/usr/lib/python3/dist-packages/bumps/bounds.py is in python3-bumps 0.7.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | # This program is in the public domain
# Author: Paul Kienzle
"""
Parameter bounds and prior probabilities.
Parameter bounds encompass several features of our optimizers.
First and most trivially they allow for bounded constraints on
parameter values.
Secondly, for parameter values known to follow some distribution,
the bounds encodes a penalty function as the value strays from
its nominal value. Using a negative log likelihood cost function
on the fit, then this value naturally contributes to the overall
likelihood measure.
Predefined bounds are::
Unbounded
range (-inf, inf)
BoundedBelow
range (base, inf)
BoundedAbove
range (-inf, base)
Bounded
range (low, high)
Normal
range (-inf, inf) with gaussian probability
BoundedNormal
range (low, high) with gaussian probability within
SoftBounded
range (low, high) with gaussian probability outside
New bounds can be defined following the abstract base class
interface defined in :class:`Bounds`, or using Distribution(rv)
where rv is a scipy.stats continuous distribution.
For generating bounds given a value, we provide a few helper
functions::
v +/- d: pm(x,dx) or pm(x,-dm,+dp) or pm(x,+dp,-dm)
return (x-dm,x+dm) limited to 2 significant digits
v +/- p%: pmp(x,p) or pmp(x,-pm,+pp) or pmp(x,+pp,-pm)
return (x-pm*x/100, x+pp*x/100) limited to 2 sig. digits
pm_raw(x,dx) or raw_pm(x,-dm,+dp) or raw_pm(x,+dp,-dm)
return (x-dm,x+dm)
pmp_raw(x,p) or raw_pmp(x,-pm,+pp) or raw_pmp(x,+pp,-pm)
return (x-pm*x/100, x+pp*x/100)
nice_range(lo,hi)
return (lo,hi) limited to 2 significant digits
"""
from __future__ import division
__all__ = ['pm', 'pmp', 'pm_raw', 'pmp_raw', 'nice_range', 'init_bounds',
'Bounds', 'Unbounded', 'Bounded', 'BoundedAbove', 'BoundedBelow',
'Distribution', 'Normal', 'BoundedNormal', 'SoftBounded']
import math
from math import log, log10, sqrt, pi, ceil, floor
from numpy import inf, isinf, isfinite, clip
import numpy.random as RNG
try:
from scipy.stats import norm as normal_distribution
except ImportError:
def normal_distribution(*args, **kw):
raise RuntimeError("scipy.stats unavailable")
def pm(v, *args):
"""
Return the tuple (~v-dv,~v+dv), where ~expr is a 'nice' number near to
to the value of expr. For example::
>>> r = pm(0.78421, 0.0023145)
>>> print("%g - %g"%r)
0.7818 - 0.7866
If called as pm(value, +dp, -dm) or pm(value, -dm, +dp),
return (~v-dm, ~v+dp).
"""
return nice_range(pm_raw(v, *args))
def pmp(v, *args):
"""
Return the tuple (~v-%v,~v+%v), where ~expr is a 'nice' number near to
the value of expr. For example::
>>> r = pmp(0.78421, 10)
>>> print("%g - %g"%r)
0.7 - 0.87
>>> r = pmp(0.78421, 0.1)
>>> print("%g - %g"%r)
0.7834 - 0.785
If called as pmp(value, +pp, -pm) or pmp(value, -pm, +pp),
return (~v-pm%v, ~v+pp%v).
"""
return nice_range(pmp_raw(v, *args))
# Generate ranges using x +/- dx or x +/- p%*x
def pm_raw(v, *args):
"""
Return the tuple [v-dv,v+dv].
If called as pm_raw(value, +dp, -dm) or pm_raw(value, -dm, +dp),
return (v-dm, v+dp).
"""
if len(args) == 1:
dv = args[0]
return v - dv, v + dv
elif len(args) == 2:
plus, minus = args
if plus < minus:
plus, minus = minus, plus
# if minus > 0 or plus < 0:
# raise TypeError("pm(value, p1, p2) requires both + and - values")
return v + minus, v + plus
else:
raise TypeError("pm(value, delta) or pm(value, -p1, +p2)")
def pmp_raw(v, *args):
"""
Return the tuple [v-%v,v+%v]
If called as pmp_raw(value, +pp, -pm) or pmp_raw(value, -pm, +pp),
return (v-pm%v, v+pp%v).
"""
if len(args) == 1:
percent = args[0]
b1, b2 = v * (1 - 0.01 * percent), v * (1 + 0.01 * percent)
elif len(args) == 2:
plus, minus = args
if plus < minus:
plus, minus = minus, plus
# if minus > 0 or plus < 0:
# raise TypeError("pmp(value, p1, p2) requires both + and - values")
b1, b2 = v * (1 + 0.01 * minus), v * (1 + 0.01 * plus)
else:
raise TypeError("pmp(value, delta) or pmp(value, -p1, +p2)")
return (b1, b2) if v > 0 else (b2, b1)
def nice_range(bounds):
"""
Given a range, return an enclosing range accurate to two digits.
"""
step = bounds[1] - bounds[0]
if step > 0:
d = 10 ** (floor(log10(step)) - 1)
return floor(bounds[0]/d)*d, ceil(bounds[1]/d)*d
else:
return bounds
def init_bounds(v):
"""
Returns a bounds object of the appropriate type given the arguments.
This is a helper factory to simplify the user interface to parameter
objects.
"""
# if it is none, then it is unbounded
if v is None:
return Unbounded()
# if it isn't a tuple, assume it is a bounds type.
try:
lo, hi = v
except TypeError:
return v
# if it is a tuple, then determine what kind of bounds we have
if lo is None:
lo = -inf
if hi is None:
hi = inf
# TODO: consider issuing a warning instead of correcting reversed bounds
if lo >= hi:
lo, hi = hi, lo
if isinf(lo) and isinf(hi):
return Unbounded()
elif isinf(lo):
return BoundedAbove(hi)
elif isinf(hi):
return BoundedBelow(lo)
else:
return Bounded(lo, hi)
class Bounds(object):
"""
Bounds abstract base class.
A range is used for several purposes. One is that it transforms parameters
between unbounded and bounded forms depending on the needs of the optimizer.
Another is that it generates random values in the range for stochastic
optimizers, and for initialization.
A third is that it returns the likelihood of seeing that particular value
for optimizers which use soft constraints. Assuming the cost function that
is being optimized is also a probability, then this is an easy way to
incorporate information from other sorts of measurements into the model.
"""
limits = (-inf, inf)
# TODO: need derivatives wrt bounds transforms
def get01(self, x):
"""
Convert value into [0,1] for optimizers which are bounds constrained.
This can also be used as a scale bar to show approximately how close to
the end of the range the value is.
"""
def put01(self, v):
"""
Convert [0,1] into value for optimizers which are bounds constrained.
"""
def getfull(self, x):
"""
Convert value into (-inf,inf) for optimizers which are unconstrained.
"""
def putfull(self, v):
"""
Convert (-inf,inf) into value for optimizers which are unconstrained.
"""
def random(self, n=1, target=1.0):
"""
Return a randomly generated valid value.
*target* gives some scale independence to the random number
generator, allowing the initial value of the parameter to influence
the randomly generated value. Otherwise fits without bounds have
too large a space to search through.
"""
def nllf(self, value):
"""
Return the negative log likelihood of seeing this value, with
likelihood scaled so that the maximum probability is one.
For uniform bounds, this either returns zero or inf. For bounds
based on a probability distribution, this returns values between
zero and inf. The scaling is necessary so that indefinite and
semi-definite ranges return a sensible value. The scaling does
not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.
"""
def residual(self, value):
"""
Return the parameter 'residual' in a way that is consistent with
residuals in the normal distribution. The primary purpose is to
graphically display exceptional values in a way that is familiar
to the user. For fitting, the scaled likelihood should be used.
To do this, we will match the cumulative density function value
with that for N(0,1) and find the corresponding percent point
function from the N(0,1) distribution. In this way, for example,
a value to the right of 2.275% of the distribution would correspond
to a residual of -2, or 2 standard deviations below the mean.
For uniform distributions, with all values equally probable, we
use a value of +/-4 for values outside the range, and 0 for values
inside the range.
"""
def start_value(self):
"""
Return a default starting value if none given.
"""
return self.put01(0.5)
def __contains__(self, v):
return self.limits[0] <= v <= self.limits[1]
def __str__(self):
limits = tuple(num_format(v) for v in self.limits)
return "(%s,%s)" % limits
# CRUFT: python 2.5 doesn't format indefinite numbers properly on windows
def num_format(v):
"""
Number formating which supports inf/nan on windows.
"""
if isfinite(v):
return "%g" % v
elif isinf(v):
return "inf" if v > 0 else "-inf"
else:
return "NaN"
class Unbounded(Bounds):
"""
Unbounded parameter.
The random initial condition is assumed to be between 0 and 1
The probability is uniformly 1/inf everywhere, which means the negative
log likelihood of P is inf everywhere. A value inf will interfere
with optimization routines, and so we instead choose P == 1 everywhere.
"""
def random(self, n=1, target=1.0):
scale = target + (target==0.)
return RNG.randn(n)*scale
def nllf(self, value):
return 0
def residual(self, value):
return 0
def get01(self, x):
return _get01_inf(x)
def put01(self, v):
return _put01_inf(v)
def getfull(self, x):
return x
def putfull(self, v):
return v
class BoundedBelow(Bounds):
"""
Semidefinite range bounded below.
The random initial condition is assumed to be within 1 of the maximum.
[base,inf] <-> (-inf,inf) is direct above base+1, -1/(x-base) below
[base,inf] <-> [0,1] uses logarithmic compression.
Logarithmic compression works by converting sign*m*2^e+base to
sign*(e+1023+m), yielding a value in [0,2048]. This can then be
converted to a value in [0,1].
Note that the likelihood function is problematic: the true probability
of seeing any particular value in the range is infinitesimal, and that
is indistinguishable from values outside the range. Instead we say
that P = 1 in range, and 0 outside.
"""
def __init__(self, base):
self.limits = (base, inf)
self._base = base
def start_value(self):
return self._base + 1
def random(self, n=1, target=1.):
target = max(abs(target), abs(self._base))
scale = target + (target==0.)
return self._base + abs(RNG.randn(n)*scale)
def nllf(self, value):
return 0 if value >= self._base else inf
def residual(self, value):
return 0 if value >= self._base else -4
def get01(self, x):
m, e = math.frexp(x - self._base)
if m >= 0 and e <= _E_MAX:
v = (e + m) / (2. * _E_MAX)
return v
else:
return 0 if m < 0 else 1
def put01(self, v):
v = v * 2 * _E_MAX
e = int(v)
m = v - e
x = math.ldexp(m, e) + self._base
return x
def getfull(self, x):
v = x - self._base
return v if v >= 1 else 2 - 1. / v
def putfull(self, v):
x = v if v >= 1 else 1. / (2 - v)
return x + self._base
class BoundedAbove(Bounds):
"""
Semidefinite range bounded above.
[-inf,base] <-> [0,1] uses logarithmic compression
[-inf,base] <-> (-inf,inf) is direct below base-1, 1/(base-x) above
Logarithmic compression works by converting sign*m*2^e+base to
sign*(e+1023+m), yielding a value in [0,2048]. This can then be
converted to a value in [0,1].
Note that the likelihood function is problematic: the true probability
of seeing any particular value in the range is infinitesimal, and that
is indistinguishable from values outside the range. Instead we say
that P = 1 in range, and 0 outside.
"""
def __init__(self, base):
self.limits = (-inf, base)
self._base = base
def start_value(self):
return self._base - 1
def random(self, n=1, target=1.0):
target = max(abs(self._base), abs(target))
scale = target + (target==0.)
return self._base - abs(RNG.randn(n)*scale)
def nllf(self, value):
return 0 if value <= self._base else inf
def residual(self, value):
return 0 if value <= self._base else 4
def get01(self, x):
m, e = math.frexp(self._base - x)
if m >= 0 and e <= _E_MAX:
v = (e + m) / (2. * _E_MAX)
return 1 - v
else:
return 1 if m < 0 else 0
def put01(self, v):
v = (1 - v) * 2 * _E_MAX
e = int(v)
m = v - e
x = -(math.ldexp(m, e) - self._base)
return x
def getfull(self, x):
v = x - self._base
return v if v <= -1 else -2 - 1. / v
def putfull(self, v):
x = v if v <= -1 else -1. / (v + 2)
return x + self._base
class Bounded(Bounds):
"""
Bounded range.
[lo,hi] <-> [0,1] scale is simple linear
[lo,hi] <-> (-inf,inf) scale uses exponential expansion
While technically the probability of seeing any value within the
range is 1/range, for consistency with the semi-infinite ranges
and for a more natural mapping between nllf and chisq, we instead
set the probability to 0. This choice will not affect the fits.
"""
def __init__(self, lo, hi):
self.limits = (lo, hi)
self._nllf_scale = log(hi - lo)
def random(self, n=1, target=1.0):
lo, hi = self.limits
#print("= uniform",lo,hi)
return RNG.uniform(lo, hi, size=n)
def nllf(self, value):
lo, hi = self.limits
return 0 if lo <= value <= hi else inf
# return self._nllf_scale if lo<=value<=hi else inf
def residual(self, value):
lo, hi = self.limits
return -4 if lo > value else (4 if hi < value else 0)
def get01(self, x):
lo, hi = self.limits
return float(x - lo) / (hi - lo) if hi - lo > 0 else 0
def put01(self, v):
lo, hi = self.limits
return (hi - lo) * v + lo
def getfull(self, x):
return _put01_inf(self.get01(x))
def putfull(self, v):
return self.put01(_get01_inf(v))
class Distribution(Bounds):
"""
Parameter is pulled from a distribution.
*dist* must implement the distribution interface from scipy.stats.
In particular, it should define methods rvs, nnlf, cdf and ppf and
attributes args and dist.name.
"""
def __init__(self, dist):
self.dist = dist
def random(self, n=1, target=1.0):
return self.dist.rvs(n)
def nllf(self, value):
return -log(self.dist.pdf(value))
def residual(self, value):
return normal_distribution.ppf(self.dist.cdf(value))
def get01(self, x):
return self.dist.cdf(x)
def put01(self, v):
return self.dist.ppf(v)
def getfull(self, x):
return x
def putfull(self, v):
return v
def __getstate__(self):
# WARNING: does not preserve and restore seed
return self.dist.__class__, self.dist.args, self.dist.kwds
def __setstate__(self, state):
cls, args, kwds = state
self.dist = cls(*args, **kwds)
def __str__(self):
return "%s(%s)" % (self.dist.dist.name,
",".join(str(s) for s in self.dist.args))
class Normal(Distribution):
"""
Parameter is pulled from a normal distribution.
If you have measured a parameter value with some uncertainty (e.g., the
film thickness is 35+/-5 according to TEM), then you can use this
measurement to restrict the values given to the search, and to penalize
choices of this fitting parameter which are different from this value.
*mean* is the expected value of the parameter and *std* is the 1-sigma
standard deviation.
"""
def __init__(self, mean=0, std=1):
Distribution.__init__(self, normal_distribution(mean, std))
self._nllf_scale = log(sqrt(2 * pi * std ** 2))
def nllf(self, value):
# P(v) = exp(-0.5*(v-mean)**2/std**2)/sqrt(2*pi*std**2)
# -log(P(v)) = -(-0.5*(v-mean)**2/std**2 - log( (2*pi*std**2) ** 0.5))
# = 0.5*(v-mean)**2/std**2 + log(2*pi*std**2)/2
mean, std = self.dist.args
return 0.5 * ((value-mean)/std)**2 + self._nllf_scale
def residual(self, value):
mean, std = self.dist.args
return (value-mean)/std
def __getstate__(self):
return self.dist.args # args is mean,std
def __setstate__(self, state):
mean, std = state
self.__init__(mean=mean, std=std)
class BoundedNormal(Bounds):
"""
truncated normal bounds
"""
def __init__(self, sigma=1, mu=0, limits=(-inf, inf)):
self.limits = limits
self.sigma, self.mu = sigma, mu
self._left = normal_distribution.cdf((limits[0]-mu)/sigma)
self._delta = normal_distribution.cdf((limits[1]-mu)/sigma) - self._left
self._nllf_scale = log(sqrt(2 * pi * sigma ** 2)) + log(self._delta)
def get01(self, x):
"""
Convert value into [0,1] for optimizers which are bounds constrained.
This can also be used as a scale bar to show approximately how close to
the end of the range the value is.
"""
v = ((normal_distribution.cdf((x-self.mu)/self.sigma) - self._left)
/ self._delta)
return clip(v, 0, 1)
def put01(self, v):
"""
Convert [0,1] into value for optimizers which are bounds constrained.
"""
x = v * self._delta + self._left
return normal_distribution.ppf(x) * self.sigma + self.mu
def getfull(self, x):
"""
Convert value into (-inf,inf) for optimizers which are unconstrained.
"""
raise NotImplementedError
def putfull(self, v):
"""
Convert (-inf,inf) into value for optimizers which are unconstrained.
"""
raise NotImplementedError
def random(self, n=1, target=1.0):
"""
Return a randomly generated valid value, or an array of values
"""
return self.get01(RNG.rand(n))
def nllf(self, value):
"""
Return the negative log likelihood of seeing this value, with
likelihood scaled so that the maximum probability is one.
"""
if value in self:
return 0.5 * ((value-self.mu)/self.sigma)**2 + self._nllf_scale
else:
return inf
def residual(self, value):
"""
Return the parameter 'residual' in a way that is consistent with
residuals in the normal distribution. The primary purpose is to
graphically display exceptional values in a way that is familiar
to the user. For fitting, the scaled likelihood should be used.
For the truncated normal distribution, we can just use the normal
residuals.
"""
return (value - self.mu) / self.sigma
def start_value(self):
"""
Return a default starting value if none given.
"""
return self.put01(0.5)
def __contains__(self, v):
return self.limits[0] <= v <= self.limits[1]
def __str__(self):
vals = (
self.limits[0], self.limits[1],
self.mu, self.sigma,
)
return "(%s,%s), norm(%s,%s)" % tuple(num_format(v) for v in vals)
class SoftBounded(Bounds):
"""
Parameter is pulled from a stretched normal distribution.
This is like a rectangular distribution, but with gaussian tails.
The intent of this distribution is for soft constraints on the values.
As such, the random generator will return values like the rectangular
distribution, but the likelihood will return finite values based on
the distance from the from the bounds rather than returning infinity.
Note that for bounds constrained optimizers which force the value
into the range [0,1] for each parameter we don't need to use soft
constraints, and this acts just like the rectangular distribution.
"""
def __init__(self, lo, hi, std=None):
self._lo, self._hi, self._std = lo, hi, std
self._nllf_scale = log(hi - lo + sqrt(2 * pi * std))
def random(self, n=1, target=1.0):
return RNG.uniform(self._lo, self._hi, size=n)
def nllf(self, value):
# To turn f(x) = 1 if x in [lo,hi] else G(tail)
# into a probability p, we need to normalize by \int{f(x)dx},
# which is just hi-lo + sqrt(2*pi*std**2).
if value < self._lo:
z = self._lo - value
elif value > self._hi:
z = value - self._hi
else:
z = 0
return (z / self._std) ** 2 / 2 + self._nllf_scale
def residual(self, value):
if value < self._lo:
z = self._lo - value
elif value > self._hi:
z = value - self._hi
else:
z = 0
return z / self._std
def get01(self, x):
v = float(x - self._lo) / (self._hi - self._lo)
return v if 0 <= v <= 1 else (0 if v < 0 else 1)
def put01(self, v):
return v * (self._hi - self._lo) + self._lo
def getfull(self, x):
return x
def putfull(self, v):
return v
def __str__(self):
return "box_norm(%g,%g,sigma=%g)" % (self._lo, self._hi, self._std)
_E_MIN = -1023
_E_MAX = 1024
def _get01_inf(x):
"""
Convert a floating point number to a value in [0,1].
The value sign*m*2^e to sign*(e+1023+m), yielding a value in [-2048,2048].
This can then be converted to a value in [0,1].
Sort order is preserved. At least 14 bits of precision are lost from
the 53 bit mantissa.
"""
# Arctan alternative
# Arctan is approximately linear in (-0.5, 0.5), but the
# transform is only useful up to (-10**15,10**15).
# return atan(x)/pi + 0.5
m, e = math.frexp(x)
s = math.copysign(1.0, m)
v = (e - _E_MIN + m * s) * s
v = v / (4 * _E_MAX) + 0.5
v = 0 if _E_MIN > e else (1 if _E_MAX < e else v)
return v
def _put01_inf(v):
"""
Convert a value in [0,1] to a full floating point number.
Sort order is preserved. Reverses :func:`_get01_inf`, but with fewer
bits of precision.
"""
# Arctan alternative
# return tan(pi*(v-0.5))
v = (v - 0.5) * 4 * _E_MAX
s = math.copysign(1., v)
v *= s
e = int(v)
m = v - e
x = math.ldexp(s * m, e + _E_MIN)
# print "< x,e,m,s,v",x,e+_e_min,s*m,s,v
return x
|