/usr/lib/python3/dist-packages/bumps/parameter.py is in python3-bumps 0.7.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | # This program is public domain
# Author: Paul Kienzle
"""
Fitting parameter objects.
Parameters are a big part of the interface between the model and the fitting
engine. By saving and retrieving values and ranges from the parameter, the
fitting engine does not need to be aware of the structure of the model.
Users can also perform calculations with parameters, tying together different
parts of the model, or different models.
"""
#__all__ = [ 'Parameter']
from six.moves import reduce
import warnings
from copy import copy
from numpy import inf, isinf, isfinite
from . import bounds as mbounds
# TODO: avoid evaluation of subexpressions if parameters do not change.
# This is especially important if the subexpression invokes an expensive
# calculation via a parameterized function. This will require a restructuring
# of the parameter claas. The park-1.3 solution is viable: given a parameter
# set, figure out which order the expressions need to be evaluated by
# building up a dependency graph. With a little care, we can check which
# parameters have actually changed since the last calculation update, and
# restrict the dependency graph to just them.
# TODO: support full aliasing, so that floating point model attributes can
# be aliased to a parameter. The same technique as subexpressions applies:
# when the parameter is changed, the model will be updated and will need
# to be re-evaluated.
class BaseParameter(object):
"""
Root of the parameter class, defining arithmetic on parameters
"""
# Parameters are fixed unless told otherwise
fixed = True
fittable = False
discrete = False
_bounds = mbounds.Unbounded()
name = None
# Parameters may be dependent on other parameters, and the
# fit engine will need to access them.
def parameters(self):
return [self]
def pmp(self, *args):
"""
Allow the parameter to vary as value +/- percent.
pmp(*percent*) -> [value*(1-percent/100), value*(1+percent/100)]
pmp(*plus*, *minus*) -> [value*(1+minus/100), value*(1+plus/100)]
In the *plus/minus* form, one of the numbers should be plus and the
other minus, but it doesn't matter which.
The resulting range is converted to "nice" numbers.
"""
self.bounds = mbounds.Bounded(*mbounds.pmp(self.value, *args))
return self
def pm(self, *args):
"""
Allow the parameter to vary as value +/- delta.
pm(*delta*) -> [value-delta, value+delta]
pm(*plus*, *minus*) -> [value+minus, value+plus]
In the *plus/minus* form, one of the numbers should be plus and the
other minus, but it doesn't matter which.
The resulting range is converted to "nice" numbers.
"""
self.bounds = mbounds.Bounded(*mbounds.pm(self.value, *args))
return self
def dev(self, std, mean=0, limits=None, sigma=None, mu=None):
"""
Allow the parameter to vary according to a normal distribution, with
deviations from the mean added to the overall cost function for the
model.
If *mean* is None, then it defaults to the current parameter value.
If *limits* are provide, then use a truncated normal distribution.
Note: *sigma* and *mu* have been replaced by *std* and *mean*, but
are left in for backward compatibility.
"""
if sigma is not None or mu is not None:
# CRUFT: remove sigma and mu parameters
warnings.warn(DeprecationWarning("use std,mean instead of mu,sigma in Parameter.dev"))
if sigma is not None: std = sigma
if mu is not None: mean = mu
if mean is None:
mean = self.value # Note: value is an attribute of the derived class
if limits is None:
self.bounds = mbounds.Normal(mean, std)
else:
self.bounds = mbounds.BoundedNormal(mean, std, limits)
return self
def pdf(self, dist):
"""
Allow the parameter to vary according to any continuous scipy.stats
distribution.
"""
self.bounds = mbounds.Distribution(dist)
return self
def range(self, low, high):
"""
Allow the parameter to vary within the given range.
"""
self.bounds = mbounds.init_bounds((low, high))
return self
def soft_range(self, low, high, std):
"""
Allow the parameter to vary within the given range, or with Gaussian
probability, stray from the range.
"""
self.bounds = mbounds.SoftBounded(low, high, std)
@property
def bounds(self):
"""Fit bounds"""
# print "getting bounds for",self,self._bounds
return self._bounds
@bounds.setter
def bounds(self, b):
# print "setting bounds for",self
if self.fittable:
self.fixed = (b is None)
self._bounds = b
# Functional form of parameter value access
def __call__(self):
return self.value
# Parameter algebra: express relationships between parameters
def __gt__(self, other):
return ConstraintGT(self, other)
def __ge__(self, other):
return ConstraintGE(self, other)
def __le__(self, other):
return ConstraintLE(self, other)
def __lt__(self, other):
return ConstraintLT(self, other)
# def __eq__(self, other):
# return ConstraintEQ(self, other)
# def __ne__(self, other):
# return ConstraintNE(self, other)
def __add__(self, other):
return OperatorAdd(self, other)
def __sub__(self, other):
return OperatorSub(self, other)
def __mul__(self, other):
return OperatorMul(self, other)
def __div__(self, other):
return OperatorDiv(self, other)
def __pow__(self, other):
return OperatorPow(self, other)
def __radd__(self, other):
return OperatorAdd(other, self)
def __rsub__(self, other):
return OperatorSub(other, self)
def __rmul__(self, other):
return OperatorMul(other, self)
def __rdiv__(self, other):
return OperatorDiv(other, self)
def __rpow__(self, other):
return OperatorPow(other, self)
def __abs__(self):
return _abs(self)
def __neg__(self):
return self * -1
def __pos__(self):
return self
def __float__(self):
return float(self.value)
__truediv__ = __div__
__rtruediv__ = __rdiv__
def nllf(self):
"""
Return -log(P) for the current parameter value.
"""
return self.bounds.nllf(self.value)
def residual(self):
"""
Return the z score equivalent for the current parameter value.
That is, the given the value of the parameter in the underlying
distribution, find the equivalent value in the standard normal.
For a gaussian, this is the z score, in which you subtract the
mean and divide by the standard deviation to get the number of
sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert
it using the ppf from the standard normal distribution.
"""
return self.bounds.residual(self.value)
def valid(self):
"""
Return true if the parameter is within the valid range.
"""
return not isinf(self.nllf())
def format(self):
"""
Format the parameter, value and range as a string.
"""
return "%s=%g in %s" % (self, self.value, self.bounds)
def __str__(self):
name = self.name if self.name is not None else '?'
return name
def __repr__(self):
return "Parameter(%s)" % self
class Constant(BaseParameter):
"""
An unmodifiable value.
"""
fittable = False
fixed = True
@property
def value(self):
return self._value
def __init__(self, value, name=None):
self._value = value
self.name = name
class Parameter(BaseParameter):
"""
A parameter is a symbolic value.
It can be fixed or it can vary within bounds.
p = Parameter(3).pmp(10) # 3 +/- 10%
p = Parameter(3).pmp(-5,10) # 3 in [2.85,3.3] rounded to 2 digits
p = Parameter(3).pm(2) # 3 +/- 2
p = Parameter(3).pm(-1,2) # 3 in [2,5]
p = Parameter(3).range(0,5) # 3 in [0,5]
It has hard limits on the possible values, and a range that should live
within those hard limits. The value should lie within the range for
it to be valid. Some algorithms may drive the value outside the range
in order to satisfy soft It has a value which should lie within the range.
Other properties can decorate the parameter, such as tip for tool tip
and units for units.
"""
fittable = True
@classmethod
def default(cls, value, **kw):
"""
Create a new parameter with the *value* and *kw* attributes, or return
the existing parameter if *value* is already a parameter.
The attributes are the same as those for Parameter, or whatever
subclass *cls* of Parameter is being created.
"""
# Need to constrain the parameter to fit within fixed limits and
# to receive a name if a name has not already been provided.
if isinstance(value, BaseParameter):
return value
else:
return cls(value, **kw)
def set(self, value):
"""
Set a new value for the parameter, ignoring the bounds.
"""
self.value = value
def clip_set(self, value):
"""
Set a new value for the parameter, clipping it to the bounds.
"""
low, high = self.bounds.limits
self.value = min(max(value, low), high)
def __init__(self, value=None, bounds=None, fixed=None, name=None, **kw):
# UI nicities:
# 1. check if we are started with value=range or bounds=range; if we
# are given bounds, then assume this is a fitted parameter, otherwise
# the parameter defaults to fixed; if value is not set, use the
# midpoint of the range.
if bounds is None:
try:
lo, hi = value
warnings.warn(DeprecationWarning("parameters can no longer be initialized with a fit range"))
bounds = lo, hi
value = None
except TypeError:
pass
if fixed is None:
fixed = (bounds is None)
bounds = mbounds.init_bounds(bounds)
if value is None:
value = bounds.start_value()
# Store whatever values the user needs to associate with the parameter
# Models should set units and tool tips so the user interface has
# something to work with.
limits = kw.get('limits', (-inf, inf))
for k, v in kw.items():
setattr(self, k, v)
# Initialize bounds, with limits clipped to the hard limits for the
# parameter
def clip(x, a, b):
return min(max(x, a), b)
self.bounds = bounds
self.bounds.limits = (clip(self.bounds.limits[0], *limits),
clip(self.bounds.limits[1], *limits))
self.value = value
self.fixed = fixed
self.name = name
def randomize(self, rng=None):
"""
Set a random value for the parameter.
"""
self.value = self.bounds.rand(rng if rng is not None else mbounds.RNG)
def feasible(self):
"""
Value is within the limits defined by the model
"""
return self.limits[0] <= self.value <= self.limits[1]
class Reference(Parameter):
"""
Create an adaptor so that a model attribute can be treated as if it
were a parameter. This allows only direct access, wherein the
storage for the parameter value is provided by the underlying model.
Indirect access, wherein the storage is provided by the parameter, cannot
be supported since the parameter has no way to detect that the model
is asking for the value of the attribute. This means that model
attributes cannot be assigned to parameter expressions without some
trigger to update the values of the attributes in the model.
"""
def __init__(self, obj, attr, **kw):
self.obj = obj
self.attr = attr
kw.setdefault('name', ".".join([obj.__class__.__name__, attr]))
Parameter.__init__(self, **kw)
@property
def value(self):
return getattr(self.obj, self.attr)
@value.setter
def value(self, value):
setattr(self.obj, self.attr, value)
class ParameterSet(object):
"""
A parameter that depends on the model.
"""
def __init__(self, reference, names=None):
"""
Create a parameter set, with one parameter for each model name.
*names* is the list of model names.
*reference* is the underlying :class:`parameter.Parameter` that will
be set when the model is selected.
*parameters* will be created, with one parameter per model.
"""
self.names = names
self.reference = reference
self.parameters = [copy(reference) for _ in names]
# print self.reference, self.parameters
for p, n in zip(self.parameters, names):
p.name = " ".join((n, p.name))
# Reference is no longer directly fittable
self.reference.fittable = False
# Make the parameter set act like a list
def __getitem__(self, i):
"""
Return the underlying parameter for the model index. Index can
either be an integer or a model name.
"""
# Try looking up the free variable by model name rather than model
# index. If this fails, assume index is a model index.
try:
i = self.names.index(i)
except ValueError:
pass
return self.parameters[i]
def __setitem__(self, i, v):
try:
i = self.names.index(i)
except ValueError:
pass
self.parameters[i] = v
def __iter__(self):
return iter(self.parameters)
def __len__(self):
return len(self.parameters)
def set_model(self, index):
"""
Set the underlying model parameter to the value of the nth model.
"""
self.reference.value = self.parameters[index].value
@property
def values(self):
return [p.value for p in self.parameters]
@values.setter
def values(self, values):
for p, v in zip(self.parameters, values):
p.value = v
def range(self, *args, **kw):
"""
Like :meth:`parameter.Parameter.range`, but applied to all models.
"""
for p in self.parameters:
p.range(*args, **kw)
def pm(self, *args, **kw):
"""
Like :meth:`parameter.Parameter.pm`, but applied to all models.
"""
for p in self.parameters:
p.pm(*args, **kw)
def pmp(self, *args, **kw):
"""
Like :meth:`parameter.Parameter.pmp`, but applied to all models.
"""
for p in self.parameters:
p.pmp(*args, **kw)
class FreeVariables(object):
"""
A collection of parameter sets for a group of models.
*names* is the set of model names.
The parameters themselves are specified as key=value pairs, with key
being the attribute name which is used to retrieve the parameter set
and value being a :class:`Parameter` containing the parameter that is
shared between the models.
In order to evaluate the log likelihood of all models simultaneously,
the fitting program will need to call set_model with the model index
for each model in turn in order to substitute the values from the free
variables into the model. This allows us to share a common sample
across multiple data sets, with each dataset having its own values for
some of the sample parameters. The alternative is to copy the entire
sample structure, sharing references to common parameters and creating
new parameters for each model for the free parameters. Setting up
these copies was inconvenient.
"""
def __init__(self, names=None, **kw):
if names is None:
raise TypeError("FreeVariables needs name=[model1, model2, ...]")
self.names = names
# Create slots to hold the free variables
self._parametersets = dict((k, ParameterSet(v, names=names))
for k, v in kw.items())
# Shouldn't need explicit __getstate__/__setstate__ but mpi4py pickle
# chokes without it.
def __getstate__(self):
return self.__dict__
def __setstate__(self, state):
self.__dict__ = state
def __getattr__(self, k):
"""
Return the parameter set for the given free parameter.
"""
try:
return self._parametersets[k]
except KeyError:
raise AttributeError('FreeVariables has no attribute %r' % k)
def parameters(self):
"""
Return the set of free variables for all the models.
"""
return dict((k, v.parameters) for k, v in self._parametersets.items())
def set_model(self, i):
"""
Set the reference parameters for model *i*.
"""
for p in self._parametersets.values():
p.set_model(i)
# Current implementation computes values on the fly, so you only
# need to plug the values into the parameters and the parameters
# are automatically updated.
#
# This will not work well for wrapped models. In those cases you
# want to do a number of optimizations, such as only updating the
#
# ==== Comparison operators ===
class Constraint:
"""
Abstract base class for constraints.
"""
def __bool__(self):
"""
Returns True if the condition is satisfied
"""
raise NotImplementedError
__nonzero__ = __bool__
def __str__(self):
"""
Text description of the constraint
"""
raise NotImplementedError
def _gen_constraint(name, op):
"""
Generate a comparison function from a comparison operator.
"""
return '''\
class Constraint%(name)s(Constraint):
"""
Constraint operator %(op)s
"""
def __init__(self, a, b):
self.a, self.b = a,b
def __bool__(self):
return float(self.a) %(op)s float(self.b)
__nonzero__ = __bool__
def __str__(self):
return "(%%s %(op)s %%s)"%%(self.a,self.b)
''' % dict(name=name, op=op)
exec(_gen_constraint('GT', '>'))
exec(_gen_constraint('GE', '>='))
exec(_gen_constraint('LE', '<='))
exec(_gen_constraint('LT', '<'))
exec(_gen_constraint('EQ', '=='))
exec(_gen_constraint('NE', '!='))
# ==== Arithmetic operators ===
def _gen_binop(name, op):
"""
Generate a comparison function from a comparison operator.
"""
return '''\
class Operator%(name)s(BaseParameter):
"""
Parameter operator %(op)s
"""
def __init__(self, a, b):
self.a, self.b = a,b
pars = []
if isinstance(a,BaseParameter): pars += a.parameters()
if isinstance(b,BaseParameter): pars += b.parameters()
self._parameters = pars
self.name = str(self)
def parameters(self):
return self._parameters
@property
def value(self):
return float(self.a) %(op)s float(self.b)
@property
def dvalue(self):
return float(self.a)
def __str__(self):
return "(%%s %(op)s %%s)"%%(self.a,self.b)
''' % dict(name=name, op=op)
exec(_gen_binop('Add', '+'))
exec(_gen_binop('Sub', '-'))
exec(_gen_binop('Mul', '*'))
exec(_gen_binop('Div', '/'))
exec(_gen_binop('Pow', '**'))
def substitute(a):
"""
Return structure a with values substituted for all parameters.
The function traverses lists, tuples and dicts recursively. Things
which are not parameters are returned directly.
"""
if isinstance(a, BaseParameter):
return float(a.value)
elif isinstance(a, tuple):
return tuple(substitute(v) for v in a)
elif isinstance(a, list):
return [substitute(v) for v in a]
elif isinstance(a, dict):
return dict((k, substitute(v)) for k, v in a.items())
else:
return a
class Function(BaseParameter):
"""
Delayed function evaluator.
f.value evaluates the function with the values of the
parameter arguments at the time f.value is referenced rather
than when the function was invoked.
"""
__slots__ = ['op', 'args', 'kw']
def __init__(self, op, *args, **kw):
self.name = kw.pop('name', None)
self.op, self.args, self.kw = op, args, kw
def parameters(self):
# Figure out which arguments to the function are parameters
#deps = [p for p in self.args if isinstance(p,BaseParameter)]
deps = flatten((self.args, self.kw))
# Find out which other parameters these parameters depend on.
res = []
for p in deps:
res.extend(p.parameters())
return res
def _value(self):
# Expand args and kw, replacing instances of parameters
# with their values
return self.op(*substitute(self.args), **substitute(self.kw))
value = property(_value)
def __getstate__(self):
return self.name, self.op, self.args, self.kw
def __setstate__(self, state):
self.name, self.op, self.args, self.kw = state
def __str__(self):
if self.name is not None:
name = self.name
else:
args = [str(v) for v in self.args]
kw = [str(k) + "=" + str(v) for k, v in self.kw.items()]
name = self.op.__name__ + "(" + ", ".join(args + kw) + ")"
return "%s:%g" % (name, self.value)
def function(op):
"""
Convert a function into a delayed evaluator.
The value of the function is computed from the values of the parameters
at the time that the function value is requested rather than when the
function is created.
"""
# Note: @functools.wraps(op) does not work with numpy ufuncs
# Note: @decorator does not work with builtins like abs
def function_generator(*args, **kw):
return Function(op, *args, **kw)
function_generator.__name__ = op.__name__
function_generator.__doc__ = op.__doc__
return function_generator
_abs = function(abs)
def flatten(s):
if isinstance(s, (tuple, list)):
return reduce(lambda a, b: a + flatten(b), s, [])
elif isinstance(s, set):
raise TypeError("parameter flattening cannot order sets")
elif isinstance(s, dict):
return reduce(lambda a, b: a + flatten(s[b]), sorted(s.keys()), [])
elif isinstance(s, BaseParameter):
return [s]
elif s is None:
return []
else:
raise TypeError("don't understand type %s for %r" % (type(s), s))
def format(p, indent=0):
"""
Format parameter set for printing.
Note that this only says how the parameters are arranged, not how they
relate to each other.
"""
if isinstance(p, dict) and p != {}:
res = []
for k in sorted(p.keys()):
if k.startswith('_'):
continue
s = format(p[k], indent + 2)
label = " " * indent + "." + k
if s.endswith('\n'):
res.append(label + "\n" + s)
else:
res.append(label + " = " + s + '\n')
if '_index' in p:
res .append(format(p['_index'], indent))
return "".join(res)
elif isinstance(p, list) and p != []:
res = []
for k, v in enumerate(p):
s = format(v, indent + 2)
label = " " * indent + "[%d]" % k
if s.endswith('\n'):
res.append(label + '\n' + s)
else:
res.append(label + ' = ' + s + '\n')
return "".join(res)
# elif isinstance(p, tuple) and p != ():
# return "".join(format(v, indent) for v in p)
elif isinstance(p, Parameter):
if p.fixed:
bounds = ""
else:
bounds = ", bounds=(%g,%g)" % p.bounds.limits
return "Parameter(%g, name='%s'%s)" % (p.value, str(p), bounds)
elif isinstance(p, BaseParameter):
return str(p)
else:
return "None"
def summarize(pars, sorted=False):
"""
Return a stylized list of parameter names and values with range bars
suitable for printing.
If sorted, then print the parameters sorted alphabetically by name.
"""
output = []
if sorted:
pars = sorted(pars, cmp=lambda x, y: cmp(x.name, y.name))
for p in pars:
if not isfinite(p.value):
bar = "*invalid* "
else:
position = int(p.bounds.get01(p.value) * 9.999999999)
bar = ['.'] * 10
if position < 0:
bar[0] = '<'
elif position > 9:
bar[9] = '>'
else:
bar[position] = '|'
output.append("%40s %s %10g in %s" %
(p.name, "".join(bar), p.value, p.bounds))
return "\n".join(output)
def unique(s):
"""
Return the unique set of parameters
The ordering is stable. The same parameters/dependencies will always
return the same ordering, with the first occurrence first.
"""
# Walk structures such as dicts and lists
pars = flatten(s)
# print "====== flattened"
# print "\n".join("%s:%s"%(id(p),p) for p in pars)
# Also walk parameter expressions
pars = pars + flatten([p.parameters() for p in pars])
# print "====== extended"
# print "\n".join("%s:%s"%(id(p),p) for p in pars)
# TODO: implement n log n rather than n^2 uniqueness algorithm
# problem is that the sorting has to be unique across a pickle.
result = []
for p in pars:
if not any(p is q for q in result):
result.append(p)
# print "====== unique"
# print "\n".join("%s:%s"%(id(p),p) for p in result)
# Return the complete set of parameters
return result
def fittable(s):
"""
Return the list of fittable parameters in no paraticular order.
Note that some fittable parameters may be fixed during the fit.
"""
return [p for p in unique(s) if not p.fittable]
def varying(s):
"""
Return the list of fitted parameters in the model.
This is the set of parameters that will vary during the fit.
"""
return [p for p in unique(s) if not p.fixed]
def randomize(s):
"""
Set random values to the parameters in the parameter set, with
values chosen according to the bounds.
"""
for p in s:
p.value = p.bounds.random(1)[0]
def current(s):
return [p.value for p in s]
# ========= trash ===================
class IntegerParameter(Parameter):
discrete = True
def _get_value(self):
return self._value
def _set_value(self, value):
self._value = int(value)
value = property(_get_value, _set_value)
class Alias(object):
"""
Parameter alias.
Rather than modifying a model to contain a parameter slot,
allow the parameter to exist outside the model. The resulting
parameter will have the full parameter semantics, including
the ability to replace a fixed value with a parameter expression.
# TODO: how is this any different from Reference above?
"""
def __init__(self, obj, attr, p=None, name=None):
self.obj = obj
self.attr = attr
if name is None:
name = ".".join([obj.__class__.__name__, attr])
self.p = Parameter.default(p, name=name)
def update(self):
setattr(self.obj, self.attr, self.p.value)
def parameters(self):
return self.p.parameters()
|