/usr/lib/python3/dist-packages/bumps/fitters.py is in python3-bumps 0.7.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | """
Interfaces to various optimizers.
"""
from __future__ import print_function, division
import sys
import time
from copy import copy
import numpy as np
from . import monitor
from . import initpop
from . import lsqerror
from .history import History
from .formatnum import format_uncertainty
from .fitproblem import nllf_scale
from .dream import MCMCModel
class ConsoleMonitor(monitor.TimedUpdate):
"""
Display fit progress on the console
"""
def __init__(self, problem, progress=1, improvement=30):
monitor.TimedUpdate.__init__(self, progress=progress,
improvement=improvement)
self.problem = problem
def show_progress(self, history):
scale, err = nllf_scale(self.problem)
chisq = format_uncertainty(scale*history.value[0], err)
print("step", history.step[0], "cost", chisq)
sys.stdout.flush()
def show_improvement(self, history):
# print "step",history.step[0],"chisq",history.value[0]
p = self.problem.getp()
try:
self.problem.setp(history.point[0])
print(self.problem.summarize())
finally:
self.problem.setp(p)
sys.stdout.flush()
class StepMonitor(monitor.Monitor):
"""
Collect information at every step of the fit and save it to a file.
*fid* is the file to save the information to
*fields* is the list of "step|time|value|point" fields to save
The point field should be last in the list.
"""
FIELDS = ['step', 'time', 'value', 'point']
def __init__(self, problem, fid, fields=FIELDS):
if any(f not in self.FIELDS for f in fields):
raise ValueError("invalid monitor field")
self.fid = fid
self.fields = fields
self._pattern = "%%(%s)s\n" % (")s %(".join(fields))
fid.write("# " + ' '.join(fields) + '\n')
def config_history(self, history):
history.requires(time=1, value=1, point=1, step=1)
def __call__(self, history):
point = " ".join("%.15g" % v for v in history.point[0])
time = "%g" % history.time[0]
step = "%d" % history.step[0]
scale, _ = nllf_scale(self.problem)
value = "%.15g" % (scale * history.value[0])
out = self._pattern % dict(point=point, time=time,
value=value, step=step)
self.fid.write(out)
class MonitorRunner(object):
"""
Adaptor which allows solvers to accept progress monitors.
"""
def __init__(self, monitors, problem):
if monitors is None:
monitors = [ConsoleMonitor(problem)]
self.monitors = monitors
self.history = History(time=1, step=1, point=1, value=1,
population_points=1, population_values=1)
for M in self.monitors:
M.config_history(self.history)
self._start = time.time()
def __call__(self, step, point, value,
population_points=None, population_values=None):
self.history.update(time=time.time() - self._start,
step=step, point=point, value=value,
population_points=population_points,
population_values=population_values)
for M in self.monitors:
M(self.history)
class FitBase(object):
"""
FitBase defines the interface from bumps models to the various fitting
engines available within bumps.
Each engine is defined in its own class with a specific set of attributes
and methods.
The *name* attribute is the name of the optimizer. This is just a simple
string.
The *settings* attribute is a list of pairs (name, default), where the
names are defined as fields in FitOptions. A best attempt should be
made to map the fit options for the optimizer to the standard fit options,
since each of these becomes a new command line option when running
bumps. If that is not possible, then a new option should be added
to FitOptions. A plugin architecture might be appropriate here, if
there are reasons why specific problem domains might need custom fitters,
but this is not yet supported.
Each engine takes a fit problem in its constructor.
The :meth:`solve` method runs the fit. It accepts a
monitor to track updates, a mapper to distribute work and
key-value pairs defining the settings.
There are a number of optional methods for the fitting engines. Basically,
all the methods in :class:`FitDriver` first check if they are specialized
in the fit engine before performing a default action.
The *load*/*save* methods load and save the fitter state in a given
directory with a specific base file name. The fitter can choose a file
extension to add to the base name. Some care is needed to be sure that
the extension doesn't collide with other extensions such as .mon for
the fit monitor.
The *plot* method shows any plots to help understand the performance of
the fitter, such as a convergence plot showing the the range of values
in the population over time, as well as plots of the parameter uncertainty
if available. The plot should work within is given a figure canvas to work with
The *stderr*/*cov* methods should provide summary statistics for the
parameter uncertainties. Some fitters, such as MCMC, will compute these
directly from the population. Others, such as BFGS, will produce an
estimate of the uncertainty as they go along. If the fitter does not
provide these estimates, then they will be computed from numerical
derivatives at the minimum in the FitDriver method.
"""
def __init__(self, problem):
"""Fit the models and show the results"""
self.problem = problem
def solve(self, monitors=None, mapper=None, **options):
raise NotImplementedError
class MultiStart(FitBase):
"""
Multi-start monte carlo fitter.
This fitter wraps a local optimizer, restarting it a number of times
to give it a chance to find a different local minimum. If the keep_best
option is True, then restart near the best fit, otherwise restart at
random.
"""
name = "Multistart Monte Carlo"
settings = [('starts', 100)]
def __init__(self, fitter):
FitBase.__init__(self, fitter.problem)
self.fitter = fitter
def solve(self, monitors=None, mapper=None, **options):
# TODO: need better way of tracking progress
import logging
starts = options.pop('starts', 1)
reset = not options.pop('keep_best', True)
f_best = np.inf
x_best = self.problem.getp()
for _ in range(max(starts, 1)):
logging.info("multistart round %d"%_)
x, fx = self.fitter.solve(monitors=monitors, mapper=mapper,
**options)
if fx < f_best:
x_best, f_best = x, fx
logging.info("multistart f(x),x: %s %s"%(str(fx),str(x_best)))
if reset:
self.problem.randomize()
else:
# Jitter
self.problem.setp(x_best)
pop = initpop.eps_init(1, self.problem.getp(),
self.problem.bounds(),
use_point=False, eps=1e-3)
self.problem.setp(pop[0])
return x_best, f_best
class DEFit(FitBase):
"""
Classic Storn and Price differential evolution optimizer.
"""
name = "Differential Evolution"
id = "de"
settings = [('steps', 1000), ('pop', 10), ('CR', 0.9), ('F', 2.0),
('ftol', 1e-8), ('xtol', 1e-6), #('stop', ''),
]
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
from .mystic.optimizer import de
from .mystic.solver import Minimizer
from .mystic import stop
if monitors is None:
monitors = [ConsoleMonitor(self.problem)]
if mapper is not None:
_mapper = lambda p, v: mapper(v)
else:
_mapper = lambda p, v: list(map(self.problem.nllf, v))
resume = hasattr(self, 'state')
steps = options['steps'] + (self.state['step'][-1] if resume else 0)
strategy = de.DifferentialEvolution(npop=options['pop'],
CR=options['CR'],
F=options['F'],
crossover=de.c_bin,
mutate=de.rand1u)
success = parse_tolerance(options)
failure = stop.Steps(steps)
self.history = History()
# Step adds to current step number if resume
minimize = Minimizer(strategy=strategy, problem=self.problem,
history=self.history, monitors=monitors,
success=success, failure=failure)
if resume:
self.history.restore(self.state)
x = minimize(mapper=_mapper, abort_test=abort_test, resume=resume)
#print(minimize.termination_condition())
#with open("/tmp/evals","a") as fid:
# print >>fid,minimize.history.value[0],minimize.history.step[0],\
# minimize.history.step[0]*options['pop']*len(self.problem.getp())
return x, self.history.value[0]
def load(self, input_path):
self.state = load_history(input_path)
def save(self, output_path):
save_history(output_path, self.history.snapshot())
def parse_tolerance(options):
from .mystic import stop
if options.get('stop', ''):
return stop.parse_condition(options['stop'])
xtol, ftol = options['xtol'], options['ftol']
if xtol == 0:
if ftol == 0:
return None
if ftol < 0:
return stop.Rf(-ftol, scaled=True)
return stop.Rf(ftol, scaled=False)
else:
if xtol == 0:
return None
if xtol < 0:
return stop.Rx(-xtol, scaled=True)
return stop.Rx(xtol, scaled=False)
def _history_file(path):
return path + "-history.json"
def load_history(path):
"""
Load fitter details from a history file.
"""
import json
with open(_history_file(path), "r") as fid:
return json.load(fid)
def save_history(path, state):
"""
Save fitter details to a history file as JSON.
The content of the details are fitter specific.
"""
import json
with open(_history_file(path), "w") as fid:
json.dump(state, fid)
class BFGSFit(FitBase):
"""
BFGS quasi-newton optimizer.
"""
name = "Quasi-Newton BFGS"
id = "newton"
settings = [('steps', 3000), ('starts', 1),
('ftol', 1e-6), ('xtol', 1e-12)]
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
from .quasinewton import quasinewton
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
result = quasinewton(fn=self.problem.nllf,
x0=self.problem.getp(),
monitor=self._monitor,
abort_test=abort_test,
itnlimit=options['steps'],
gradtol=options['ftol'],
steptol=1e-12,
macheps=1e-8,
eta=1e-8,
)
self.result = result
#code = result['status']
#from .quasinewton import STATUS
#print("%d: %s, x=%s, fx=%s"
# % (code, STATUS[code], result['x'], result['fx']))
return result['x'], result['fx']
# BFGS estimates hessian and its cholesky decomposition, but initial
# tests give uncertainties quite different from the directly computed
# jacobian in levenburg-marquardt or the hessian estimated at the
# minimum by numdifftools
def Hstderr(self):
return lsqerror.chol_stderr(self.result['L'])
def Hcov(self):
return lsqerror.chol_cov(self.result['L'])
def _monitor(self, step, x, fx):
self._update(step=step, point=x, value=fx,
population_points=[x],
population_values=[fx])
return True
class PSFit(FitBase):
"""
Particle swarm optimizer.
"""
name = "Particle Swarm"
id = "ps"
settings = [('steps', 3000), ('pop', 1)]
def solve(self, monitors=None, mapper=None, **options):
options = _fill_defaults(options, self.settings)
if mapper is None:
mapper = lambda x: list(map(self.problem.nllf, x))
from .random_lines import particle_swarm
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
low, high = self.problem.bounds()
cfo = dict(parallel_cost=mapper,
n=len(low),
x0=self.problem.getp(),
x1=low,
x2=high,
f_opt=0,
monitor=self._monitor)
npop = int(cfo['n'] * options['pop'])
result = particle_swarm(cfo, npop, maxiter=options['steps'])
satisfied_sc, n_feval, f_best, x_best = result
return x_best, f_best
def _monitor(self, step, x, fx, k):
self._update(step=step, point=x[:, k], value=fx[k],
population_points=x.T, population_values=fx)
return True
class RLFit(FitBase):
"""
Random lines optimizer.
"""
name = "Random Lines"
id = "rl"
settings = [('steps', 3000), ('starts', 20), ('pop', 0.5), ('CR', 0.9)]
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
if mapper is None:
mapper = lambda x: list(map(self.problem.nllf, x))
from .random_lines import random_lines
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
low, high = self.problem.bounds()
cfo = dict(parallel_cost=mapper,
n=len(low),
x0=self.problem.getp(),
x1=low,
x2=high,
f_opt=0,
monitor=self._monitor)
npop = max(int(cfo['n'] * options['pop']), 3)
result = random_lines(cfo, npop, abort_test=abort_test,
maxiter=options['steps'], CR=options['CR'])
satisfied_sc, n_feval, f_best, x_best = result
return x_best, f_best
def _monitor(self, step, x, fx, k):
# print "rl best",k, x.shape,fx.shape
self._update(step=step, point=x[:, k], value=fx[k],
population_points=x.T, population_values=fx)
return True
class PTFit(FitBase):
"""
Parallel tempering optimizer.
"""
name = "Parallel Tempering"
id = "pt"
settings = [('steps', 400), ('nT', 24), ('CR', 0.9),
('burn', 100), ('Tmin', 0.1), ('Tmax', 10)]
def solve(self, monitors=None, mapper=None, **options):
options = _fill_defaults(options, self.settings)
# TODO: no mapper??
from .partemp import parallel_tempering
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
t = np.logspace(np.log10(options['Tmin']),
np.log10(options['Tmax']),
options['nT'])
history = parallel_tempering(nllf=self.problem.nllf,
p=self.problem.getp(),
bounds=self.problem.bounds(),
# logfile="partemp.dat",
T=t,
CR=options['CR'],
steps=options['steps'],
burn=options['burn'],
monitor=self._monitor)
return history.best_point, history.best
def _monitor(self, step, x, fx, P, E):
self._update(step=step, point=x, value=fx,
population_points=P, population_values=E)
return True
class SimplexFit(FitBase):
"""
Nelder-Mead simplex optimizer.
"""
name = "Nelder-Mead Simplex"
id = "amoeba"
settings = [('steps', 1000), ('starts', 1), ('radius', 0.15),
('xtol', 1e-6), ('ftol', 1e-8)]
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
from .simplex import simplex
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
# TODO: no mapper??
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
# print "bounds",self.problem.bounds()
result = simplex(f=self.problem.nllf, x0=self.problem.getp(),
bounds=self.problem.bounds(),
abort_test=abort_test,
update_handler=self._monitor,
maxiter=options['steps'],
radius=options['radius'],
xtol=options['xtol'],
ftol=options['ftol'])
# Let simplex propose the starting point for the next amoeba
# fit in a multistart amoeba context. If the best is always
# used, the fit can get stuck in a local minimum.
self.problem.setp(result.next_start)
#print("amoeba %s %s"%(result.x,result.fx))
return result.x, result.fx
def _monitor(self, k, n, x, fx):
self._update(step=k, point=x[0], value=fx[0],
population_points=x, population_values=fx)
return True
class LevenbergMarquardtFit(FitBase):
"""
Levenberg-Marquardt optimizer.
"""
name = "Levenberg-Marquardt"
id = "lm"
settings = [('steps', 200), ('ftol', 1.5e-8), ('xtol', 1.5e-8)]
# LM also has
# gtol: orthoganality between jacobian columns
# epsfcn: numerical derivative step size
# factor: initial radius
# diag: variable scale factors to bring them near 1
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
from scipy import optimize
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
self._low, self._high = self.problem.bounds()
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
x0 = self.problem.getp()
maxfev = options['steps']*(len(x0)+1)
result = optimize.leastsq(self._bounded_residuals,
x0,
ftol=options['ftol'],
xtol=options['xtol'],
maxfev=maxfev,
epsfcn=1e-8,
full_output=True)
x, cov_x, info, mesg, success = result
if not 1 <= success <= 4:
# don't treat "reached maxfev" as a true failure
if "reached maxfev" in mesg:
# unless the x values are bad
if not np.all(np.isfinite(x)):
x = None
mesg = "Levenberg-Marquardt fit failed with bad values"
else:
x = None
self._cov = cov_x if x is not None else None
# compute one last time with x forced inside the boundary, and using
# problem.nllf as returned by other optimizers. We will ignore the
# covariance output and calculate it again ourselves. Not ideal if
# f is expensive, but it will be consistent with other optimizers.
if x is not None:
self.problem.setp(x + self._stray_delta(x))
fx = self.problem.nllf()
else:
fx = None
return x, fx
def _bounded_residuals(self, p):
# Force the fit point into the valid region
stray = self._stray_delta(p)
stray_cost = np.sum(stray**2)
if stray_cost > 0: stray_cost += 1e6
self.problem.setp(p + stray)
# treat prior probabilities on the parameters as additional
# measurements
residuals = np.hstack(
(self.problem.residuals().flat, self.problem.parameter_residuals()))
# Tally costs for straying outside the boundaries plus other costs
extra_cost = stray_cost + self.problem.constraints_nllf()
# Spread the cost over the residuals. Since we are smoothly increasing
# residuals as we leave the boundary, this should push us back into the
# boundary (within tolerance) during the lm fit.
residuals += np.sign(residuals) * (extra_cost / len(residuals))
return residuals
def _stray_delta(self, p):
"""calculate how far point is outside the boundary"""
return (np.where(p < self._low, self._low - p, 0)
+ np.where(p > self._high, self._high - p, 0))
def cov(self):
return self._cov
class SnobFit(FitBase):
name = "SNOBFIT"
id = "snobfit"
settings = [('steps', 200)]
def solve(self, monitors=None, mapper=None, **options):
options = _fill_defaults(options, self.settings)
# TODO: no mapper??
from snobfit.snobfit import snobfit
self._update = MonitorRunner(problem=self.problem,
monitors=monitors)
x, fx, _ = snobfit(self.problem, self.problem.getp(),
self.problem.bounds(),
fglob=0, callback=self._monitor)
return x, fx
def _monitor(self, k, x, fx, improved):
# TODO: snobfit does have a population...
self._update(step=k, point=x, value=fx,
population_points=[x], population_values=[fx])
class DreamModel(MCMCModel):
"""
DREAM wrapper for fit problems.
"""
def __init__(self, problem=None, mapper=None):
"""
Create a sampling from the multidimensional likelihood function
represented by the problem set using dream.
"""
# print "dream"
self.problem = problem
self.bounds = self.problem.bounds()
self.labels = self.problem.labels()
self.mapper = mapper if mapper else lambda p: list(map(self.nllf, p))
def log_density(self, x):
return -self.nllf(x)
def nllf(self, x):
"""Negative log likelihood of seeing models given *x*"""
# Note: usually we will be going through the provided mapper, and
# this function will never be called.
# print "eval",x; sys.stdout.flush()
return self.problem.nllf(x)
def map(self, pop):
# print "calling mapper",self.mapper
return -np.array(self.mapper(pop))
class DreamFit(FitBase):
name = "DREAM"
id = "dream"
settings = [('samples', int(1e4)), ('burn', 100), ('pop', 10),
('init', 'eps'), ('thin', 1),
('steps', 0), # deprecated: use --samples instead
]
def __init__(self, problem):
FitBase.__init__(self, problem)
self.dream_model = DreamModel(problem)
self.state = None
def solve(self, monitors=None, abort_test=None, mapper=None, **options):
from .dream import Dream
if abort_test is None:
abort_test = lambda: False
options = _fill_defaults(options, self.settings)
if mapper:
self.dream_model.mapper = mapper
self._update = MonitorRunner(problem=self.dream_model.problem,
monitors=monitors)
population = initpop.generate(self.dream_model.problem, **options)
pop_size = population.shape[0]
draws, steps = int(options['samples']), options['steps']
if steps == 0:
steps = (draws + pop_size-1) // pop_size
# TODO: need a better way to announce number of steps
# maybe somehow print iteration # of # iters in the monitor?
print("# steps: %d, # draws: %d"%(steps, pop_size*steps))
population = population[None, :, :]
sampler = Dream(model=self.dream_model, population=population,
draws=pop_size * steps,
burn=pop_size * options['burn'],
thinning=options['thin'],
monitor=self._monitor,
DE_noise=1e-6)
self.state = sampler.sample(state=self.state, abort_test=abort_test)
self.state.mark_outliers()
self.state.keep_best()
self.state.title = self.dream_model.problem.name
# TODO: Temporary hack to apply a post-mcmc action to the state vector
# The problem is that if we manipulate the state vector before saving
# it then we will not be able to use the --resume feature. We can
# get around this by just not writing state for the derived variables,
# at which point we can remove this notice.
# TODO: Add derived/visible variable support to other optimizers
fn, labels = getattr(self.problem, 'derive_vars', (None, None))
if fn is not None:
self.state.derive_vars(fn, labels=labels)
visible_vars = getattr(self.problem, 'visible_vars', None)
if visible_vars is not None:
self.state.set_visible_vars(visible_vars)
integer_vars = getattr(self.problem, 'integer_vars', None)
if integer_vars is not None:
self.state.integer_vars(integer_vars)
x, fx = self.state.best()
# Check that the last point is the best point
#points, logp = self.state.sample()
#assert logp[-1] == fx
#print(points[-1], x)
#assert all(points[-1, i] == xi for i, xi in enumerate(x))
return x, -fx
def entropy(self, **kw):
return self.state.entropy(**kw)
def _monitor(self, state, pop, logp):
# Get an early copy of the state
self._update.history.uncertainty_state = state
step = state.generation
x, fx = state.best()
self._update(step=step, point=x, value=-fx,
population_points=pop, population_values=-logp)
return True
def stderr(self):
"""
Approximate standard error as 1/2 the 68% interval fo the sample,
which is a more robust measure than the mean of the sample for
non-normal distributions.
"""
from .dream.stats import var_stats
vstats = var_stats(self.state.draw())
return np.array([(v.p68[1] - v.p68[0]) / 2 for v in vstats], 'd')
#def cov(self):
# # Covariance estimate from final 1000 points
# return np.cov(self.state.draw().points[-1000:])
def load(self, input_path):
from .dream.state import load_state
print("loading saved state (this might take awhile) ...")
self.state = load_state(input_path, report=100)
def save(self, output_path):
self.state.save(output_path)
def plot(self, output_path):
self.state.show(figfile=output_path)
self.error_plot(figfile=output_path)
def show(self):
pass
def error_plot(self, figfile):
# Produce error plot
import pylab
from . import errplot
# TODO: shouldn't mix calc and display!
res = errplot.calc_errors_from_state(self.dream_model.problem,
self.state)
if res is not None:
pylab.figure()
errplot.show_errors(res)
pylab.savefig(figfile + "-errors.png", format='png')
class Resampler(FitBase):
# TODO: why isn't cli.resynth using this?
def __init__(self, fitter):
self.fitter = fitter
raise NotImplementedError
def solve(self, **options):
starts = options.pop('starts', 1)
restart = options.pop('restart', False)
x, fx = self.fitter.solve(**options)
points = _resampler(self.fitter, x, samples=starts,
restart=restart, **options)
self.points = points # save points for later plotting
return x, fx
def _resampler(fitter, xinit, samples=100, restart=False, **options):
"""
Refit the result multiple times with resynthesized data, building
up an array in Result.samples which contains the best fit to the
resynthesized data. *samples* is the number of samples to generate.
*fitter* is the (local) optimizer to use. **kw are the parameters
for the optimizer.
"""
x = xinit
points = []
try: # TODO: some solvers already catch KeyboardInterrupt
for _ in range(samples):
# print "== resynth %d of %d" % (i, samples)
fitter.problem.resynth_data()
if restart:
fitter.problem.randomize()
else:
fitter.problem.setp(x)
x, fx = fitter.solve(**options)
points.append(np.hstack((fx, x)))
# print self.problem.summarize()
# print "[chisq=%g]" % (nllf*2/self.problem.dof)
except KeyboardInterrupt:
# On keyboard interrupt we can declare that we are finished sampling
# without it being an error condition, so let this exception pass.
pass
finally:
# Restore the state of the problem
fitter.problem.restore_data()
fitter.problem.setp(xinit)
fitter.problem.model_update()
return points
class FitDriver(object):
def __init__(self, fitclass=None, problem=None, monitors=None,
abort_test=None, mapper=None, **options):
self.fitclass = fitclass
self.problem = problem
self.options = options
self.monitors = monitors
self.abort_test = abort_test
self.mapper = mapper if mapper else lambda p: list(map(problem.nllf, p))
def fit(self, resume=None):
if hasattr(self, '_cov'): del self._cov
if hasattr(self, '_stderr'): del self._stderr
fitter = self.fitclass(self.problem)
if resume:
fitter.load(resume)
starts = self.options.get('starts', 1)
if starts > 1:
fitter = MultiStart(fitter)
t0 = time.clock()
x, fx = fitter.solve(monitors=self.monitors,
abort_test=self.abort_test,
mapper=self.mapper,
**self.options)
self.fitter = fitter
self.time = time.clock() - t0
self.result = x, fx
if x is not None:
self.problem.setp(x)
return x, fx
def entropy(self):
if hasattr(self.fitter, 'entropy'):
return self.fitter.entropy()
else:
from .dream import entropy
return entropy.cov_entropy(self.cov()), 0
def cov(self):
"""
Return an estimate of the covariance of the fit.
Depending on the fitter and the problem, this may be computed from
existing evaluations within the fitter, or from numerical
differentiation around the minimum. The numerical differentiation
will use the Hessian estimated from nllf. If the problem uses
$\chi^2/2$ as its nllf, then you may want to instead compute
the covariance from the Jacobian::
J = lsqerror.jacobian(fitdriver.result[0])
cov = lsqerror.cov(J)
This should be faster and more accurate than the Hessian of nllf
when you can use it.
"""
if not hasattr(self, '_cov'):
self._cov = None
if hasattr(self.fitter, 'cov'):
self._cov = self.fitter.cov()
if self._cov is None:
if hasattr(self.problem, 'residuals'):
J = lsqerror.jacobian(self.problem, self.result[0])
self._cov = lsqerror.cov(J)
else:
H = lsqerror.hessian(self.problem, self.result[0])
H, L = lsqerror.perturbed_hessian(H)
self._cov = lsqerror.chol_cov(L)
return self._cov
def stderr(self):
"""
Return an estimate of the standard error of the fit.
Depending on the fitter and the problem, this may be computed from
existing evaluations within the fitter, or from numerical
differentiation around the minimum.
"""
if not hasattr(self, '_stderr'):
self._stderr = None
if hasattr(self.fitter, 'stderr'):
self._stderr = self.fitter.stderr()
if self._stderr is None:
# If no stderr from the fitter then compute it from the covariance
self._stderr = lsqerror.stderr(self.cov())
return self._stderr
def show(self):
if hasattr(self.fitter, 'show'):
self.fitter.show()
if hasattr(self.problem, 'show'):
self.problem.show()
def show_err(self):
"""
Display the error approximation from the numerical derivative.
Warning: cost grows as the cube of the number of parameters.
"""
# TODO: need cheaper uncertainty estimate
# Note: error estimated from hessian diagonal is insufficient.
err = lsqerror.stderr(self.cov())
norm = np.sqrt(self.problem.chisq())
print("=== Uncertainty est. from curvature: par dx dx/sqrt(chisq) ===")
for k, v, dv in zip(self.problem.labels(), self.problem.getp(), err):
print("%40s %-15s %-15s" %(k,
format_uncertainty(v, dv),
format_uncertainty(v, dv/norm),
))
print("="*75)
def save(self, output_path):
# print "calling driver save"
if hasattr(self.fitter, 'save'):
self.fitter.save(output_path)
if hasattr(self.problem, 'save'):
self.problem.save(output_path)
def load(self, input_path):
# print "calling driver save"
if hasattr(self.fitter, 'load'):
self.fitter.load(input_path)
if hasattr(self.problem, 'load'):
self.problem.load(input_path)
def plot(self, output_path, view=None):
# print "calling fitter.plot"
if hasattr(self.problem, 'plot'):
self.problem.plot(figfile=output_path, view=view)
if hasattr(self.fitter, 'plot'):
self.fitter.plot(output_path=output_path)
def _fill_defaults(options, settings):
"""
Returns options dict with missing values filled from settings.
"""
result = dict(settings) # settings is a list of (key,value) pairs
result.update(options)
return result
# List of (parameter,factory value) required for each algorithm
FITTERS = [
SimplexFit,
DEFit,
DreamFit,
BFGSFit,
LevenbergMarquardtFit,
PSFit,
PTFit,
RLFit,
SnobFit,
]
FIT_AVAILABLE_IDS = [f.id for f in FITTERS]
FIT_ACTIVE_IDS = [
SimplexFit.id,
DEFit.id,
DreamFit.id,
BFGSFit.id,
LevenbergMarquardtFit.id,
]
FIT_DEFAULT_ID = SimplexFit.id
assert FIT_DEFAULT_ID in FIT_ACTIVE_IDS
assert all(f in FIT_AVAILABLE_IDS for f in FIT_ACTIVE_IDS)
|