self):
"""solution variance [diag(cov); O(n^2)]"""
C = self.rnorm**2/self.DoF if self.DoF > 0 else 1
return C * np.sum(self._SVinv**2, axis=1)
@property
def std(self):
"""solution standard deviation [sqrt(var); O(n^2)]"""
return np.sqrt(self.var)
@property
def p(self):
"""p-value probability of rejection"""
from scipy.stats import chi2 # lazy import in case scipy not present
return chi2.sf(self.rnorm ** 2, self.DoF)
def _interval(self, X, alpha, pred):
"""
Helper for computing prediction/confidence intervals.
"""
# Comments from QR decomposition solution to Ax = y:
#
# Rather than A'A we have R from the QR decomposition of A, but
# R'R equals A'A. Note that R is not upper triangular since we
# have already multiplied it by the permutation matrix, but it
# is invertible. Rather than forming the product R'R which is
# ill-conditioned, we can rewrite x' inv(A'A) x as the equivalent
# x' inv(R) inv(R') x = t t', for t = x' inv(R)
#
# We have since switched to an SVD solver, which gives us
#
# invC = A' A = (USV')' USV' = VSU' USV' = V S S V'
# C = inv(A'A) = inv(VSSV') = inv(V') inv(S S) inv(V)
# = V inv(S S) V' = V inv(S) inv(S) V'
#
# Substituting, we get
#
# x' inv(A'A) x = t t', for t = x' V inv(S)
#
# Since x is a vector, t t' is the inner product sum(t**2).
# Note that LAPACK allows us to do this simultaneously for many
# different x using sqrt(sum(T**2,axis=1)), with T = X' Vinv(S).
#
# Note: sqrt(F(1-a;1,df)) = T(1-a/2;df)
#
from scipy.stats import t # lazy import in case scipy not present
y = np.dot(X, self.x).ravel()
s = t.ppf(1-alpha/2, self.DoF) * self.rnorm/np.sqrt(self.DoF)
t = np.dot(X, self._SVinv)
dy = s * np.sqrt(pred + np.sum(t**2, axis=1))
return y, dy
def ci(self, A, sigma=1):
r"""
Compute the calculated values and the confidence intervals
for the linear model evaluated at $A$.
*sigma=1* corresponds to a $1-\sigma$ confidence interval
Confidence intervals are sometimes expressed as $1-\alpha$ values,
where $\alpha = \text{erfc}(\sigma/\sqrt{2})$.
"""
from scipy.special import erfc # lazy import in case scipy not present
alpha = erfc(sigma / np.sqrt(2))
return self._interval(np.asarray(A), alpha, 0)
def pi(self, A, p=0.05):
r"""
Compute the calculated values and the prediction intervals
for the linear model evaluated at $A$.
*p=0.05* corresponds to the 95% prediction interval.
"""
return self._interval(np.asarray(A), p, 1)
def wsolve(A, y, dy=1, rcond=1e-12):
r"""
Given a linear system $y = A x + \delta y$, estimates $x$ and $\delta x$.
*A* is an n x m array of measurement points.
*y* is an n x k array or vector of length n of measured values at *A*.
*dy* is a scalar or an n x 1 array of uncertainties in the values at *A*.
Returns :class:`LinearModel`.
"""
# The ugliness v[:,N.newaxis] transposes a vector
# The ugliness N.dot(a,b) is a*b for a,b matrices
# The ugliness vh.T.conj() is the hermitian transpose
# Make sure inputs are arrays
A, y, dy = np.asarray(A), np.asarray(y), np.asarray(dy)
if dy.ndim == 1:
dy = dy[:, np.newaxis]
if y.ndim == 1:
y = y[:, np.newaxis]
# Apply weighting if dy is not a scalar
# If dy is a scalar, it cancels out of both sides of the equation
# Note: with A,dy arrays instead of matrices, A/dy operates element-wise
# Since dy is a row vector, this divides each row of A by the corresponding
# element of dy.
if dy.ndim == 2:
A, y = A/dy, y/dy
# Singular value decomposition: A = U S V.H
# Since A is an array, U, S, VH are also arrays
# The zero indicates an economy decomposition, with u nxm rathern than nxn
u, s, vh = np.linalg.svd(A, 0)
# FIXME what to do with ill-conditioned systems?
#if s[-1]<rcond*s[0]: raise ValueError, "matrix is singular"
# s[s<rcond*s[0]] = 0. # Can't do this because 1/s below will fail
# Solve: x = V inv(S) U.H y
# S diagonal elements => 1/S is inv(S)
# A*D, D diagonal multiplies each column of A by the corresponding diagonal
# D*A, D diagonal multiplies each row of A by the corresponding diagonal
# Computing V*inv(S) is slightly faster than inv(S)*U.H since V is smaller
# than U.H. Similarly, U.H*y is somewhat faster than V*U.H
SVinv = vh.T.conj() / s
Uy = np.dot(u.T.conj(), y)
x = np.dot(SVinv, Uy)
DoF = y.shape[0] - x.shape[0]
rnorm = np.linalg.norm(y - np.dot(A, x))
return LinearModel(x=x, DoF=DoF, SVinv=SVinv, rnorm=rnorm)
def _poly_matrix(x, degree, origin=False):
"""
Generate the matrix A used to fit a polynomial using a linear solver.
"""
if origin:
n = np.array(range(degree, 0, -1))
else:
n = np.array(range(degree, -1, -1))
return np.asarray(x)[:, None] ** n[None, :]
class PolynomialModel(object):
r"""
Model evaluator for best fit polynomial $p(x) = y +/- \delta y$.
Use *p(x)* for PolynomialModel *p* to evaluate the polynomial at all
points in the vector *x*.
"""
def __init__(self, x, y, dy, s, origin=False):
self.x, self.y, self.dy = [np.asarray(v) for v in (x, y, dy)]
#: True if polynomial goes through the origin
self.origin = origin
#: polynomial coefficients
self.coeff = np.ravel(s.x)
if origin:
self.coeff = np.hstack((self.coeff, 0))
#: polynomial degree
self.degree = len(self.coeff) - 1
#: number of degrees of freedom in the solution
self.DoF = s.DoF
#: 2-norm of the residuals $||y-Ax||_2$
self.rnorm = s.rnorm
self._conf = s
@property
def cov(self):
"""
covariance matrix
Note that the ones column will be absent if *origin* is True.
"""
return self._conf.cov
@property
def var(self):
"""solution variance"""
return self._conf.var
@property
def std(self):
"""solution standard deviation"""
return self._conf.std
@property
def p(self):
"""p-value probability of rejection"""
return self._conf.p
def __call__(self, x):
"""
Evaluate the polynomial at x.
"""
return np.polyval(self.coeff, x)
def der(self, x):
"""
Evaluate the polynomial derivative at x.
"""
return np.polyval(np.polyder(self.coeff), x)
def ci(self, x, sigma=1):
"""
Evaluate the polynomial and the confidence intervals at x.
sigma=1 corresponds to a 1-sigma confidence interval
"""
A = _poly_matrix(x, self.degree, self.origin)
return self._conf.ci(A, sigma)
def pi(self, x, p=0.05):
"""
Evaluate the polynomial and the prediction intervals at x.
p = 1-alpha = 0.05 corresponds to 95% prediction interval
"""
A = _poly_matrix(x, self.degree, self.origin)
return self._conf.pi(A, p)
def __str__(self):
# TODO: better polynomial pretty printing using formatnum
return "Polynomial(%s)" % self.coeff
def plot(self, ci=1, pi=0):
import pylab
x = np.linspace(np.min(self.x), np.max(self.x), 200)
y = self.__call__(x)
pylab.errorbar(self.x, self.y, self.dy, fmt='b.')
pylab.plot(x, y, 'b-', hold=True)
if ci > 0:
_, cdy = self.ci(x, ci)
pylab.plot(x, y + cdy, 'b-.', x, y - cdy, 'b-.', hold=True)
if pi > 0:
py, pdy = self.pi(x, pi)
pylab.plot(x, y + pdy, 'b-.', x, y - pdy, 'b-.', hold=True)
def wpolyfit(x, y, dy=1, degree=None, origin=False):
r"""
Return the polynomial of degree $n$ that minimizes $\sum(p(x_i) - y_i)^2/\sigma_i^2$.
if origin is True, the fit should go through the origin.
Returns :class:`PolynomialModel`.
"""
assert degree is not None, "Missing degree argument to wpolyfit"
A = _poly_matrix(x, degree, origin)
s = wsolve(A, y, dy)
return PolynomialModel(x, y, dy, s, origin=origin)
def demo():
"""
Fit a random cubic polynomial.
"""
import pylab
# Make fake data
x = np.linspace(-15, 5, 15)
th = np.polyval([.2, 3, 1, 5], x) # polynomial
dy = np.sqrt(np.abs(th)) # poisson uncertainty estimate
y = np.random.normal(th, dy) # but normal generator
# Fit to a polynomial
poly = wpolyfit(x, y, dy=dy, degree=3)
poly.plot()
pylab.show()
def demo2():
import pylab
x = [1,2,3]
y = [10, 8, 6]
dy = [1, 3, 1]
poly = wpolyfit(x,y,dy=dy, degree=1)
poly.plot()
pylab.show()
def test():
"""
Check that results are correct for a known problem.
"""
from numpy.testing import assert_array_almost_equal_nulp
x = np.array([0, 1, 2, 3, 4], 'd')
y = np.array([2.5, 7.9, 13.9, 21.1, 44.4], 'd')
dy = np.array([1.7, 2.4, 3.6, 4.8, 6.2], 'd')
poly = wpolyfit(x, y, dy, 1)
px = np.array([1.5], 'd')
_, pi = poly.pi(px) # Same y is returend from pi and ci
py, ci = poly.ci(px)
# Uncomment these to show target values
# print "Tp = [%.16g, %.16g]"%(p[0],p[1])
# print "Tdp = [%.16g, %.16g]"%(dp[0],dp[1])
# print "Tpi,Tci = %.16g, %.16g"%(pi,ci)
Tp = np.array([7.787249069840737, 1.503992847461524])
Tdp = np.array([1.522338103010216, 2.117633626902384])
Tpi, Tci = 7.611128464981324, 2.342860389884832
perr = np.max(np.abs(poly.coeff - Tp))
dperr = np.max(np.abs(poly.std - Tdp))
cierr = np.abs(ci - Tci)
pierr = np.abs(pi - Tpi)
assert perr < 1e-14, "||p-Tp||=%g" % perr
assert dperr < 1e-14, "||dp-Tdp||=%g" % dperr
assert cierr < 1e-14, "||ci-Tci||=%g" % cierr
assert pierr < 1e-14, "||pi-Tpi||=%g" % pierr
assert_array_almost_equal_nulp(py, poly(px), nulp=8)
if __name__ == "__main__":
# test()
# demo()
demo2()
|