This file is indexed.

/usr/lib/python3/dist-packages/ase/parallel.py is in python3-ase 3.15.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import print_function, division
import atexit
import functools
import pickle
import sys
import time

import numpy as np

from ase.utils import devnull


def get_txt(txt, rank):
    if hasattr(txt, 'write'):
        # Note: User-supplied object might write to files from many ranks.
        return txt
    elif rank == 0:
        if txt is None:
            return devnull
        elif txt == '-':
            return sys.stdout
        else:
            return open(txt, 'w', 1)
    else:
        return devnull


def paropen(name, mode='r', buffering=-1):
    """MPI-safe version of open function.

    In read mode, the file is opened on all nodes.  In write and
    append mode, the file is opened on the master only, and /dev/null
    is opened on all other nodes.
    """
    if world.rank > 0 and mode[0] != 'r':
        name = '/dev/null'
    return open(name, mode, buffering)


def parprint(*args, **kwargs):
    """MPI-safe print - prints only from master. """
    if world.rank == 0:
        print(*args, **kwargs)


class DummyMPI:
    rank = 0
    size = 1

    def sum(self, a):
        if isinstance(a, np.ndarray) and a.ndim > 0:
            pass
        else:
            return a

    def barrier(self):
        pass

    def broadcast(self, a, rank):
        pass


class MPI4PY:
    def __init__(self):
        from mpi4py import MPI
        self.comm_world = MPI.COMM_WORLD
        self.comm = self.comm_world
        self.rank = self.comm.rank
        self.size = self.comm.size

    def sum(self, a):
        return self.comm.allreduce(a)

    def split(self, split_size=None):
        """Divide the communicator."""
        # color - subgroup id
        # key - new subgroup rank
        if not split_size:
            split_size = self.size
        color = int(self.rank // (self.size / split_size))
        key = int(self.rank % (self.size / split_size))
        self.comm = self.comm.Split(color, key)
        self.rank = self.comm.rank
        self.size = self.comm.size

    def barrier(self):
        self.comm.barrier()

    def abort(self, code):
        self.comm.Abort(code)

    def broadcast(self, a, rank):
        a[:] = self.comm.bcast(a, root=rank)


# Check for special MPI-enabled Python interpreters:
if '_gpaw' in sys.builtin_module_names:
    # http://wiki.fysik.dtu.dk/gpaw
    import _gpaw
    world = _gpaw.Communicator()
elif '_asap' in sys.builtin_module_names:
    # Modern version of Asap
    # http://wiki.fysik.dtu.dk/asap
    # We cannot import asap3.mpi here, as that creates an import deadlock
    import _asap
    world = _asap.Communicator()
elif 'asapparallel3' in sys.modules:
    # Older version of Asap
    import asapparallel3
    world = asapparallel3.Communicator()
elif 'Scientific_mpi' in sys.modules:
    from Scientific.MPI import world
elif 'mpi4py' in sys.modules:
    world = MPI4PY()
else:
    # This is a standard Python interpreter:
    world = DummyMPI()

rank = world.rank
size = world.size
barrier = world.barrier


def broadcast(obj, root=0, comm=world):
    """Broadcast a Python object across an MPI communicator and return it."""
    if comm.rank == root:
        string = pickle.dumps(obj, pickle.HIGHEST_PROTOCOL)
        n = np.array([len(string)], int)
    else:
        string = None
        n = np.empty(1, int)
    comm.broadcast(n, root)
    if comm.rank == root:
        string = np.fromstring(string, np.int8)
    else:
        string = np.zeros(n, np.int8)
    comm.broadcast(string, root)
    if comm.rank == root:
        return obj
    else:
        return pickle.loads(string.tostring())


def parallel_function(func):
    """Decorator for broadcasting from master to slaves using MPI.

    Disable by passing parallel=False to the function.  For a method,
    you can also disable the parallel behavior by giving the instance
    a self.serial = True.
    """

    if world.size == 1:
        return func

    @functools.wraps(func)
    def new_func(*args, **kwargs):
        if (args and getattr(args[0], 'serial', False) or
            not kwargs.pop('parallel', True)):
            # Disable:
            return func(*args, **kwargs)

        ex = None
        result = None
        if world.rank == 0:
            try:
                result = func(*args, **kwargs)
            except Exception as ex:
                pass
        ex, result = broadcast((ex, result))
        if ex is not None:
            raise ex
        return result

    return new_func


def parallel_generator(generator):
    """Decorator for broadcasting yields from master to slaves using MPI.

    Disable by passing parallel=False to the function.  For a method,
    you can also disable the parallel behavior by giving the instance
    a self.serial = True.
    """

    if world.size == 1:
        return generator

    @functools.wraps(generator)
    def new_generator(*args, **kwargs):
        if (args and getattr(args[0], 'serial', False) or
            not kwargs.pop('parallel', True)):
            # Disable:
            for result in generator(*args, **kwargs):
                yield result
            return

        if world.rank == 0:
            try:
                for result in generator(*args, **kwargs):
                    broadcast((None, result))
                    yield result
            except Exception as ex:
                broadcast((ex, None))
                raise ex
            broadcast((None, None))
        else:
            ex, result = broadcast((None, None))
            if ex is not None:
                raise ex
            while result is not None:
                yield result
                ex, result = broadcast((None, None))
                if ex is not None:
                    raise ex

    return new_generator


def register_parallel_cleanup_function():
    """Call MPI_Abort if python crashes.

    This will terminate the processes on the other nodes."""

    if size == 1:
        return

    def cleanup(sys=sys, time=time, world=world):
        error = getattr(sys, 'last_type', None)
        if error:
            sys.stdout.flush()
            sys.stderr.write(('ASE CLEANUP (node %d): %s occurred.  ' +
                              'Calling MPI_Abort!\n') % (world.rank, error))
            sys.stderr.flush()
            # Give other nodes a moment to crash by themselves (perhaps
            # producing helpful error messages):
            time.sleep(3)
            world.abort(42)

    atexit.register(cleanup)


def distribute_cpus(size, comm):
    """Distribute cpus to tasks and calculators.

    Input:
    size: number of nodes per calculator
    comm: total communicator object

    Output:
    communicator for this rank, number of calculators, index for this rank
    """

    assert size <= comm.size
    assert comm.size % size == 0

    tasks_rank = comm.rank // size

    r0 = tasks_rank * size
    ranks = np.arange(r0, r0 + size)
    mycomm = comm.new_communicator(ranks)

    return mycomm, comm.size // size, tasks_rank