/usr/lib/python2.7/dist-packages/xapian_backend.py is in python-xapian-haystack 2.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 | from __future__ import unicode_literals
import datetime
import pickle
import os
import re
import shutil
import sys
from django.utils import six
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.utils.encoding import force_text
from haystack import connections
from haystack.backends import BaseEngine, BaseSearchBackend, BaseSearchQuery, SearchNode, log_query
from haystack.constants import ID, DJANGO_ID, DJANGO_CT, DEFAULT_OPERATOR
from haystack.exceptions import HaystackError, MissingDependency
from haystack.inputs import AutoQuery
from haystack.models import SearchResult
from haystack.utils import get_identifier, get_model_ct
NGRAM_MIN_LENGTH = 2
NGRAM_MAX_LENGTH = 15
try:
import xapian
except ImportError:
raise MissingDependency("The 'xapian' backend requires the installation of 'Xapian'. "
"Please refer to the documentation.")
class NotSupportedError(Exception):
"""
When the installed version of Xapian doesn't support something and we have
the old implementation.
"""
pass
# this maps the different reserved fields to prefixes used to
# create the database:
# id str: unique document id.
# django_id int: id of the django model instance.
# django_ct str: of the content type of the django model.
# field str: name of the field of the index.
TERM_PREFIXES = {
ID: 'Q',
DJANGO_ID: 'QQ',
DJANGO_CT: 'CONTENTTYPE',
'field': 'X'
}
MEMORY_DB_NAME = ':memory:'
DEFAULT_XAPIAN_FLAGS = (
xapian.QueryParser.FLAG_PHRASE |
xapian.QueryParser.FLAG_BOOLEAN |
xapian.QueryParser.FLAG_LOVEHATE |
xapian.QueryParser.FLAG_WILDCARD |
xapian.QueryParser.FLAG_PURE_NOT
)
# Mapping from `HAYSTACK_DEFAULT_OPERATOR` to Xapian operators
XAPIAN_OPTS = {'AND': xapian.Query.OP_AND,
'OR': xapian.Query.OP_OR,
'PHRASE': xapian.Query.OP_PHRASE,
'NEAR': xapian.Query.OP_NEAR
}
# number of documents checked by default when building facets
# this must be improved to be relative to the total number of docs.
DEFAULT_CHECK_AT_LEAST = 1000
# field types accepted to be serialized as values in Xapian
FIELD_TYPES = {'text', 'integer', 'date', 'datetime', 'float', 'boolean',
'edge_ngram', 'ngram'}
# defines the format used to store types in Xapian
# this format ensures datetimes are sorted correctly
DATETIME_FORMAT = '%Y%m%d%H%M%S'
INTEGER_FORMAT = '%012d'
# defines the distance given between
# texts with positional information
TERMPOS_DISTANCE = 100
class InvalidIndexError(HaystackError):
"""Raised when an index can not be opened."""
pass
class XHValueRangeProcessor(xapian.ValueRangeProcessor):
"""
A Processor to construct ranges of values
"""
def __init__(self, backend):
self.backend = backend
xapian.ValueRangeProcessor.__init__(self)
def __call__(self, begin, end):
"""
Construct a tuple for value range processing.
`begin` -- a string in the format '<field_name>:[low_range]'
If 'low_range' is omitted, assume the smallest possible value.
`end` -- a string in the the format '[high_range|*]'. If '*', assume
the highest possible value.
Return a tuple of three strings: (column, low, high)
"""
colon = begin.find(':')
field_name = begin[:colon]
begin = begin[colon + 1:len(begin)]
for field_dict in self.backend.schema:
if field_dict['field_name'] == field_name:
field_type = field_dict['type']
if not begin:
if field_type == 'text':
begin = 'a' # TODO: A better way of getting a min text value?
elif field_type == 'integer':
begin = -sys.maxsize - 1
elif field_type == 'float':
begin = float('-inf')
elif field_type == 'date' or field_type == 'datetime':
begin = '00010101000000'
elif end == '*':
if field_type == 'text':
end = 'z' * 100 # TODO: A better way of getting a max text value?
elif field_type == 'integer':
end = sys.maxsize
elif field_type == 'float':
end = float('inf')
elif field_type == 'date' or field_type == 'datetime':
end = '99990101000000'
if field_type == 'float':
begin = _term_to_xapian_value(float(begin), field_type)
end = _term_to_xapian_value(float(end), field_type)
elif field_type == 'integer':
begin = _term_to_xapian_value(int(begin), field_type)
end = _term_to_xapian_value(int(end), field_type)
return field_dict['column'], str(begin), str(end)
class XHExpandDecider(xapian.ExpandDecider):
def __call__(self, term):
"""
Return True if the term should be used for expanding the search
query, False otherwise.
Ignore terms related with the content type of objects.
"""
if term.decode('utf-8').startswith(TERM_PREFIXES[DJANGO_CT]):
return False
return True
class XapianSearchBackend(BaseSearchBackend):
"""
`SearchBackend` defines the Xapian search backend for use with the Haystack
API for Django search.
It uses the Xapian Python bindings to interface with Xapian, and as
such is subject to this bug: <http://trac.xapian.org/ticket/364> when
Django is running with mod_python or mod_wsgi under Apache.
Until this issue has been fixed by Xapian, it is neccessary to set
`WSGIApplicationGroup to %{GLOBAL}` when using mod_wsgi, or
`PythonInterpreter main_interpreter` when using mod_python.
In order to use this backend, `PATH` must be included in the
`connection_options`. This should point to a location where you would your
indexes to reside.
"""
inmemory_db = None
def __init__(self, connection_alias, **connection_options):
"""
Instantiates an instance of `SearchBackend`.
Optional arguments:
`connection_alias` -- The name of the connection
`language` -- The stemming language (default = 'english')
`**connection_options` -- The various options needed to setup
the backend.
Also sets the stemming language to be used to `language`.
"""
super(XapianSearchBackend, self).__init__(connection_alias, **connection_options)
if not 'PATH' in connection_options:
raise ImproperlyConfigured("You must specify a 'PATH' in your settings for connection '%s'."
% connection_alias)
self.path = connection_options.get('PATH')
if self.path != MEMORY_DB_NAME and not os.path.exists(self.path):
os.makedirs(self.path)
self.flags = connection_options.get('FLAGS', DEFAULT_XAPIAN_FLAGS)
self.language = getattr(settings, 'HAYSTACK_XAPIAN_LANGUAGE', 'english')
stemming_strategy_string = getattr(settings, 'HAYSTACK_XAPIAN_STEMMING_STRATEGY', 'STEM_SOME')
self.stemming_strategy = getattr(xapian.QueryParser, stemming_strategy_string, xapian.QueryParser.STEM_SOME)
# these 4 attributes are caches populated in `build_schema`
# they are checked in `_update_cache`
# use property to retrieve them
self._fields = {}
self._schema = []
self._content_field_name = None
self._columns = {}
def _update_cache(self):
"""
To avoid build_schema every time, we cache
some values: they only change when a SearchIndex
changes, which typically restarts the Python.
"""
fields = connections[self.connection_alias].get_unified_index().all_searchfields()
if self._fields != fields:
self._fields = fields
self._content_field_name, self._schema = self.build_schema(self._fields)
@property
def schema(self):
self._update_cache()
return self._schema
@property
def content_field_name(self):
self._update_cache()
return self._content_field_name
@property
def column(self):
"""
Returns the column in the database of a given field name.
"""
self._update_cache()
return self._columns
def update(self, index, iterable):
"""
Updates the `index` with any objects in `iterable` by adding/updating
the database as needed.
Required arguments:
`index` -- The `SearchIndex` to process
`iterable` -- An iterable of model instances to index
For each object in `iterable`, a document is created containing all
of the terms extracted from `index.full_prepare(obj)` with field prefixes,
and 'as-is' as needed. Also, if the field type is 'text' it will be
stemmed and stored with the 'Z' prefix as well.
eg. `content:Testing` ==> `testing, Ztest, ZXCONTENTtest, XCONTENTtest`
Each document also contains an extra term in the format:
`XCONTENTTYPE<app_name>.<model_name>`
As well as a unique identifier in the the format:
`Q<app_name>.<model_name>.<pk>`
eg.: foo.bar (pk=1) ==> `Qfoo.bar.1`, `XCONTENTTYPEfoo.bar`
This is useful for querying for a specific document corresponding to
a model instance.
The document also contains a pickled version of the object itself and
the document ID in the document data field.
Finally, we also store field values to be used for sorting data. We
store these in the document value slots (position zero is reserver
for the document ID). All values are stored as unicode strings with
conversion of float, int, double, values being done by Xapian itself
through the use of the :method:xapian.sortable_serialise method.
"""
database = self._database(writable=True)
try:
term_generator = xapian.TermGenerator()
term_generator.set_database(database)
term_generator.set_stemmer(xapian.Stem(self.language))
try:
term_generator.set_stemming_strategy(self.stemming_strategy)
except AttributeError:
# Versions before Xapian 1.2.11 do not support stemming strategies for TermGenerator
pass
if self.include_spelling is True:
term_generator.set_flags(xapian.TermGenerator.FLAG_SPELLING)
def _add_text(termpos, text, weight, prefix=''):
"""
indexes text appending 2 extra terms
to identify beginning and ending of the text.
"""
term_generator.set_termpos(termpos)
start_term = '%s^' % prefix
end_term = '%s$' % prefix
# add begin
document.add_posting(start_term, termpos, weight)
# add text
term_generator.index_text(text, weight, prefix)
termpos = term_generator.get_termpos()
# add ending
termpos += 1
document.add_posting(end_term, termpos, weight)
# increase termpos
term_generator.set_termpos(termpos)
term_generator.increase_termpos(TERMPOS_DISTANCE)
return term_generator.get_termpos()
def _add_literal_text(termpos, text, weight, prefix=''):
"""
Adds sentence to the document with positional information
but without processing.
The sentence is bounded by "^" "$" to allow exact matches.
"""
text = '^ %s $' % text
for word in text.split():
term = '%s%s' % (prefix, word)
document.add_posting(term, termpos, weight)
termpos += 1
termpos += TERMPOS_DISTANCE
return termpos
def add_text(termpos, prefix, text, weight):
"""
Adds text to the document with positional information
and processing (e.g. stemming).
"""
termpos = _add_text(termpos, text, weight, prefix=prefix)
termpos = _add_text(termpos, text, weight, prefix='')
termpos = _add_literal_text(termpos, text, weight, prefix=prefix)
termpos = _add_literal_text(termpos, text, weight, prefix='')
return termpos
def _get_ngram_lengths(value):
values = value.split()
for item in values:
for ngram_length in six.moves.range(NGRAM_MIN_LENGTH, NGRAM_MAX_LENGTH + 1):
yield item, ngram_length
for obj in iterable:
document = xapian.Document()
term_generator.set_document(document)
def ngram_terms(value):
for item, length in _get_ngram_lengths(value):
item_length = len(item)
for start in six.moves.range(0, item_length - length + 1):
for size in six.moves.range(length, length + 1):
end = start + size
if end > item_length:
continue
yield _to_xapian_term(item[start:end])
def edge_ngram_terms(value):
for item, length in _get_ngram_lengths(value):
yield _to_xapian_term(item[0:length])
def add_edge_ngram_to_document(prefix, value, weight):
"""
Splits the term in ngrams and adds each ngram to the index.
The minimum and maximum size of the ngram is respectively
NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
"""
for term in edge_ngram_terms(value):
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_ngram_to_document(prefix, value, weight):
"""
Splits the term in ngrams and adds each ngram to the index.
The minimum and maximum size of the ngram is respectively
NGRAM_MIN_LENGTH and NGRAM_MAX_LENGTH.
"""
for term in ngram_terms(value):
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_non_text_to_document(prefix, term, weight):
"""
Adds term to the document without positional information
and without processing.
If the term is alone, also adds it as "^<term>$"
to allow exact matches on single terms.
"""
document.add_term(term, weight)
document.add_term(prefix + term, weight)
def add_datetime_to_document(termpos, prefix, term, weight):
"""
Adds a datetime to document with positional order
to allow exact matches on it.
"""
date, time = term.split()
document.add_posting(date, termpos, weight)
termpos += 1
document.add_posting(time, termpos, weight)
termpos += 1
document.add_posting(prefix + date, termpos, weight)
termpos += 1
document.add_posting(prefix + time, termpos, weight)
termpos += TERMPOS_DISTANCE + 1
return termpos
data = index.full_prepare(obj)
weights = index.get_field_weights()
termpos = term_generator.get_termpos() # identifies the current position in the document.
for field in self.schema:
if field['field_name'] not in list(data.keys()):
# not supported fields are ignored.
continue
if field['field_name'] in weights:
weight = int(weights[field['field_name']])
else:
weight = 1
value = data[field['field_name']]
if field['field_name'] in (ID, DJANGO_ID, DJANGO_CT):
# Private fields are indexed in a different way:
# `django_id` is an int and `django_ct` is text;
# besides, they are indexed by their (unstemmed) value.
if field['field_name'] == DJANGO_ID:
value = int(value)
value = _term_to_xapian_value(value, field['type'])
document.add_term(TERM_PREFIXES[field['field_name']] + value, weight)
document.add_value(field['column'], value)
continue
else:
prefix = TERM_PREFIXES['field'] + field['field_name'].upper()
# if not multi_valued, we add as a document value
# for sorting and facets
if field['multi_valued'] == 'false':
document.add_value(field['column'], _term_to_xapian_value(value, field['type']))
else:
for t in value:
# add the exact match of each value
term = _to_xapian_term(t)
termpos = add_text(termpos, prefix, term, weight)
continue
term = _to_xapian_term(value)
if term == '':
continue
# from here on the term is a string;
# we now decide how it is indexed
if field['type'] == 'text':
# text is indexed with positional information
termpos = add_text(termpos, prefix, term, weight)
elif field['type'] == 'datetime':
termpos = add_datetime_to_document(termpos, prefix, term, weight)
elif field['type'] == 'ngram':
add_ngram_to_document(prefix, value, weight)
elif field['type'] == 'edge_ngram':
add_edge_ngram_to_document(prefix, value, weight)
else:
# all other terms are added without positional information
add_non_text_to_document(prefix, term, weight)
# store data without indexing it
document.set_data(pickle.dumps(
(obj._meta.app_label, obj._meta.model_name, obj.pk, data),
pickle.HIGHEST_PROTOCOL
))
# add the id of the document
document_id = TERM_PREFIXES[ID] + get_identifier(obj)
document.add_term(document_id)
# finally, replace or add the document to the database
database.replace_document(document_id, document)
except UnicodeDecodeError:
sys.stderr.write('Chunk failed.\n')
pass
finally:
database.close()
def remove(self, obj):
"""
Remove indexes for `obj` from the database.
We delete all instances of `Q<app_name>.<model_name>.<pk>` which
should be unique to this object.
"""
database = self._database(writable=True)
database.delete_document(TERM_PREFIXES[ID] + get_identifier(obj))
database.close()
def clear(self, models=(), commit=True):
"""
Clear all instances of `models` from the database or all models, if
not specified.
Optional Arguments:
`models` -- Models to clear from the database (default = [])
If `models` is empty, an empty query is executed which matches all
documents in the database. Afterwards, each match is deleted.
Otherwise, for each model, a `delete_document` call is issued with
the term `XCONTENTTYPE<app_name>.<model_name>`. This will delete
all documents with the specified model type.
"""
if not models:
# Because there does not appear to be a "clear all" method,
# it's much quicker to remove the contents of the `self.path`
# folder than it is to remove each document one at a time.
if os.path.exists(self.path):
shutil.rmtree(self.path)
else:
database = self._database(writable=True)
for model in models:
database.delete_document(TERM_PREFIXES[DJANGO_CT] + get_model_ct(model))
database.close()
def document_count(self):
try:
return self._database().get_doccount()
except InvalidIndexError:
return 0
def _build_models_query(self, query):
"""
Builds a query from `query` that filters to documents only from registered models.
"""
registered_models_ct = self.build_models_list()
if registered_models_ct:
restrictions = [xapian.Query('%s%s' % (TERM_PREFIXES[DJANGO_CT], model_ct))
for model_ct in registered_models_ct]
limit_query = xapian.Query(xapian.Query.OP_OR, restrictions)
query = xapian.Query(xapian.Query.OP_AND, query, limit_query)
return query
def _check_field_names(self, field_names):
"""
Raises InvalidIndexError if any of a field_name in field_names is
not indexed.
"""
if field_names:
for field_name in field_names:
try:
self.column[field_name]
except KeyError:
raise InvalidIndexError('Trying to use non indexed field "%s"' % field_name)
@log_query
def search(self, query, sort_by=None, start_offset=0, end_offset=None,
fields='', highlight=False, facets=None, date_facets=None,
query_facets=None, narrow_queries=None, spelling_query=None,
limit_to_registered_models=None, result_class=None, **kwargs):
"""
Executes the Xapian::query as defined in `query`.
Required arguments:
`query` -- Search query to execute
Optional arguments:
`sort_by` -- Sort results by specified field (default = None)
`start_offset` -- Slice results from `start_offset` (default = 0)
`end_offset` -- Slice results at `end_offset` (default = None), if None, then all documents
`fields` -- Filter results on `fields` (default = '')
`highlight` -- Highlight terms in results (default = False)
`facets` -- Facet results on fields (default = None)
`date_facets` -- Facet results on date ranges (default = None)
`query_facets` -- Facet results on queries (default = None)
`narrow_queries` -- Narrow queries (default = None)
`spelling_query` -- An optional query to execute spelling suggestion on
`limit_to_registered_models` -- Limit returned results to models registered in
the current `SearchSite` (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
`facets` - A dictionary of facets with the following keys:
`fields` -- A list of field facets
`dates` -- A list of date facets
`queries` -- A list of query facets
If faceting was not used, the `facets` key will not be present
If `query` is None, returns no results.
If `INCLUDE_SPELLING` was enabled in the connection options, the
extra flag `FLAG_SPELLING_CORRECTION` will be passed to the query parser
and any suggestions for spell correction will be returned as well as
the results.
"""
if xapian.Query.empty(query):
return {
'results': [],
'hits': 0,
}
self._check_field_names(facets)
self._check_field_names(date_facets)
self._check_field_names(query_facets)
database = self._database()
if limit_to_registered_models is None:
limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True)
if result_class is None:
result_class = SearchResult
if self.include_spelling is True:
spelling_suggestion = self._do_spelling_suggestion(database, query, spelling_query)
else:
spelling_suggestion = ''
if narrow_queries is not None:
query = xapian.Query(
xapian.Query.OP_AND, query, xapian.Query(
xapian.Query.OP_AND, [self.parse_query(narrow_query) for narrow_query in narrow_queries]
)
)
if limit_to_registered_models:
query = self._build_models_query(query)
enquire = xapian.Enquire(database)
if hasattr(settings, 'HAYSTACK_XAPIAN_WEIGHTING_SCHEME'):
enquire.set_weighting_scheme(xapian.BM25Weight(*settings.HAYSTACK_XAPIAN_WEIGHTING_SCHEME))
enquire.set_query(query)
if sort_by:
try:
_xapian_sort(enquire, sort_by, self.column)
except NotSupportedError:
_old_xapian_sort(enquire, sort_by, self.column)
results = []
facets_dict = {
'fields': {},
'dates': {},
'queries': {},
}
if not end_offset:
end_offset = database.get_doccount() - start_offset
## prepare spies in case of facets
if facets:
facets_spies = self._prepare_facet_field_spies(facets)
for spy in facets_spies:
enquire.add_matchspy(spy)
# print enquire.get_query()
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
if highlight:
model_data['highlighted'] = {
self.content_field_name: self._do_highlight(
model_data.get(self.content_field_name), query
)
}
results.append(
result_class(app_label, model_name, pk, match.percent, **model_data)
)
if facets:
# pick single valued facets from spies
single_facets_dict = self._process_facet_field_spies(facets_spies)
# pick multivalued valued facets from results
multi_facets_dict = self._do_multivalued_field_facets(results, facets)
# merge both results (http://stackoverflow.com/a/38990/931303)
facets_dict['fields'] = dict(list(single_facets_dict.items()) + list(multi_facets_dict.items()))
if date_facets:
facets_dict['dates'] = self._do_date_facets(results, date_facets)
if query_facets:
facets_dict['queries'] = self._do_query_facets(results, query_facets)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': facets_dict,
'spelling_suggestion': spelling_suggestion,
}
def more_like_this(self, model_instance, additional_query=None,
start_offset=0, end_offset=None,
limit_to_registered_models=True, result_class=None, **kwargs):
"""
Given a model instance, returns a result set of similar documents.
Required arguments:
`model_instance` -- The model instance to use as a basis for
retrieving similar documents.
Optional arguments:
`additional_query` -- An additional query to narrow results
`start_offset` -- The starting offset (default=0)
`end_offset` -- The ending offset (default=None), if None, then all documents
`limit_to_registered_models` -- Limit returned results to models registered in the search (default = True)
Returns:
A dictionary with the following keys:
`results` -- A list of `SearchResult`
`hits` -- The total available results
Opens a database connection, then builds a simple query using the
`model_instance` to build the unique identifier.
For each document retrieved(should always be one), adds an entry into
an RSet (relevance set) with the document id, then, uses the RSet
to query for an ESet (A set of terms that can be used to suggest
expansions to the original query), omitting any document that was in
the original query.
Finally, processes the resulting matches and returns.
"""
database = self._database()
if result_class is None:
result_class = SearchResult
query = xapian.Query(TERM_PREFIXES[ID] + get_identifier(model_instance))
enquire = xapian.Enquire(database)
enquire.set_query(query)
rset = xapian.RSet()
if not end_offset:
end_offset = database.get_doccount()
match = None
for match in self._get_enquire_mset(database, enquire, 0, end_offset):
rset.add_document(match.docid)
if match is None:
if not self.silently_fail:
raise InvalidIndexError('Instance %s with id "%d" not indexed' %
(get_identifier(model_instance), model_instance.id))
else:
return {'results': [],
'hits': 0}
query = xapian.Query(
xapian.Query.OP_ELITE_SET,
[expand.term for expand in enquire.get_eset(match.document.termlist_count(), rset, XHExpandDecider())],
match.document.termlist_count()
)
query = xapian.Query(
xapian.Query.OP_AND_NOT, [query, TERM_PREFIXES[ID] + get_identifier(model_instance)]
)
if limit_to_registered_models:
query = self._build_models_query(query)
if additional_query:
query = xapian.Query(
xapian.Query.OP_AND, query, additional_query
)
enquire.set_query(query)
results = []
matches = self._get_enquire_mset(database, enquire, start_offset, end_offset)
for match in matches:
app_label, model_name, pk, model_data = pickle.loads(self._get_document_data(database, match.document))
results.append(
result_class(app_label, model_name, pk, match.percent, **model_data)
)
return {
'results': results,
'hits': self._get_hit_count(database, enquire),
'facets': {
'fields': {},
'dates': {},
'queries': {},
},
'spelling_suggestion': None,
}
def parse_query(self, query_string):
"""
Given a `query_string`, will attempt to return a xapian.Query
Required arguments:
``query_string`` -- A query string to parse
Returns a xapian.Query
"""
if query_string == '*':
return xapian.Query('') # Match everything
elif query_string == '':
return xapian.Query() # Match nothing
qp = xapian.QueryParser()
qp.set_database(self._database())
qp.set_stemmer(xapian.Stem(self.language))
qp.set_stemming_strategy(self.stemming_strategy)
qp.set_default_op(XAPIAN_OPTS[DEFAULT_OPERATOR])
qp.add_boolean_prefix(DJANGO_CT, TERM_PREFIXES[DJANGO_CT])
for field_dict in self.schema:
# since 'django_ct' has a boolean_prefix,
# we ignore it here.
if field_dict['field_name'] == DJANGO_CT:
continue
qp.add_prefix(
field_dict['field_name'],
TERM_PREFIXES['field'] + field_dict['field_name'].upper()
)
vrp = XHValueRangeProcessor(self)
qp.add_valuerangeprocessor(vrp)
return qp.parse_query(query_string, self.flags)
def build_schema(self, fields):
"""
Build the schema from fields.
:param fields: A list of fields in the index
:returns: list of dictionaries
Each dictionary has the keys
field_name: The name of the field index
type: what type of value it is
'multi_valued': if it allows more than one value
'column': a number identifying it
'type': the type of the field
'multi_valued': 'false', 'column': 0}
"""
content_field_name = ''
schema_fields = [
{'field_name': ID,
'type': 'text',
'multi_valued': 'false',
'column': 0},
{'field_name': DJANGO_ID,
'type': 'integer',
'multi_valued': 'false',
'column': 1},
{'field_name': DJANGO_CT,
'type': 'text',
'multi_valued': 'false',
'column': 2},
]
self._columns[ID] = 0
self._columns[DJANGO_ID] = 1
self._columns[DJANGO_CT] = 2
column = len(schema_fields)
for field_name, field_class in sorted(list(fields.items()), key=lambda n: n[0]):
if field_class.document is True:
content_field_name = field_class.index_fieldname
if field_class.indexed is True:
field_data = {
'field_name': field_class.index_fieldname,
'type': 'text',
'multi_valued': 'false',
'column': column,
}
if field_class.field_type == 'date':
field_data['type'] = 'date'
elif field_class.field_type == 'datetime':
field_data['type'] = 'datetime'
elif field_class.field_type == 'integer':
field_data['type'] = 'integer'
elif field_class.field_type == 'float':
field_data['type'] = 'float'
elif field_class.field_type == 'boolean':
field_data['type'] = 'boolean'
elif field_class.field_type == 'ngram':
field_data['type'] = 'ngram'
elif field_class.field_type == 'edge_ngram':
field_data['type'] = 'edge_ngram'
if field_class.is_multivalued:
field_data['multi_valued'] = 'true'
schema_fields.append(field_data)
self._columns[field_data['field_name']] = column
column += 1
return content_field_name, schema_fields
@staticmethod
def _do_highlight(content, query, tag='em'):
"""
Highlight `query` terms in `content` with html `tag`.
This method assumes that the input text (`content`) does not contain
any special formatting. That is, it does not contain any html tags
or similar markup that could be screwed up by the highlighting.
Required arguments:
`content` -- Content to search for instances of `text`
`text` -- The text to be highlighted
"""
for term in query:
term = term.decode('utf-8')
for match in re.findall('[^A-Z]+', term): # Ignore field identifiers
match_re = re.compile(match, re.I)
content = match_re.sub('<%s>%s</%s>' % (tag, term, tag), content)
return content
def _prepare_facet_field_spies(self, facets):
"""
Returns a list of spies based on the facets
used to count frequencies.
"""
spies = []
for facet in facets:
slot = self.column[facet]
spy = xapian.ValueCountMatchSpy(slot)
# add attribute "slot" to know which column this spy is targeting.
spy.slot = slot
spies.append(spy)
return spies
def _process_facet_field_spies(self, spies):
"""
Returns a dict of facet names with lists of
tuples of the form (term, term_frequency)
from a list of spies that observed the enquire.
"""
facet_dict = {}
for spy in spies:
field = self.schema[spy.slot]
field_name, field_type = field['field_name'], field['type']
facet_dict[field_name] = []
for facet in list(spy.values()):
if field_type == 'float':
# the float term is a Xapian serialized object, which is
# in bytes.
term = facet.term
else:
term = facet.term.decode('utf-8')
facet_dict[field_name].append((_from_xapian_value(term, field_type),
facet.termfreq))
return facet_dict
def _do_multivalued_field_facets(self, results, field_facets):
"""
Implements a multivalued field facet on the results.
This is implemented using brute force - O(N^2) -
because Xapian does not have it implemented yet
(see http://trac.xapian.org/ticket/199)
"""
facet_dict = {}
for field in field_facets:
facet_list = {}
if not self._multi_value_field(field):
continue
for result in results:
field_value = getattr(result, field)
for item in field_value: # Facet each item in a MultiValueField
facet_list[item] = facet_list.get(item, 0) + 1
facet_dict[field] = list(facet_list.items())
return facet_dict
@staticmethod
def _do_date_facets(results, date_facets):
"""
Private method that facets a document by date ranges
Required arguments:
`results` -- A list SearchResults to facet
`date_facets` -- A dictionary containing facet parameters:
{'field': {'start_date': ..., 'end_date': ...: 'gap_by': '...', 'gap_amount': n}}
nb., gap must be one of the following:
year|month|day|hour|minute|second
For each date facet field in `date_facets`, generates a list
of date ranges (from `start_date` to `end_date` by `gap_by`) then
iterates through `results` and tallies the count for each date_facet.
Returns a dictionary of date facets (fields) containing a list with
entries for each range and a count of documents matching the range.
eg. {
'pub_date': [
(datetime.datetime(2009, 1, 1, 0, 0), 5),
(datetime.datetime(2009, 2, 1, 0, 0), 0),
(datetime.datetime(2009, 3, 1, 0, 0), 0),
(datetime.datetime(2008, 4, 1, 0, 0), 1),
(datetime.datetime(2008, 5, 1, 0, 0), 2),
],
}
"""
def next_datetime(previous, gap_value, gap_type):
year = previous.year
month = previous.month
if gap_type == 'year':
next = previous.replace(year=year + gap_value)
elif gap_type == 'month':
if month + gap_value <= 12:
next = previous.replace(month=month + gap_value)
else:
next = previous.replace(
month=((month + gap_value) % 12),
year=(year + (month + gap_value) // 12)
)
elif gap_type == 'day':
next = previous + datetime.timedelta(days=gap_value)
elif gap_type == 'hour':
return previous + datetime.timedelta(hours=gap_value)
elif gap_type == 'minute':
next = previous + datetime.timedelta(minutes=gap_value)
elif gap_type == 'second':
next = previous + datetime.timedelta(seconds=gap_value)
else:
raise TypeError('\'gap_by\' must be '
'{second, minute, day, month, year}')
return next
facet_dict = {}
for date_facet, facet_params in list(date_facets.items()):
gap_type = facet_params.get('gap_by')
gap_value = facet_params.get('gap_amount', 1)
date_range = facet_params['start_date']
# construct the bins of the histogram
facet_list = []
while date_range < facet_params['end_date']:
facet_list.append((date_range, 0))
date_range = next_datetime(date_range, gap_value, gap_type)
facet_list = sorted(facet_list, key=lambda x: x[0], reverse=True)
for result in results:
result_date = getattr(result, date_facet)
# convert date to datetime
if not isinstance(result_date, datetime.datetime):
result_date = datetime.datetime(result_date.year,
result_date.month,
result_date.day)
# ignore results outside the boundaries.
if facet_list[0][0] < result_date < facet_list[-1][0]:
continue
# populate the histogram by putting the result on the right bin.
for n, facet_date in enumerate(facet_list):
if result_date > facet_date[0]:
# equal to facet_list[n][1] += 1, but for a tuple
facet_list[n] = (facet_list[n][0], (facet_list[n][1] + 1))
break # bin found; go to next result
facet_dict[date_facet] = facet_list
return facet_dict
def _do_query_facets(self, results, query_facets):
"""
Private method that facets a document by query
Required arguments:
`results` -- A list SearchResults to facet
`query_facets` -- A dictionary containing facet parameters:
{'field': 'query', [...]}
For each query in `query_facets`, generates a dictionary entry with
the field name as the key and a tuple with the query and result count
as the value.
eg. {'name': ('a*', 5)}
"""
facet_dict = {}
for field, query in list(dict(query_facets).items()):
facet_dict[field] = (query, self.search(self.parse_query(query))['hits'])
return facet_dict
@staticmethod
def _do_spelling_suggestion(database, query, spelling_query):
"""
Private method that returns a single spelling suggestion based on
`spelling_query` or `query`.
Required arguments:
`database` -- The database to check spelling against
`query` -- The query to check
`spelling_query` -- If not None, this will be checked instead of `query`
Returns a string with a suggested spelling
"""
if spelling_query:
if ' ' in spelling_query:
return ' '.join([database.get_spelling_suggestion(term).decode('utf-8') for term in spelling_query.split()])
else:
return database.get_spelling_suggestion(spelling_query).decode('utf-8')
term_set = set()
for term in query:
for match in re.findall('[^A-Z]+', term.decode('utf-8')): # Ignore field identifiers
term_set.add(database.get_spelling_suggestion(match).decode('utf-8'))
return ' '.join(term_set)
def _database(self, writable=False):
"""
Private method that returns a xapian.Database for use.
Optional arguments:
``writable`` -- Open the database in read/write mode (default=False)
Returns an instance of a xapian.Database or xapian.WritableDatabase
"""
if self.path == MEMORY_DB_NAME:
if not self.inmemory_db:
self.inmemory_db = xapian.inmemory_open()
return self.inmemory_db
if writable:
database = xapian.WritableDatabase(self.path, xapian.DB_CREATE_OR_OPEN)
else:
try:
database = xapian.Database(self.path)
except xapian.DatabaseOpeningError:
raise InvalidIndexError('Unable to open index at %s' % self.path)
return database
@staticmethod
def _get_enquire_mset(database, enquire, start_offset, end_offset, checkatleast=DEFAULT_CHECK_AT_LEAST):
"""
A safer version of Xapian.enquire.get_mset
Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
attempting a `database.reopen` as needed.
Required arguments:
`database` -- The database to be read
`enquire` -- An instance of an Xapian.enquire object
`start_offset` -- The start offset to pass to `enquire.get_mset`
`end_offset` -- The end offset to pass to `enquire.get_mset`
"""
try:
return enquire.get_mset(start_offset, end_offset, checkatleast)
except xapian.DatabaseModifiedError:
database.reopen()
return enquire.get_mset(start_offset, end_offset, checkatleast)
@staticmethod
def _get_document_data(database, document):
"""
A safer version of Xapian.document.get_data
Simply wraps the Xapian version and catches any `Xapian.DatabaseModifiedError`,
attempting a `database.reopen` as needed.
Required arguments:
`database` -- The database to be read
`document` -- An instance of an Xapian.document object
"""
try:
return document.get_data()
except xapian.DatabaseModifiedError:
database.reopen()
return document.get_data()
def _get_hit_count(self, database, enquire):
"""
Given a database and enquire instance, returns the estimated number
of matches.
Required arguments:
`database` -- The database to be queried
`enquire` -- The enquire instance
"""
return self._get_enquire_mset(
database, enquire, 0, database.get_doccount()
).size()
def _multi_value_field(self, field):
"""
Private method that returns `True` if a field is multi-valued, else
`False`.
Required arguemnts:
`field` -- The field to lookup
Returns a boolean value indicating whether the field is multi-valued.
"""
for field_dict in self.schema:
if field_dict['field_name'] == field:
return field_dict['multi_valued'] == 'true'
return False
class XapianSearchQuery(BaseSearchQuery):
"""
This class is the Xapian specific version of the SearchQuery class.
It acts as an intermediary between the ``SearchQuerySet`` and the
``SearchBackend`` itself.
"""
def build_params(self, *args, **kwargs):
kwargs = super(XapianSearchQuery, self).build_params(*args, **kwargs)
if self.end_offset is not None:
kwargs['end_offset'] = self.end_offset - self.start_offset
return kwargs
def build_query(self):
if not self.query_filter:
query = xapian.Query('')
else:
query = self._query_from_search_node(self.query_filter)
if self.models:
subqueries = [
xapian.Query(
xapian.Query.OP_SCALE_WEIGHT,
xapian.Query('%s%s' % (TERM_PREFIXES[DJANGO_CT], get_model_ct(model))),
0 # Pure boolean sub-query
) for model in self.models
]
query = xapian.Query(
xapian.Query.OP_AND, query,
xapian.Query(xapian.Query.OP_OR, subqueries)
)
if self.boost:
subqueries = [
xapian.Query(
xapian.Query.OP_SCALE_WEIGHT,
self._term_query(term, None, None), value
) for term, value in list(self.boost.items())
]
query = xapian.Query(
xapian.Query.OP_AND_MAYBE, query,
xapian.Query(xapian.Query.OP_OR, subqueries)
)
return query
def _query_from_search_node(self, search_node, is_not=False):
query_list = []
for child in search_node.children:
if isinstance(child, SearchNode):
query_list.append(
self._query_from_search_node(child, child.negated)
)
else:
expression, term = child
field_name, filter_type = search_node.split_expression(expression)
constructed_query_list = self._query_from_term(term, field_name, filter_type, is_not)
query_list.extend(constructed_query_list)
if search_node.connector == 'OR':
return xapian.Query(xapian.Query.OP_OR, query_list)
else:
return xapian.Query(xapian.Query.OP_AND, query_list)
def _query_from_term(self, term, field_name, filter_type, is_not):
"""
Uses arguments to construct a list of xapian.Query's.
"""
if field_name != 'content' and field_name not in self.backend.column:
raise InvalidIndexError('field "%s" not indexed' % field_name)
# It it is an AutoQuery, it has no filters
# or others, thus we short-circuit the procedure.
if isinstance(term, AutoQuery):
if field_name != 'content':
query = '%s:%s' % (field_name, term.prepare(self))
else:
query = term.prepare(self)
return [self.backend.parse_query(query)]
query_list = []
# Handle `ValuesListQuerySet`.
if hasattr(term, 'values_list'):
term = list(term)
if field_name == 'content':
# content is the generic search:
# force no field_name search
# and the field_type to be 'text'.
field_name = None
field_type = 'text'
# we don't know what is the type(term), so we parse it.
# Ideally this would not be required, but
# some filters currently depend on the term to make decisions.
term = _to_xapian_term(term)
query_list.append(self._filter_contains(term, field_name, field_type, is_not))
# when filter has no filter_type, haystack uses
# filter_type = 'content'. Here we remove it
# since the above query is already doing this
if filter_type == 'content':
filter_type = None
else:
# get the field_type from the backend
field_type = self.backend.schema[self.backend.column[field_name]]['type']
# private fields don't accept 'contains' or 'startswith'
# since they have no meaning.
if filter_type in ('contains', 'startswith') and field_name in (ID, DJANGO_ID, DJANGO_CT):
filter_type = 'exact'
if field_type == 'text':
# we don't know what type "term" is, but we know we are searching as text
# so we parse it like that.
# Ideally this would not be required since _term_query does it, but
# some filters currently depend on the term to make decisions.
if isinstance(term, list):
term = [_to_xapian_term(term) for term in term]
else:
term = _to_xapian_term(term)
# todo: we should check that the filter is valid for this field_type or raise InvalidIndexError
if filter_type == 'contains':
query_list.append(self._filter_contains(term, field_name, field_type, is_not))
elif filter_type in ('content', 'exact'):
query_list.append(self._filter_exact(term, field_name, field_type, is_not))
elif filter_type == 'in':
query_list.append(self._filter_in(term, field_name, field_type, is_not))
elif filter_type == 'startswith':
query_list.append(self._filter_startswith(term, field_name, field_type, is_not))
elif filter_type == 'endswith':
raise NotImplementedError("The Xapian search backend doesn't support endswith queries.")
elif filter_type == 'gt':
query_list.append(self._filter_gt(term, field_name, field_type, is_not))
elif filter_type == 'gte':
query_list.append(self._filter_gte(term, field_name, field_type, is_not))
elif filter_type == 'lt':
query_list.append(self._filter_lt(term, field_name, field_type, is_not))
elif filter_type == 'lte':
query_list.append(self._filter_lte(term, field_name, field_type, is_not))
elif filter_type == 'range':
query_list.append(self._filter_range(term, field_name, field_type, is_not))
return query_list
def _all_query(self):
"""
Returns a match all query.
"""
return xapian.Query('')
def _filter_contains(self, term, field_name, field_type, is_not):
"""
Splits the sentence in terms and join them with OR,
using stemmed and un-stemmed.
Assumes term is not a list.
"""
if field_type == 'text':
term_list = term.split()
else:
term_list = [term]
query = self._or_query(term_list, field_name, field_type)
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
else:
return query
def _filter_in(self, term_list, field_name, field_type, is_not):
"""
Returns a query that matches exactly ANY term in term_list.
Notice that:
A in {B,C} <=> (A = B or A = C)
~(A in {B,C}) <=> ~(A = B or A = C)
Because OP_AND_NOT(C, D) <=> (C and ~D), then D=(A in {B,C}) requires `is_not=False`.
Assumes term is a list.
"""
query_list = [self._filter_exact(term, field_name, field_type, is_not=False)
for term in term_list]
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(),
xapian.Query(xapian.Query.OP_OR, query_list))
else:
return xapian.Query(xapian.Query.OP_OR, query_list)
def _filter_exact(self, term, field_name, field_type, is_not):
"""
Returns a query that matches exactly the un-stemmed term
with positional order.
Assumes term is not a list.
"""
if field_type == 'text' and field_name not in (DJANGO_CT,):
term = '^ %s $' % term
query = self._phrase_query(term.split(), field_name, field_type)
else:
query = self._term_query(term, field_name, field_type, stemmed=False)
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
else:
return query
def _filter_startswith(self, term, field_name, field_type, is_not):
"""
Returns a startswith query on the un-stemmed term.
Assumes term is not a list.
"""
if field_type == 'text':
if len(term.split()) == 1:
term = '^ %s*' % term
query = self.backend.parse_query(term)
else:
term = '^ %s' % term
query = self._phrase_query(term.split(), field_name, field_type)
else:
term = '^%s*' % term
query = self.backend.parse_query(term)
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT, self._all_query(), query)
return query
def _or_query(self, term_list, field, field_type):
"""
Joins each item of term_list decorated by _term_query with an OR.
"""
term_list = [self._term_query(term, field, field_type) for term in term_list]
return xapian.Query(xapian.Query.OP_OR, term_list)
def _phrase_query(self, term_list, field_name, field_type):
"""
Returns a query that matches exact terms with
positional order (i.e. ["this", "thing"] != ["thing", "this"])
and no stem.
If `field_name` is not `None`, restrict to the field.
"""
term_list = [self._term_query(term, field_name, field_type,
stemmed=False) for term in term_list]
query = xapian.Query(xapian.Query.OP_PHRASE, term_list)
return query
def _term_query(self, term, field_name, field_type, stemmed=True):
"""
Constructs a query of a single term.
If `field_name` is not `None`, the term is search on that field only.
If exact is `True`, the search is restricted to boolean matches.
"""
constructor = '{prefix}{term}'
# construct the prefix to be used.
prefix = ''
if field_name:
prefix = TERM_PREFIXES['field'] + field_name.upper()
term = _to_xapian_term(term)
if field_name in (ID, DJANGO_ID, DJANGO_CT):
# to ensure the value is serialized correctly.
if field_name == DJANGO_ID:
term = int(term)
term = _term_to_xapian_value(term, field_type)
return xapian.Query('%s%s' % (TERM_PREFIXES[field_name], term))
# we construct the query dates in a slightly different way
if field_type == 'datetime':
date, time = term.split()
return xapian.Query(xapian.Query.OP_AND_MAYBE,
constructor.format(prefix=prefix, term=date),
constructor.format(prefix=prefix, term=time)
)
# only use stem if field is text or "None"
if field_type not in ('text', None):
stemmed = False
unstemmed_term = constructor.format(prefix=prefix, term=term)
if stemmed:
stem = xapian.Stem(self.backend.language)
stemmed_term = 'Z' + constructor.format(prefix=prefix, term=stem(term).decode('utf-8'))
return xapian.Query(xapian.Query.OP_OR,
xapian.Query(stemmed_term),
xapian.Query(unstemmed_term)
)
else:
return xapian.Query(unstemmed_term)
def _filter_gt(self, term, field_name, field_type, is_not):
return self._filter_lte(term, field_name, field_type, is_not=not is_not)
def _filter_lt(self, term, field_name, field_type, is_not):
return self._filter_gte(term, field_name, field_type, is_not=not is_not)
def _filter_gte(self, term, field_name, field_type, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that is greater than `term` in a specified `field`.
"""
vrp = XHValueRangeProcessor(self.backend)
pos, begin, end = vrp('%s:%s' % (field_name, _term_to_xapian_value(term, field_type)), '*')
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT,
self._all_query(),
xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
)
return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
def _filter_lte(self, term, field_name, field_type, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that is less than `term` in a specified `field`.
"""
vrp = XHValueRangeProcessor(self.backend)
pos, begin, end = vrp('%s:' % field_name, '%s' % _term_to_xapian_value(term, field_type))
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT,
self._all_query(),
xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
)
return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
def _filter_range(self, term, field_name, field_type, is_not):
"""
Private method that returns a xapian.Query that searches for any term
that is between the values from the `term` list.
"""
vrp = XHValueRangeProcessor(self.backend)
pos, begin, end = vrp('%s:%s' % (field_name, _term_to_xapian_value(term[0], field_type)),
'%s' % _term_to_xapian_value(term[1], field_type))
if is_not:
return xapian.Query(xapian.Query.OP_AND_NOT,
self._all_query(),
xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
)
return xapian.Query(xapian.Query.OP_VALUE_RANGE, pos, begin, end)
def _term_to_xapian_value(term, field_type):
"""
Converts a term to a serialized
Xapian value based on the field_type.
"""
assert field_type in FIELD_TYPES
def strf(dt):
"""
Equivalent to datetime.datetime.strptime(dt, DATETIME_FORMAT)
but accepts years below 1900 (see http://stackoverflow.com/q/10263956/931303)
"""
return '%04d%02d%02d%02d%02d%02d' % (
dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)
if field_type == 'boolean':
assert isinstance(term, bool)
if term:
value = 't'
else:
value = 'f'
elif field_type == 'integer':
value = INTEGER_FORMAT % term
elif field_type == 'float':
value = xapian.sortable_serialise(term)
elif field_type == 'date' or field_type == 'datetime':
if field_type == 'date':
# http://stackoverflow.com/a/1937636/931303 and comments
term = datetime.datetime.combine(term, datetime.time())
value = strf(term)
else: # field_type == 'text'
value = _to_xapian_term(term)
return value
def _to_xapian_term(term):
"""
Converts a Python type to a
Xapian term that can be indexed.
"""
return force_text(term).lower()
def _from_xapian_value(value, field_type):
"""
Converts a serialized Xapian value
to Python equivalent based on the field_type.
Doesn't accept multivalued fields.
"""
assert field_type in FIELD_TYPES
if field_type == 'boolean':
if value == 't':
return True
elif value == 'f':
return False
else:
InvalidIndexError('Field type "%d" does not accept value "%s"' % (field_type, value))
elif field_type == 'integer':
return int(value)
elif field_type == 'float':
return xapian.sortable_unserialise(value)
elif field_type == 'date' or field_type == 'datetime':
datetime_value = datetime.datetime.strptime(value, DATETIME_FORMAT)
if field_type == 'datetime':
return datetime_value
else:
return datetime_value.date()
else: # field_type == 'text'
return value
def _old_xapian_sort(enquire, sort_by, column):
sorter = xapian.MultiValueSorter()
for sort_field in sort_by:
if sort_field.startswith('-'):
reverse = True
sort_field = sort_field[1:] # Strip the '-'
else:
reverse = False # Reverse is inverted in Xapian -- http://trac.xapian.org/ticket/311
sorter.add(column[sort_field], reverse)
enquire.set_sort_by_key_then_relevance(sorter, True)
def _xapian_sort(enquire, sort_by, column):
try:
sorter = xapian.MultiValueKeyMaker()
except AttributeError:
raise NotSupportedError
for sort_field in sort_by:
if sort_field.startswith('-'):
reverse = False
sort_field = sort_field[1:] # Strip the '-'
else:
reverse = True
sorter.add_value(column[sort_field], reverse)
enquire.set_sort_by_key_then_relevance(sorter, True)
class XapianEngine(BaseEngine):
backend = XapianSearchBackend
query = XapianSearchQuery
|