/usr/lib/python3/dist-packages/ase/dimer.py is in python3-ase 3.15.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 | """Minimum mode follower for finding saddle points in an unbiased way.
There is, currently, only one implemented method: The Dimer method.
"""
import sys
import time
import warnings
import numpy as np
from ase.optimize.optimize import Optimizer
from math import cos, sin, atan, tan, degrees, pi, sqrt
from ase.parallel import rank, size, world
from ase.calculators.singlepoint import SinglePointCalculator
from ase.utils import basestring
# Handy vector methods
norm = np.linalg.norm
def normalize(vector):
"""Create a unit vector along *vector*"""
return vector / norm(vector)
def parallel_vector(vector, base):
"""Extract the components of *vector* that are parallel to *base*"""
return np.vdot(vector, base) * base
def perpendicular_vector(vector, base):
"""Remove the components of *vector* that are parallel to *base*"""
return vector - parallel_vector(vector, base)
def rotate_vectors(v1i, v2i, angle):
"""Rotate vectors *v1i* and *v2i* by *angle*"""
cAng = cos(angle)
sAng = sin(angle)
v1o = v1i * cAng + v2i * sAng
v2o = v2i * cAng - v1i * sAng
# Ensure the length of the input and output vectors is equal
return normalize(v1o) * norm(v1i), normalize(v2o) * norm(v2i)
class DimerEigenmodeSearch:
"""An implementation of the Dimer's minimum eigenvalue mode search.
This class implements the rotational part of the dimer saddle point
searching method.
Parameters:
atoms: MinModeAtoms object
MinModeAtoms is an extension to the Atoms object, which includes
information about the lowest eigenvalue mode.
control: DimerControl object
Contains the parameters necessary for the eigenmode search.
If no control object is supplied a default DimerControl
will be created and used.
basis: list of xyz-values
Eigenmode. Must be an ndarray of shape (n, 3).
It is possible to constrain the eigenmodes to be orthogonal
to this given eigenmode.
Notes:
The code is inspired, with permission, by code written by the Henkelman
group, which can be found at http://theory.cm.utexas.edu/vtsttools/code/
References:
* Henkelman and Jonsson, JCP 111, 7010 (1999)
* Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
9776 (2004).
* Heyden, Bell, and Keil, JCP 123, 224101 (2005).
* Kastner and Sherwood, JCP 128, 014106 (2008).
"""
def __init__(self, atoms, control=None, eigenmode=None, basis=None,
**kwargs):
if hasattr(atoms, 'get_eigenmode'):
self.atoms = atoms
else:
e = 'The atoms object must be a MinModeAtoms object'
raise TypeError(e)
self.basis = basis
if eigenmode is None:
self.eigenmode = self.atoms.get_eigenmode()
else:
self.eigenmode = eigenmode
if control is None:
self.control = DimerControl(**kwargs)
w = 'Missing control object in ' + self.__class__.__name__ + \
'. Using default: DimerControl()'
warnings.warn(w, UserWarning)
if self.control.logfile is not None:
self.control.logfile.write('DIM:WARN: ' + w + '\n')
self.control.logfile.flush()
else:
self.control = control
# kwargs must be empty if a control object is supplied
for key in kwargs:
e = '__init__() got an unexpected keyword argument \'%s\'' % \
(key)
raise TypeError(e)
self.dR = self.control.get_parameter('dimer_separation')
self.logfile = self.control.get_logfile()
def converge_to_eigenmode(self):
"""Perform an eigenmode search."""
self.set_up_for_eigenmode_search()
stoprot = False
# Load the relevant parameters from control
f_rot_min = self.control.get_parameter('f_rot_min')
f_rot_max = self.control.get_parameter('f_rot_max')
trial_angle = self.control.get_parameter('trial_angle')
max_num_rot = self.control.get_parameter('max_num_rot')
extrapolate = self.control.get_parameter('extrapolate_forces')
while not stoprot:
if self.forces1E is None:
self.update_virtual_forces()
else:
self.update_virtual_forces(extrapolated_forces=True)
self.forces1A = self.forces1
self.update_curvature()
f_rot_A = self.get_rotational_force()
# Pre rotation stop criteria
if norm(f_rot_A) <= f_rot_min:
self.log(f_rot_A, None)
stoprot = True
else:
n_A = self.eigenmode
rot_unit_A = normalize(f_rot_A)
# Get the curvature and its derivative
c0 = self.get_curvature()
c0d = np.vdot((self.forces2 - self.forces1), rot_unit_A) / \
self.dR
# Trial rotation (no need to store the curvature)
# NYI variable trial angles from [3]
n_B, rot_unit_B = rotate_vectors(n_A, rot_unit_A, trial_angle)
self.eigenmode = n_B
self.update_virtual_forces()
self.forces1B = self.forces1
# Get the curvature's derivative
c1d = np.vdot((self.forces2 - self.forces1), rot_unit_B) / \
self.dR
# Calculate the Fourier coefficients
a1 = c0d * cos(2 * trial_angle) - c1d / \
(2 * sin(2 * trial_angle))
b1 = 0.5 * c0d
a0 = 2 * (c0 - a1)
# Estimate the rotational angle
rotangle = atan(b1 / a1) / 2.0
# Make sure that you didn't find a maximum
cmin = a0 / 2.0 + a1 * cos(2 * rotangle) + \
b1 * sin(2 * rotangle)
if c0 < cmin:
rotangle += pi / 2.0
# Rotate into the (hopefully) lowest eigenmode
# NYI Conjugate gradient rotation
n_min, dummy = rotate_vectors(n_A, rot_unit_A, rotangle)
self.update_eigenmode(n_min)
# Store the curvature estimate instead of the old curvature
self.update_curvature(cmin)
self.log(f_rot_A, rotangle)
# Force extrapolation scheme from [4]
if extrapolate:
self.forces1E = sin(trial_angle - rotangle) / \
sin(trial_angle) * self.forces1A + sin(rotangle) / \
sin(trial_angle) * self.forces1B + \
(1 - cos(rotangle) - sin(rotangle) * \
tan(trial_angle / 2.0)) * self.forces0
else:
self.forces1E = None
# Post rotation stop criteria
if not stoprot:
if self.control.get_counter('rotcount') >= max_num_rot:
stoprot = True
elif norm(f_rot_A) <= f_rot_max:
stoprot = True
def log(self, f_rot_A, angle):
"""Log each rotational step."""
# NYI Log for the trial angle
if self.logfile is not None:
if angle:
l = 'DIM:ROT: %7d %9d %9.4f %9.4f %9.4f\n' % \
(self.control.get_counter('optcount'),
self.control.get_counter('rotcount'),
self.get_curvature(), degrees(angle), norm(f_rot_A))
else:
l = 'DIM:ROT: %7d %9d %9.4f %9s %9.4f\n' % \
(self.control.get_counter('optcount'),
self.control.get_counter('rotcount'),
self.get_curvature(), '---------', norm(f_rot_A))
self.logfile.write(l)
self.logfile.flush()
def get_rotational_force(self):
"""Calculate the rotational force that acts on the dimer."""
rot_force = perpendicular_vector((self.forces1 - self.forces2),
self.eigenmode) / (2.0 * self.dR)
if self.basis is not None:
if len(self.basis) == len(self.atoms) and len(self.basis[0]) == \
3 and isinstance(self.basis[0][0], float):
rot_force = perpendicular_vector(rot_force, self.basis)
else:
for base in self.basis:
rot_force = perpendicular_vector(rot_force, base)
return rot_force
def update_curvature(self, curv = None):
"""Update the curvature in the MinModeAtoms object."""
if curv:
self.curvature = curv
else:
self.curvature = np.vdot((self.forces2 - self.forces1),
self.eigenmode) / (2.0 * self.dR)
def update_eigenmode(self, eigenmode):
"""Update the eigenmode in the MinModeAtoms object."""
self.eigenmode = eigenmode
self.update_virtual_positions()
self.control.increment_counter('rotcount')
def get_eigenmode(self):
"""Returns the current eigenmode."""
return self.eigenmode
def get_curvature(self):
"""Returns the curvature along the current eigenmode."""
return self.curvature
def get_control(self):
"""Return the control object."""
return self.control
def update_center_forces(self):
"""Get the forces at the center of the dimer."""
self.atoms.set_positions(self.pos0)
self.forces0 = self.atoms.get_forces(real = True)
self.energy0 = self.atoms.get_potential_energy()
def update_virtual_forces(self, extrapolated_forces = False):
"""Get the forces at the endpoints of the dimer."""
self.update_virtual_positions()
# Estimate / Calculate the forces at pos1
if extrapolated_forces:
self.forces1 = self.forces1E.copy()
else:
self.forces1 = self.atoms.get_forces(real = True, pos = self.pos1)
# Estimate / Calculate the forces at pos2
if self.control.get_parameter('use_central_forces'):
self.forces2 = 2 * self.forces0 - self.forces1
else:
self.forces2 = self.atoms.get_forces(real = True, pos = self.pos2)
def update_virtual_positions(self):
"""Update the end point positions."""
self.pos1 = self.pos0 + self.eigenmode * self.dR
self.pos2 = self.pos0 - self.eigenmode * self.dR
def set_up_for_eigenmode_search(self):
"""Before eigenmode search, prepare for rotation."""
self.pos0 = self.atoms.get_positions()
self.update_center_forces()
self.update_virtual_positions()
self.control.reset_counter('rotcount')
self.forces1E = None
def set_up_for_optimization_step(self):
"""At the end of rotation, prepare for displacement of the dimer."""
self.atoms.set_positions(self.pos0)
self.forces1E = None
class MinModeControl:
"""A parent class for controlling minimum mode saddle point searches.
Method specific control classes inherit this one. The only thing
inheriting classes need to implement are the log() method and
the *parameters* class variable with default values for ALL
parameters needed by the method in question.
When instantiating control classes default parameter values can
be overwritten.
"""
parameters = {}
def __init__(self, logfile = '-', eigenmode_logfile=None, **kwargs):
# Overwrite the defaults with the input parameters given
for key in kwargs:
if not key in self.parameters.keys():
e = 'Invalid parameter >>%s<< with value >>%s<< in %s' % \
(key, str(kwargs[key]), self.__class__.__name__)
raise ValueError(e)
else:
self.set_parameter(key, kwargs[key], log = False)
# Initialize the log files
self.initialize_logfiles(logfile, eigenmode_logfile)
# Initialize the counters
self.counters = {'forcecalls': 0, 'rotcount': 0, 'optcount': 0}
self.log()
def initialize_logfiles(self, logfile=None, eigenmode_logfile=None):
"""Set up the log files."""
# Set up the regular logfile
if rank != 0:
logfile = None
elif isinstance(logfile, basestring):
if logfile == '-':
logfile = sys.stdout
else:
logfile = open(logfile, 'a')
self.logfile = logfile
# Set up the eigenmode logfile
if eigenmode_logfile:
if rank != 0:
eigenmode_logfile = None
elif isinstance(eigenmode_logfile, basestring):
if eigenmode_logfile == '-':
eigenmode_logfile = sys.stdout
else:
eigenmode_logfile = open(eigenmode_logfile, 'a')
self.eigenmode_logfile = eigenmode_logfile
def log(self, parameter=None):
"""Log the parameters of the eigenmode search."""
pass
def set_parameter(self, parameter, value, log=True):
"""Change a parameter's value."""
if not parameter in self.parameters.keys():
e = 'Invalid parameter >>%s<< with value >>%s<<' % \
(parameter, str(value))
raise ValueError(e)
self.parameters[parameter] = value
if log:
self.log(parameter)
def get_parameter(self, parameter):
"""Returns the value of a parameter."""
if not parameter in self.parameters.keys():
e = 'Invalid parameter >>%s<<' % \
(parameter)
raise ValueError(e)
return self.parameters[parameter]
def get_logfile(self):
"""Returns the log file."""
return self.logfile
def get_eigenmode_logfile(self):
"""Returns the eigenmode log file."""
return self.eigenmode_logfile
def get_counter(self, counter):
"""Returns a given counter."""
return self.counters[counter]
def increment_counter(self, counter):
"""Increment a given counter."""
self.counters[counter] += 1
def reset_counter(self, counter):
"""Reset a given counter."""
self.counters[counter] = 0
def reset_all_counters(self):
"""Reset all counters."""
for key in self.counters.keys():
self.counters[key] = 0
class DimerControl(MinModeControl):
"""A class that takes care of the parameters needed for a Dimer search.
Parameters:
eigenmode_method: str
The name of the eigenmode search method.
f_rot_min: float
Size of the rotational force under which no rotation will be
performed.
f_rot_max: float
Size of the rotational force under which only one rotation will be
performed.
max_num_rot: int
Maximum number of rotations per optimizer step.
trial_angle: float
Trial angle for the finite difference estimate of the rotational
angle in radians.
trial_trans_step: float
Trial step size for the MinModeTranslate optimizer.
maximum_translation: float
Maximum step size and forced step size when the curvature is still
positive for the MinModeTranslate optimizer.
cg_translation: bool
Conjugate Gradient for the MinModeTranslate optimizer.
use_central_forces: bool
Only calculate the forces at one end of the dimer and extrapolate
the forces to the other.
dimer_separation: float
Separation of the dimer's images.
initial_eigenmode_method: str
How to construct the initial eigenmode of the dimer. If an eigenmode
is given when creating the MinModeAtoms object, this will be ignored.
Possible choices are: 'gauss' and 'displacement'
extrapolate_forces: bool
When more than one rotation is performed, an extrapolation scheme can
be used to reduce the number of force evaluations.
displacement_method: str
How to displace the atoms. Possible choices are 'gauss' and 'vector'.
gauss_std: float
The standard deviation of the gauss curve used when doing random
displacement.
order: int
How many lowest eigenmodes will be inverted.
mask: list of bool
Which atoms will be moved during displacement.
displacement_center: int or [float, float, float]
The center of displacement, nearby atoms will be displaced.
displacement_radius: float
When choosing which atoms to displace with the *displacement_center*
keyword, this decides how many nearby atoms to displace.
number_of_displacement_atoms: int
The amount of atoms near *displacement_center* to displace.
"""
# Default parameters for the Dimer eigenmode search
parameters = {'eigenmode_method': 'dimer',
'f_rot_min': 0.1,
'f_rot_max': 1.00,
'max_num_rot': 1,
'trial_angle': pi / 4.0,
'trial_trans_step': 0.001,
'maximum_translation': 0.1,
'cg_translation': True,
'use_central_forces': True,
'dimer_separation': 0.0001,
'initial_eigenmode_method': 'gauss',
'extrapolate_forces': False,
'displacement_method': 'gauss',
'gauss_std': 0.1,
'order': 1,
'mask': None, # NB mask should not be a "parameter"
'displacement_center': None,
'displacement_radius': None,
'number_of_displacement_atoms': None}
# NB: Can maybe put this in EigenmodeSearch and MinModeControl
def log(self, parameter=None):
"""Log the parameters of the eigenmode search."""
if self.logfile is not None:
if parameter is not None:
l = 'DIM:CONTROL: Updated Parameter: %s = %s\n' % (parameter,
str(self.get_parameter(parameter)))
else:
l = 'MINMODE:METHOD: Dimer\n'
l += 'DIM:CONTROL: Search Parameters:\n'
l += 'DIM:CONTROL: ------------------\n'
for key in self.parameters:
l += 'DIM:CONTROL: %s = %s\n' % (key,
str(self.get_parameter(key)))
l += 'DIM:CONTROL: ------------------\n'
l += 'DIM:ROT: OPT-STEP ROT-STEP CURVATURE ROT-ANGLE ' + \
'ROT-FORCE\n'
self.logfile.write(l)
self.logfile.flush()
class MinModeAtoms:
"""Wrapper for Atoms with information related to minimum mode searching.
Contains an Atoms object and pipes all unknown function calls to that
object.
Other information that is stored in this object are the estimate for
the lowest eigenvalue, *curvature*, and its corresponding eigenmode,
*eigenmode*. Furthermore, the original configuration of the Atoms
object is stored for use in multiple minimum mode searches.
The forces on the system are modified by inverting the component
along the eigenmode estimate. This eventually brings the system to
a saddle point.
Parameters:
atoms : Atoms object
A regular Atoms object
control : MinModeControl object
Contains the parameters necessary for the eigenmode search.
If no control object is supplied a default DimerControl
will be created and used.
mask: list of bool
Determines which atoms will be moved when calling displace()
random_seed: int
The seed used for the random number generator. Defaults to
modified version the current time.
References: [1]_ [2]_ [3]_ [4]_
.. [1] Henkelman and Jonsson, JCP 111, 7010 (1999)
.. [2] Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
9776 (2004).
.. [3] Heyden, Bell, and Keil, JCP 123, 224101 (2005).
.. [4] Kastner and Sherwood, JCP 128, 014106 (2008).
"""
def __init__(self, atoms, control=None, eigenmodes=None, random_seed=None, **kwargs):
self.minmode_init = True
self.atoms = atoms
# Initialize to None to avoid strange behaviour due to __getattr__
self.eigenmodes = eigenmodes
self.curvatures = None
if control is None:
self.control = DimerControl(**kwargs)
w = 'Missing control object in ' + self.__class__.__name__ + \
'. Using default: DimerControl()'
warnings.warn(w, UserWarning)
if self.control.logfile is not None:
self.control.logfile.write('DIM:WARN: ' + w + '\n')
self.control.logfile.flush()
else:
self.control = control
logfile = self.control.get_logfile()
mlogfile = self.control.get_eigenmode_logfile()
for key in kwargs:
if key == 'logfile':
logfile = kwargs[key]
elif key == 'eigenmode_logfile':
mlogfile = kwargs[key]
else:
self.control.set_parameter(key, kwargs[key])
self.control.initialize_logfiles(logfile = logfile,
eigenmode_logfile = mlogfile)
# Seed the randomness
if random_seed is None:
t = time.time()
if size > 1:
t = world.sum(t) / float(size)
# Harvest the latter part of the current time
random_seed = int(('%30.9f' % t)[-9:])
self.random_state = np.random.RandomState(random_seed)
# Check the order
self.order = self.control.get_parameter('order')
# Construct the curvatures list
self.curvatures = [100.0] * self.order
# Save the original state of the atoms.
self.atoms0 = self.atoms.copy()
self.save_original_forces()
# Get a reference to the log files
self.logfile = self.control.get_logfile()
self.mlogfile = self.control.get_eigenmode_logfile()
def save_original_forces(self, force_calculation=False):
"""Store the forces (and energy) of the original state."""
# NB: Would be nice if atoms.copy() took care of this.
if self.calc is not None:
# Hack because some calculators do not have calculation_required
if (hasattr(self.calc, 'calculation_required') \
and not self.calc.calculation_required(self.atoms,
['energy', 'forces'])) or force_calculation:
calc = SinglePointCalculator(
self.atoms0,
energy=self.atoms.get_potential_energy(),
forces=self.atoms.get_forces())
self.atoms0.set_calculator(calc)
def initialize_eigenmodes(self, method=None, eigenmodes=None, \
gauss_std=None):
"""Make an initial guess for the eigenmode."""
if eigenmodes is None:
pos = self.get_positions()
old_pos = self.get_original_positions()
if method == None:
method = \
self.control.get_parameter('initial_eigenmode_method')
if method.lower() == 'displacement' and (pos - old_pos).any():
eigenmode = normalize(pos - old_pos)
elif method.lower() == 'gauss':
self.displace(log = False, gauss_std = gauss_std,
method = method)
new_pos = self.get_positions()
eigenmode = normalize(new_pos - pos)
self.set_positions(pos)
else:
e = 'initial_eigenmode must use either \'gauss\' or ' + \
'\'displacement\', if the latter is used the atoms ' + \
'must have moved away from the original positions.' + \
'You have requested \'%s\'.' % method
raise NotImplementedError(e) # NYI
eigenmodes = [eigenmode]
# Create random higher order mode guesses
if self.order > 1:
if len(eigenmodes) == 1:
for k in range(1, self.order):
pos = self.get_positions()
self.displace(log = False, gauss_std = gauss_std,
method = method)
new_pos = self.get_positions()
eigenmode = normalize(new_pos - pos)
self.set_positions(pos)
eigenmodes += [eigenmode]
self.eigenmodes = eigenmodes
# Ensure that the higher order mode guesses are all orthogonal
if self.order > 1:
for k in range(self.order):
self.ensure_eigenmode_orthogonality(k)
self.eigenmode_log()
# NB maybe this name might be confusing in context to
# calc.calculation_required()
def calculation_required(self):
"""Check if a calculation is required."""
return self.minmode_init or self.check_atoms != self.atoms
def calculate_real_forces_and_energies(self, **kwargs):
"""Calculate and store the potential energy and forces."""
if self.minmode_init:
self.minmode_init = False
self.initialize_eigenmodes(eigenmodes = self.eigenmodes)
self.rotation_required = True
self.forces0 = self.atoms.get_forces(**kwargs)
self.energy0 = self.atoms.get_potential_energy()
self.control.increment_counter('forcecalls')
self.check_atoms = self.atoms.copy()
def get_potential_energy(self):
"""Return the potential energy."""
if self.calculation_required():
self.calculate_real_forces_and_energies()
return self.energy0
def get_forces(self, real=False, pos=None, **kwargs):
"""Return the forces, projected or real."""
if self.calculation_required() and pos is None:
self.calculate_real_forces_and_energies(**kwargs)
if real and pos is None:
return self.forces0
elif real and pos is not None:
old_pos = self.atoms.get_positions()
self.atoms.set_positions(pos)
forces = self.atoms.get_forces()
self.control.increment_counter('forcecalls')
self.atoms.set_positions(old_pos)
return forces
else:
if self.rotation_required:
self.find_eigenmodes(order = self.order)
self.eigenmode_log()
self.rotation_required = False
self.control.increment_counter('optcount')
return self.get_projected_forces()
def ensure_eigenmode_orthogonality(self, order):
mode = self.eigenmodes[order - 1].copy()
for k in range(order - 1):
mode = perpendicular_vector(mode, self.eigenmodes[k])
self.eigenmodes[order - 1] = normalize(mode)
def find_eigenmodes(self, order=1):
"""Launch eigenmode searches."""
if self.control.get_parameter('eigenmode_method').lower() != 'dimer':
e = 'Only the Dimer control object has been implemented.'
raise NotImplementedError(e) # NYI
for k in range(order):
if k > 0:
self.ensure_eigenmode_orthogonality(k + 1)
search = DimerEigenmodeSearch(self, self.control, \
eigenmode = self.eigenmodes[k], basis = self.eigenmodes[:k])
search.converge_to_eigenmode()
search.set_up_for_optimization_step()
self.eigenmodes[k] = search.get_eigenmode()
self.curvatures[k] = search.get_curvature()
def get_projected_forces(self, pos=None):
"""Return the projected forces."""
if pos is not None:
forces = self.get_forces(real = True, pos = pos).copy()
else:
forces = self.forces0.copy()
# Loop through all the eigenmodes
# NB: Can this be done with a linear combination, instead?
for k, mode in enumerate(self.eigenmodes):
# NYI This If statement needs to be overridable in the control
if self.get_curvature(order = k) > 0.0 and self.order == 1:
forces = -parallel_vector(forces, mode)
else:
forces -= 2 * parallel_vector(forces, mode)
return forces
def restore_original_positions(self):
"""Restore the MinModeAtoms object positions to the original state."""
self.atoms.set_positions(self.get_original_positions())
def get_barrier_energy(self):
"""The energy difference between the current and original states"""
try:
original_energy = self.get_original_potential_energy()
dimer_energy = self.get_potential_energy()
return dimer_energy - original_energy
except RuntimeError:
w = 'The potential energy is not available, without further ' + \
'calculations, most likely at the original state.'
warnings.warn(w, UserWarning)
return np.nan
def get_control(self):
"""Return the control object."""
return self.control
def get_curvature(self, order='max'):
"""Return the eigenvalue estimate."""
if order == 'max':
return max(self.curvatures)
else:
return self.curvatures[order - 1]
def get_eigenmode(self, order=1):
"""Return the current eigenmode guess."""
return self.eigenmodes[order - 1]
def get_atoms(self):
"""Return the unextended Atoms object."""
return self.atoms
def set_atoms(self, atoms):
"""Set a new Atoms object"""
self.atoms = atoms
def set_eigenmode(self, eigenmode, order=1):
"""Set the eigenmode guess."""
self.eigenmodes[order - 1] = eigenmode
def set_curvature(self, curvature, order=1):
"""Set the eigenvalue estimate."""
self.curvatures[order - 1] = curvature
# Pipe all the stuff from Atoms that is not overwritten.
# Pipe all requests for get_original_* to self.atoms0.
def __getattr__(self, attr):
"""Return any value of the Atoms object"""
if 'original' in attr.split('_'):
attr = attr.replace('_original_', '_')
return getattr(self.atoms0, attr)
else:
return getattr(self.atoms, attr)
def __len__(self):
return len(self.atoms)
def displace(self, displacement_vector=None, mask=None, method=None,
displacement_center=None, radius=None, number_of_atoms=None,
gauss_std=None, mic=True, log=True):
"""Move the atoms away from their current position.
This is one of the essential parts of minimum mode searches.
The parameters can all be set in the control object and overwritten
when this method is run, apart from *displacement_vector*.
It is preferred to modify the control values rather than those here
in order for the correct ones to show up in the log file.
*method* can be either 'gauss' for random displacement or 'vector'
to perform a predefined displacement.
*gauss_std* is the standard deviation of the gauss curve that is
used for random displacement.
*displacement_center* can be either the number of an atom or a 3D
position. It must be accompanied by a *radius* (all atoms within it
will be displaced) or a *number_of_atoms* which decides how many of
the closest atoms will be displaced.
*mic* controls the usage of the Minimum Image Convention.
If both *mask* and *displacement_center* are used, the atoms marked
as False in the *mask* will not be affected even though they are
within reach of the *displacement_center*.
The parameters priority order:
1) displacement_vector
2) mask
3) displacement_center (with radius and/or number_of_atoms)
If both *radius* and *number_of_atoms* are supplied with
*displacement_center*, only atoms that fulfill both criteria will
be displaced.
"""
# Fetch the default values from the control
if mask is None:
mask = self.control.get_parameter('mask')
if method is None:
method = self.control.get_parameter('displacement_method')
if gauss_std is None:
gauss_std = self.control.get_parameter('gauss_std')
if displacement_center is None:
displacement_center = \
self.control.get_parameter('displacement_center')
if radius is None:
radius = self.control.get_parameter('displacement_radius')
if number_of_atoms is None:
number_of_atoms = \
self.control.get_parameter('number_of_displacement_atoms')
# Check for conflicts
if displacement_vector is not None and method.lower() != 'vector':
e = 'displacement_vector was supplied but a different method ' + \
'(\'%s\') was chosen.\n' % str(method)
raise ValueError(e)
elif displacement_vector is None and method.lower() == 'vector':
e = 'A displacement_vector must be supplied when using ' + \
'method = \'%s\'.\n' % str(method)
raise ValueError(e)
elif displacement_center is not None and radius is None and \
number_of_atoms is None:
e = 'When displacement_center is chosen, either radius or ' + \
'number_of_atoms must be supplied.\n'
raise ValueError(e)
# Set up the center of displacement mask (c_mask)
if displacement_center is not None:
c = displacement_center
# Construct a distance list
# The center is an atom
if isinstance(c, int):
# Parse negative indexes
c = displacement_center % len(self)
d = [(k, self.get_distance(k, c, mic = mic)) for k in \
range(len(self))]
# The center is a position in 3D space
elif len(c) == 3 and [type(c_k) for c_k in c] == [float]*3:
# NB: MIC is not considered.
d = [(k, norm(self.get_positions()[k] - c)) \
for k in range(len(self))]
else:
e = 'displacement_center must be either the number of an ' + \
'atom in MinModeAtoms object or a 3D position ' + \
'(3-tuple of floats).'
raise ValueError(e)
# Set up the mask
if radius is not None:
r_mask = [dist[1] < radius for dist in d]
else:
r_mask = [True for _ in self]
if number_of_atoms is not None:
d_sorted = [n[0] for n in sorted(d, key = lambda k: k[1])]
n_nearest = d_sorted[:number_of_atoms]
n_mask = [k in n_nearest for k in range(len(self))]
else:
n_mask = [True for _ in self]
# Resolve n_mask / r_mask conflicts
c_mask = [n_mask[k] and r_mask[k] for k in range(len(self))]
else:
c_mask = None
# Set up a True mask if there is no mask supplied
if mask is None:
mask = [True for _ in self]
if c_mask is None:
w = 'It was not possible to figure out which atoms to ' + \
'displace, Will try to displace all atoms.\n'
warnings.warn(w, UserWarning)
if self.logfile is not None:
self.logfile.write('MINMODE:WARN: ' + w + '\n')
self.logfile.flush()
# Resolve mask / c_mask conflicts
if c_mask is not None:
mask = [mask[k] and c_mask[k] for k in range(len(self))]
if displacement_vector is None:
displacement_vector = []
for k in range(len(self)):
if mask[k]:
diff_line = []
for _ in range(3):
if method.lower() == 'gauss':
if not gauss_std:
gauss_std = \
self.control.get_parameter('gauss_std')
diff = self.random_state.normal(0.0, gauss_std)
else:
e = 'Invalid displacement method >>%s<<' % \
str(method)
raise ValueError(e)
diff_line.append(diff)
displacement_vector.append(diff_line)
else:
displacement_vector.append([0.0]*3)
# Remove displacement of masked atoms
for k in range(len(mask)):
if not mask[k]:
displacement_vector[k] = [0.0]*3
# Perform the displacement and log it
if log:
pos0 = self.get_positions()
self.set_positions(self.get_positions() + displacement_vector)
if log:
parameters = {'mask': mask,
'displacement_method': method,
'gauss_std': gauss_std,
'displacement_center': displacement_center,
'displacement_radius': radius,
'number_of_displacement_atoms': number_of_atoms}
self.displacement_log(self.get_positions() - pos0, parameters)
def eigenmode_log(self):
"""Log the eigenmodes (eigenmode estimates)"""
if self.mlogfile is not None:
l = 'MINMODE:MODE: Optimization Step: %i\n' % \
(self.control.get_counter('optcount'))
for m_num, mode in enumerate(self.eigenmodes):
l += 'MINMODE:MODE: Order: %i\n' % m_num
for k in range(len(mode)):
l += 'MINMODE:MODE: %7i %15.8f %15.8f %15.8f\n' % (k,
mode[k][0], mode[k][1], mode[k][2])
self.mlogfile.write(l)
self.mlogfile.flush()
def displacement_log(self, displacement_vector, parameters):
"""Log the displacement"""
if self.logfile is not None:
lp = 'MINMODE:DISP: Parameters, different from the control:\n'
mod_para = False
for key in parameters:
if parameters[key] != self.control.get_parameter(key):
lp += 'MINMODE:DISP: %s = %s\n' % (str(key),
str(parameters[key]))
mod_para = True
if mod_para:
l = lp
else:
l = ''
for k in range(len(displacement_vector)):
l += 'MINMODE:DISP: %7i %15.8f %15.8f %15.8f\n' % (k,
displacement_vector[k][0], displacement_vector[k][1],
displacement_vector[k][2])
self.logfile.write(l)
self.logfile.flush()
def summarize(self):
"""Summarize the Minimum mode search."""
if self.logfile is None:
logfile = sys.stdout
else:
logfile = self.logfile
c = self.control
label = 'MINMODE:SUMMARY: '
l = label + '-------------------------\n'
l += label + 'Barrier: %16.4f\n' % self.get_barrier_energy()
l += label + 'Curvature: %14.4f\n' % self.get_curvature()
l += label + 'Optimizer steps: %8i\n' % c.get_counter('optcount')
l += label + 'Forcecalls: %13i\n' % c.get_counter('forcecalls')
l += label + '-------------------------\n'
logfile.write(l)
class MinModeTranslate(Optimizer):
"""An Optimizer specifically tailored to minimum mode following."""
def __init__(self, atoms, logfile='-', trajectory=None):
Optimizer.__init__(self, atoms, None, logfile, trajectory)
self.control = atoms.get_control()
# Make a header for the log
if self.logfile is not None:
l = ''
if isinstance(self.control, DimerControl):
l = 'MinModeTranslate: STEP TIME ENERGY ' + \
'MAX-FORCE STEPSIZE CURVATURE ROT-STEPS\n'
self.logfile.write(l)
self.logfile.flush()
# Load the relevant parameters from control
self.cg_on = self.control.get_parameter('cg_translation')
self.trial_step = self.control.get_parameter('trial_trans_step')
self.max_step = self.control.get_parameter('maximum_translation')
# Start conjugate gradient
if self.cg_on:
self.cg_init = True
def initialize(self):
"""Set initial values."""
self.r0 = None
self.f0 = None
def run(self, fmax=0.05, steps=100000000):
"""Run structure optimization algorithm.
This method will return when the forces on all individual
atoms are less than *fmax* or when the number of steps exceeds
*steps*.
"""
self.fmax = fmax
step = 0
while step < steps:
f = self.atoms.get_forces()
self.call_observers()
if self.converged(f):
self.log(f, None)
return
self.step(f)
self.nsteps += 1
step += 1
def step(self, f):
"""Perform the optimization step."""
atoms = self.atoms
r = atoms.get_positions()
curv = atoms.get_curvature()
f0p = f.copy()
r0 = r.copy()
direction = f0p.copy()
if self.cg_on:
direction = self.get_cg_direction(direction)
direction = normalize(direction)
if curv > 0.0:
step = direction * self.max_step
else:
r0t = r0 + direction * self.trial_step
f0tp = self.atoms.get_projected_forces(r0t)
F = np.vdot((f0tp + f0p), direction) / 2.0
C = np.vdot((f0tp - f0p), direction) / self.trial_step
step = ( -F / C + self.trial_step / 2.0 ) * direction
if norm(step) > self.max_step:
step = direction * self.max_step
self.log(f0p, norm(step))
atoms.set_positions(r + step)
self.f0 = f.flat.copy()
self.r0 = r.flat.copy()
def get_cg_direction(self, direction):
"""Apply the Conjugate Gradient algorithm to the step direction."""
if self.cg_init:
self.cg_init = False
self.direction_old = direction.copy()
self.cg_direction = direction.copy()
old_norm = np.vdot(self.direction_old, self.direction_old)
# Polak-Ribiere Conjugate Gradient
if old_norm != 0.0:
betaPR = np.vdot(direction, (direction - self.direction_old)) / \
old_norm
else:
betaPR = 0.0
if betaPR < 0.0:
betaPR = 0.0
self.cg_direction = direction + self.cg_direction * betaPR
self.direction_old = direction.copy()
return self.cg_direction.copy()
def log(self, f, stepsize):
"""Log each step of the optimization."""
if self.logfile is not None:
T = time.localtime()
e = self.atoms.get_potential_energy()
fmax = sqrt((f**2).sum(axis = 1).max())
rotsteps = self.atoms.control.get_counter('rotcount')
curvature = self.atoms.get_curvature()
l = ''
if stepsize:
if isinstance(self.control, DimerControl):
l = '%s: %4d %02d:%02d:%02d %15.6f %12.4f %12.6f ' \
'%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
T[3], T[4], T[5], e, fmax, stepsize, curvature,
rotsteps)
else:
if isinstance(self.control, DimerControl):
l = '%s: %4d %02d:%02d:%02d %15.6f %12.4f %s ' \
'%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
T[3], T[4], T[5], e, fmax, ' --------',
curvature, rotsteps)
self.logfile.write(l)
self.logfile.flush()
def read_eigenmode(mlog, index = -1):
"""Read an eigenmode.
To access the pre optimization eigenmode set index = 'null'.
"""
if isinstance(mlog, basestring):
f = open(mlog, 'r')
else:
f = mlog
lines = f.readlines()
# Detect the amount of atoms and iterations
k = 2
while lines[k].split()[1].lower() not in ['optimization', 'order']:
k += 1
n = k - 2
n_itr = (len(lines) // (n + 1)) - 2
# Locate the correct image.
if isinstance(index, basestring):
if index.lower() == 'null':
i = 0
else:
i = int(index) + 1
else:
if index >= 0:
i = index + 1
else:
if index < -n_itr - 1:
raise IndexError('list index out of range')
else:
i = index
mode = np.ndarray(shape = (n, 3), dtype = float)
k_atom = 0
for k in range(1, n + 1):
line = lines[i * (n + 1) + k].split()
for k_dim in range(3):
mode[k_atom][k_dim] = float(line[k_dim + 2])
k_atom += 1
return mode
# Aliases
DimerAtoms = MinModeAtoms
DimerTranslate = MinModeTranslate
|