This file is indexed.

/usr/lib/python3/dist-packages/bumps/mapper.py is in python3-bumps 0.7.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Parallel and serial mapper implementations.
"""
import sys
import os

# {{{ http://code.activestate.com/recipes/496767/ (r1)
# Converted to use ctypes by Paul Kienzle


PROCESS_ALL_ACCESS = 0x1F0FFF


def setpriority(pid=None, priority=1):
    """
    Set The Priority of a Windows Process.  Priority is a value between 0-5
    where 2 is normal priority and 5 is maximum.  Default sets the priority
    of the current python process but can take any valid process ID.
    """

    #import win32api,win32process,win32con
    from ctypes import windll

    priorityclasses = [0x40,   # IDLE_PRIORITY_CLASS,
                       0x4000,  # BELOW_NORMAL_PRIORITY_CLASS,
                       0x20,   # NORMAL_PRIORITY_CLASS,
                       0x8000,  # ABOVE_NORMAL_PRIORITY_CLASS,
                       0x80,   # HIGH_PRIORITY_CLASS,
                       0x100,  # REALTIME_PRIORITY_CLASS
                       ]
    if pid is None:
        pid = windll.kernel32.GetCurrentProcessId()
    handle = windll.kernel32.OpenProcess(PROCESS_ALL_ACCESS, True, pid)
    windll.kernel32.SetPriorityClass(handle, priorityclasses[priority])
# end of http://code.activestate.com/recipes/496767/ }}}


def nice():
    if os.name == 'nt':
        setpriority(priority=1)
    else:
        os.nice(5)


class SerialMapper(object):

    @staticmethod
    def start_worker(problem):
        pass

    @staticmethod
    def start_mapper(problem, modelargs):
        # Note: map is n iterator in python 3.x
        return lambda points: list(map(problem.nllf, points))

    @staticmethod
    def stop_mapper(mapper):
        pass


# Load the problem in the remote process rather than pickling
#def _MP_load_problem(*modelargs):
#    from .fitproblem import load_problem
#    _MP_set_problem(load_problem(*modelargs))


def _MP_set_problem(problem):
    global _problem
    nice()
    _problem = problem


def _MP_run_problem(point):
    global _problem
    return _problem.nllf(point)


class MPMapper(object):
    pool = None

    @staticmethod
    def start_worker(problem):
        pass

    @staticmethod
    def start_mapper(problem, modelargs, cpus=None):
        import multiprocessing
        if cpus is None:
            cpus = multiprocessing.cpu_count()
        if MPMapper.pool is not None:
            MPMapper.pool.terminate()
        #MPMapper.pool = multiprocessing.Pool(cpus,_MP_load_problem,modelargs)
        MPMapper.pool = multiprocessing.Pool(cpus, _MP_set_problem, (problem,))
        mapper = lambda points: MPMapper.pool.map(_MP_run_problem, points)
        return mapper

    @staticmethod
    def stop_mapper(mapper):
        pass


def _MPI_set_problem(comm, problem, root=0):
    global _problem
    _problem = comm.bcast(problem)


def _MPI_run_problem(point):
    global _problem
    return _problem.nllf(point)


def _MPI_map(comm, points, root=0):
    import numpy as np
    from mpi4py import MPI
    # Send number of points and number of variables per point
    npoints, nvars = comm.bcast(
        points.shape if comm.rank == root else None, root=root)
    if npoints == 0:
        raise StopIteration

    # Divvy points equally across all processes
    whole = points if comm.rank == root else None
    idx = np.arange(comm.size)
    size = np.ones(comm.size, idx.dtype) * \
        (npoints // comm.size) + (idx < npoints % comm.size)
    offset = np.cumsum(np.hstack((0, size[:-1])))
    part = np.empty((size[comm.rank], nvars), dtype='d')
    comm.Scatterv((whole, (size * nvars, offset * nvars), MPI.DOUBLE),
                  (part, MPI.DOUBLE),
                  root=root)

    # Evaluate models assigned to each processor
    partial_result = np.array([_MPI_run_problem(pi) for pi in part],
                                 dtype='d')

    # Collect results
    result = np.empty(npoints, dtype='d') if comm.rank == root else None
    comm.Barrier()
    comm.Gatherv((partial_result, MPI.DOUBLE),
                 (result, (size, offset), MPI.DOUBLE),
                 root=root)
    comm.Barrier()
    return result


class MPIMapper(object):

    @staticmethod
    def start_worker(problem):
        global _problem
        _problem = problem
        from mpi4py import MPI
        root = 0
        # If master, then return to main program
        if MPI.COMM_WORLD.rank == root:
            return
        # If slave, then set problem and wait in map loop
        #_MPI_set_problem(MPI.COMM_WORLD, None, root=root)
        try:
            while True:
                _MPI_map(MPI.COMM_WORLD, None, root=root)
        except StopIteration:
            pass
        MPI.Finalize()
        sys.exit(0)

    @staticmethod
    def start_mapper(problem, modelargs):
        # Slave started from start_worker, so it never gets here
        # Slave expects _MPI_set_problem followed by a series
        # of map requests
        from mpi4py import MPI
        #_MPI_set_problem(MPI.COMM_WORLD, problem)
        return lambda points: _MPI_map(MPI.COMM_WORLD, points)

    @staticmethod
    def stop_mapper(mapper):
        from mpi4py import MPI
        import numpy as np
        # Send an empty point list to stop the iteration
        try:
            mapper(np.empty((0, 0), 'd'))
            raise RuntimeException("expected StopIteration")
        except StopIteration:
            pass
        MPI.Finalize()


class AMQPMapper(object):

    @staticmethod
    def start_worker(problem):
        #sys.stderr = open("bumps-%d.log"%os.getpid(),"w")
        #print >>sys.stderr,"worker is starting"; sys.stdout.flush()
        from amqp_map.config import SERVICE_HOST
        from amqp_map.core import connect, start_worker as serve
        server = connect(SERVICE_HOST)
        #os.system("echo 'serving' > /tmp/map.%d"%(os.getpid()))
        # print "worker is serving"; sys.stdout.flush()
        serve(server, "bumps", problem.nllf)
        #print >>sys.stderr,"worker ended"; sys.stdout.flush()

    @staticmethod
    def start_mapper(problem, modelargs):
        import sys
        import multiprocessing
        import subprocess
        from amqp_map.config import SERVICE_HOST
        from amqp_map.core import connect, Mapper

        server = connect(SERVICE_HOST)
        mapper = Mapper(server, "bumps")
        cpus = multiprocessing.cpu_count()
        pipes = []
        for _ in range(cpus):
            cmd = [sys.argv[0], "--worker"] + modelargs
            # print "starting",sys.argv[0],"in",os.getcwd(),"with",cmd
            pipe = subprocess.Popen(cmd, universal_newlines=True,
                    stdout=subprocess.PIPE, stderr=subprocess.PIPE)
            pipes.append(pipe)
        for pipe in pipes:
            if pipe.poll() > 0:
                raise RuntimeError("subprocess returned %d\nout: %s\nerr: %s"
                    % (pipe.returncode, pipe.stdout, pipe.stderr))
        #os.system(" ".join(cmd+["&"]))
        import atexit

        def exit_fun():
            for p in pipes:
                p.terminate()
        atexit.register(exit_fun)

        # print "returning mapper",mapper
        return mapper

    @staticmethod
    def stop_mapper(mapper):
        for pipe in mapper.pipes:
            pipe.terminate()