This file is indexed.

/usr/lib/python3/dist-packages/bumps/fitproblem.py is in python3-bumps 0.7.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
"""
Interface between the models and the fitters.

:class:`Fitness` defines the interface that model evaluators can follow.
These models can be bundled together into a :func:`FitProblem` and sent
to :class:`bumps.fitters.FitDriver` for optimization and uncertainty
analysis.
"""
from __future__ import division, with_statement

__all__ = ['Fitness', 'FitProblem', 'load_problem',
           'BaseFitProblem', 'MultiFitProblem']

import sys

import numpy as np
from numpy import inf, isnan

from . import parameter, bounds as mbounds
from .formatnum import format_uncertainty

# Abstract base class
class Fitness(object):
    """
    Manage parameters, data, and theory function evaluation.

    See :ref:`fitness` for a detailed explanation.
    """
    def parameters(self):
        """
        Return the parameters in the model.

        Model parameters are a hierarchical structure of lists and
        dictionaries.
        """
        raise NotImplementedError

    def update(self):
        """
        Called when parameters have been updated.  Any cached values will need
        to be cleared and the model reevaluated.
        """
        raise NotImplementedError

    def numpoints(self):
        """
        Return the number of data points.
        """
        raise NotImplementedError

    def nllf(self):
        """
        Return the negative log likelihood value of the current parameter set.
        """
        raise NotImplementedError

    def resynth_data(self):
        """
        Generate fake data based on uncertainties in the real data.  For
        Monte Carlo resynth-refit uncertainty analysis.  Bootstrapping?
        """
        raise NotImplementedError

    def restore_data(self):
        """
        Restore the original data in the model (after resynth).
        """
        raise NotImplementedError

    def residuals(self):
        """
        Return residuals for current theory minus data.

        Used for Levenburg-Marquardt, and for plotting.
        """
        raise NotImplementedError

    def save(self, basename):
        """
        Save the model to a file based on basename+extension.  This will point
        to a path to a directory on a remote machine; don't make any
        assumptions about information stored on the server.  Return the set of
        files saved so that the monitor software can make a pretty web page.
        """
        pass

    def plot(self, view='linear'):
        """
        Plot the model to the current figure.  You only get one figure, but you
        can make it as complex as you want.  This will be saved as a png on
        the server, and composed onto a results web page.
        """
        pass


def no_constraints():
    """default constraints function for FitProblem"""
    return 0


# TODO: refactor FitProblem definition
# deprecate the direct use of MultiFitProblem
def FitProblem(*args, **kw):
    """
    Return a fit problem instance for the fitness function(s).

    For an individual model:

        *fitness* is a :class:`Fitness` instance.

    For a set of models:

        *models* is a sequence of :class:`Fitness` instances.

        *weights* is an optional scale factor for each model

        *freevars* is :class:`parameter.FreeVariables` instance defining the
        per-model parameter assignments.  See :ref:`freevariables` for details.


    Additional parameters:

        *name* name of the problem

        *constraints* is a function which returns the negative log likelihood
        of seeing the parameters independent from the fitness function.  Use
        this for example to check for feasible regions of the search space, or
        to add constraints that cannot be easily calculated per parameter.
        Ideally, the constraints nllf will increase as you go farther from
        the feasible region so that the fit will be directed toward feasible
        values.

        *soft_limit* is the constraints function cutoff, beyond which the
        *penalty_nllf* will be used and *fitness* nllf will not be calculated.

        *penalty_nllf* is the nllf to use for *fitness* when *constraints*
        is greater than *soft_limit*.

    Total nllf is the sum of the parameter nllf, the constraints nllf and the
    depending on whether constraints is greater than soft_limit, either the
    fitness nllf or the penalty nllf.
    """
    if len(args) > 0:
        try:
            models = list(args[0])
        except TypeError:
            models = args[0]
        if isinstance(models, list):
            return MultiFitProblem(models, *args[1:], **kw)
        else:
            return BaseFitProblem(*args, **kw)
    else:
        if 'fitness' in kw:
            return BaseFitProblem(*args, **kw)
        else:
            return MultiFitProblem(*args, **kw)


class BaseFitProblem(object):
    """
    See :func:`FitProblem`
    """
    def __init__(self, fitness, name=None, constraints=no_constraints,
                 penalty_nllf=1e6, soft_limit=np.inf, partial=False):
        self.constraints = constraints
        self.fitness = fitness
        self.partial = partial
        if name is not None:
            self.name = name
        else:
            try:
                self.name = fitness.name
            except AttributeError:
                self.name = 'FitProblem'

        self.soft_limit = soft_limit
        self.penalty_nllf = penalty_nllf
        self.model_reset()

    # noinspection PyAttributeOutsideInit
    def model_reset(self):
        """
        Prepare for the fit.

        This sets the parameters and the bounds properties that the
        solver is expecting from the fittable object.  We also compute
        the degrees of freedom so that we can return a normalized fit
        likelihood.

        If the set of fit parameters changes, then model_reset must
        be called.
        """
        # print self.model_parameters()
        all_parameters = parameter.unique(self.model_parameters())
        # print "all_parameters",all_parameters
        self._parameters = parameter.varying(all_parameters)
        # print "varying",self._parameters
        self.bounded = [p for p in all_parameters
                        if not isinstance(p.bounds, mbounds.Unbounded)]
        self.dof = self.model_points()
        if not self.partial:
            self.dof -= len(self._parameters)
        if self.dof <= 0:
            raise ValueError("Need more data points than fitting parameters")
        #self.constraints = pars.constraints()

    def model_parameters(self):
        """
        Parameters associated with the model.
        """
        return self.fitness.parameters()

    def model_points(self):
        """
        Number of data points associated with the model.
        """
        return self.fitness.numpoints()

    def model_update(self):
        """
        Update the model according to the changed parameters.
        """
        if hasattr(self.fitness, 'update'):
            self.fitness.update()

    def model_nllf(self):
        """
        Negative log likelihood of seeing data given model.
        """
        return self.fitness.nllf()

    def simulate_data(self, noise=None):
        """Simulate data with added noise"""
        self.fitness.simulate_data(noise=noise)

    def resynth_data(self):
        """Resynthesize data with noise from the uncertainty estimates."""
        self.fitness.resynth_data()

    def restore_data(self):
        """Restore original data after resynthesis."""
        self.fitness.restore_data()

    def valid(self, pvec):
        return all(v in p.bounds for p, v in zip(self._parameters, pvec))

    def setp(self, pvec):
        """
        Set a new value for the parameters into the model.  If the model
        is valid, calls model_update to signal that the model should be
        recalculated.

        Returns True if the value is valid and the parameters were set,
        otherwise returns False.
        """
        # TODO: do we have to leave the model in an invalid state?
        # WARNING: don't try to conditionally update the model
        # depending on whether any model parameters have changed.
        # For one thing, the model_update below probably calls
        # the subclass MultiFitProblem.model_update, which signals
        # the individual models.  Furthermore, some parameters may
        # related to others via expressions, and so a dependency
        # tree needs to be generated.  Whether this is better than
        # clicker() from SrFit I do not know.
        for v, p in zip(pvec, self._parameters):
            p.value = v
        # TODO: setp_hook is a hack to support parameter expressions in sasview
        # Don't depend on this existing long term.
        setp_hook = getattr(self, 'setp_hook', no_constraints)
        setp_hook()
        self.model_update()

    def getp(self):
        """
        Returns the current value of the parameter vector.
        """
        return np.array([p.value for p in self._parameters], 'd')

    def bounds(self):
        return np.array([p.bounds.limits for p in self._parameters], 'd').T

    def randomize(self, n=None):
        """
        Generates a random model.

        *randomize()* sets the model to a random value.

        *randomize(n)* returns a population of *n* random models.

        For indefinite bounds, the random population distribution is centered
        on initial value of the parameter, or 1. if the initial parameter is
        not finite.
        """
        # TODO: split into two: randomize and random_pop
        if n is None:
            self.setp(self.randomize(n=1)[0])
            return   # Not returning anything since no n is requested

        target = self.getp()
        target[~np.isfinite(target)] = 1.
        pop = [p.bounds.random(n, target=v)
               for p, v in zip(self._parameters, target)]
        return np.array(pop).T

    def parameter_nllf(self):
        """
        Returns negative log likelihood of seeing parameters p.
        """
        s = sum(p.nllf() for p in self.bounded)
        # print "; ".join("%s %g %g"%(p,p.value,p.nllf()) for p in
        # self.bounded)
        return s

    def constraints_nllf(self):
        """
        Returns the cost of all constraints.
        """
        return self.constraints()

    def parameter_residuals(self):
        """
        Returns negative log likelihood of seeing parameters p.
        """
        return [p.residual() for p in self.bounded]

    def residuals(self):
        """
        Return the model residuals.
        """
        return self.fitness.residuals()

    def chisq(self):
        """
        Return sum squared residuals normalized by the degrees of freedom.

        In the context of a composite fit, the reduced chisq on the individual
        models only considers the points and the fitted parameters within
        the individual model.

        Note that this does not include cost factors due to constraints on
        the parameters, such as sample_offset ~ N(0,0.01).
        """
        return np.sum(self.residuals() ** 2) / self.dof
        # return 2*self.nllf()/self.dof

    def nllf(self, pvec=None):
        """
        Compute the cost function for a new parameter set p.

        Note that this is not simply the sum-squared residuals, but instead
        is the negative log likelihood of seeing the data given the model plus
        the negative log likelihood of seeing the model.  The individual
        likelihoods are scaled by 1/max(P) so that normalization constants
        can be ignored.

        The model is not actually calculated if the parameter nllf plus the
        constraint nllf are bigger than *soft_limit*, but instead it is
        assigned a value of *penalty_nllf*.
        """
        if pvec is not None:
            if self.valid(pvec):
                self.setp(pvec)
            else:
                return inf

        try:
            if isnan(self.parameter_nllf()):
                # TODO: make sure errors get back to the user
                import logging
                info = ["Parameter nllf is wrong"]
                info += ["%s %g" %(p,p.nllf()) for p in self.bounded]
                logging.error("\n  ".join(info))
            pparameter = self.parameter_nllf()
            pconstraint = self.constraints_nllf()
            pmodel = (self.model_nllf()
                      if pparameter + pconstraint <= self.soft_limit
                      else self.penalty_nllf)
            cost = pparameter + pconstraint + pmodel
        except Exception:
            # TODO: make sure errors get back to the user
            import traceback, logging
            info = (traceback.format_exc(),
                    parameter.summarize(self._parameters))
            logging.error("\n".join(info))
            return inf
        if isnan(cost):
            # TODO: make sure errors get back to the user
            # print "point evaluates to NaN"
            # print parameter.summarize(self._parameters)
            return inf
        # print pvec, "cost",cost,"=",pparameter,"+",pconstraint,"+",pmodel
        return cost

    def __call__(self, pvec=None):
        """
        Problem cost function.

        Returns the negative log likelihood scaled by DOF so that
        the result looks like the familiar normalized chi-squared.  These
        scale factors will not affect the value of the minimum, though some
        care will be required when interpreting the uncertainty.
        """
        return 2 * self.nllf(pvec) / self.dof

    def show(self):
        print(parameter.format(self.model_parameters()))
        print("[chisq=%s, nllf=%g]" % (self.chisq_str(), self.nllf()))
        #print(self.summarize())

    def summarize(self):
        return parameter.summarize(self._parameters)

    def labels(self):
        return [p.name for p in self._parameters]

    def save(self, basename):
        if hasattr(self.fitness, 'save'):
            self.fitness.save(basename)

    def plot(self, p=None, fignum=None, figfile=None, view=None):
        if not hasattr(self.fitness, 'plot'):
            return

        import pylab
        if fignum is not None:
            pylab.figure(fignum)
        if p is not None:
            self.setp(p)
        self.fitness.plot(view=view)
        pylab.text(0.01, 0.01, 'chisq=%s' % self.chisq_str(),
                   transform=pylab.gca().transAxes)
        if figfile is not None:
            pylab.savefig(figfile + "-model.png", format='png')

    def cov(self):
        from . import lsqerror
        H = lsqerror.hessian(self)
        H, L = lsqerror.perturbed_hessian(H)
        return lsqerror.chol_cov(L)

    def stderr(self):
        from . import lsqerror
        c = self.cov()
        return lsqerror.stderr(c), lsqerror.corr(c)

    def __getstate__(self):
        return (self.fitness, self.partial, self.name, self.penalty_nllf,
                self.soft_limit, self.constraints)

    def __setstate__(self, state):
        self.fitness, self.partial, self.name, self.penalty_nllf, \
            self.soft_limit, self.constraints = state
        self.model_reset()

    def chisq_str(self):
        # TODO: remove unnecessary try-catch
        try:
            _, err = nllf_scale(self)
            text = format_uncertainty(self.chisq(), err)
            constraints = (self.parameter_nllf()
                           + self.constraints_nllf())
            if constraints > 0.:
                text+= " constraints=%g"%constraints
        except Exception:
            # Otherwise indicate that chisq could not be calculated.
            text = "--"

        return text

class MultiFitProblem(BaseFitProblem):
    """
    Weighted fits for multiple models.
    """
    def __init__(self, models, weights=None, name=None,
                 constraints=no_constraints,
                 soft_limit=np.inf, penalty_nllf=1e6,
                 freevars=None):
        self.partial = False
        self.constraints = constraints
        if freevars is None:
            names = ["M%d" % i for i, _ in enumerate(models)]
            freevars = parameter.FreeVariables(names=names)
        self.freevars = freevars
        self._models = [BaseFitProblem(m, partial=True) for m in models]
        if weights is None:
            weights = [1 for _ in models]
        self.weights = weights
        self.penalty_nllf = penalty_nllf
        self.soft_limit = soft_limit
        self.set_active_model(0)  # Set the active model to model 0
        self.model_reset()
        self.name = name

    @property
    def models(self):
        """Iterate over models, with free parameters set from model values"""
        for i, f in enumerate(self._models):
            self.freevars.set_model(i)
            yield f
        # Restore the active model after cycling
        self.freevars.set_model(self._active_model_index)

    # noinspection PyAttributeOutsideInit
    def set_active_model(self, i):
        """Use free parameters from model *i*"""
        self._active_model_index = i
        self.active_model = self._models[i]
        self.freevars.set_model(i)

    def model_parameters(self):
        """Return parameters from all models"""
        pars = {'models': [f.model_parameters() for f in self.models]}
        free = self.freevars.parameters()
        if free:
            pars['freevars'] = free
        return pars

    def model_points(self):
        """Return number of points in all models"""
        return sum(f.model_points() for f in self.models)

    def model_update(self):
        """Let all models know they need to be recalculated"""
        # TODO: consider an "on changed" signal for model updates.
        # The update function would be associated with model parameters
        # rather than always recalculating everything.  This
        # allows us to set up fits with 'fast' and 'slow' parameters,
        # where the fit can quickly explore a subspace where the
        # computation is cheap before jumping to a more expensive
        # subspace.  SrFit does this.
        for f in self.models:
            f.model_update()

    def model_nllf(self):
        """Return cost function for all data sets"""
        return sum(f.model_nllf() for f in self.models)

    def constraints_nllf(self):
        """Return the cost function for all constraints"""
        return (sum(f.constraints_nllf() for f in self.models)
                + BaseFitProblem.constraints_nllf(self))

    def simulate_data(self, noise=None):
        """Simulate data with added noise"""
        for f in self.models:
            f.simulate_data(noise=noise)

    def resynth_data(self):
        """Resynthesize data with noise from the uncertainty estimates."""
        for f in self.models:
            f.resynth_data()

    def restore_data(self):
        """Restore original data after resynthesis."""
        for f in self.models:
            f.restore_data()

    def residuals(self):
        resid = np.hstack([w * f.residuals()
                              for w, f in zip(self.weights, self.models)])
        return resid

    def save(self, basename):
        for i, f in enumerate(self.models):
            f.save(basename + "-%d" % (i + 1))

    def show(self):
        for i, f in enumerate(self.models):
            print("-- Model %d %s" % (i, f.name))
            f.show()
        print("[overall chisq=%s, nllf=%g]" % (self.chisq_str(), self.nllf()))

    def plot(self, p=None, fignum=1, figfile=None, view=None):
        import pylab
        if p is not None:
            self.setp(p)
        for i, f in enumerate(self.models):
            f.plot(fignum=i + fignum, view=view)
            pylab.suptitle('Model %d - %s' % (i, f.name))
            if figfile is not None:
                pylab.savefig(figfile + "-model%d.png" % i, format='png')

    # Note: restore default behaviour of getstate/setstate rather than
    # inheriting from BaseFitProblem
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__ = state


# TODO: consider adding nllf_scale to FitProblem.
ONE_SIGMA=0.68268949213708585
def nllf_scale(problem):
    r"""
    Return the scale factor for reporting the problem nllf as an approximate
    normalized chisq, along with an associated "uncertainty".  The uncertainty
    is the amount that chisq must change in order for the fit to be
    significantly better.

    From Numerical Recipes 15.6: *Confidence Limits on Estimated Model
    Parameters*, the $1-\sigma$ contour in parameter space corresponds
    to $\Delta\chi^2 = \text{invCDF}(1-\sigma,k)$ where
    $1-\sigma \approx 0.6827$ and $k$ is the number of fitting parameters.
    Since we are reporting the normalized $\chi^2$, this needs to be scaled
    by the problem degrees of freedom, $n-k$, where $n$ is the number of
    measurements.  To first approximation, the uncertainty in $\chi^2_N$
    is $k/(n-k)$
    """
    dof = getattr(problem, 'dof', np.NaN)
    if dof <= 0 or np.isnan(dof) or np.isinf(dof):
        return 1., 0.
    else:
        #return 2./dof, 1./dof
        from scipy.stats import chi2
        npars = max(len(problem.getp()), 1)
        return 2./dof, chi2.ppf(ONE_SIGMA, npars)/dof

def load_problem(filename, options=None):
    """
    Load a problem definition from a python script file.

    sys.argv is set to ``[file] + options`` within the context of the script.

    The user must define ``problem=FitProblem(...)`` within the script.

    Raises ValueError if the script does not define problem.
    """
    ctx = dict(__file__=filename, __name__="bumps_model")
    old_argv = sys.argv
    sys.argv = [filename] + options if options else [filename]
    source = open(filename).read()
    code = compile(source, filename, 'exec')
    exec(code, ctx)
    sys.argv = old_argv
    try:
        problem = ctx["problem"]
    except KeyError:
        raise ValueError(filename + " requires 'problem = FitProblem(...)'")

    return problem