/usr/lib/python2.7/dist-packages/ufl/sobolevspace.py is in python-ufl 2017.2.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | # -*- coding: utf-8 -*-
"""This module defines a symbolic heirarchy of Sobolev spaces to enable
symbolic reasoning about the spaces in which finite elements lie."""
# Copyright (C) 2014 Imperial College London and others
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Written by David Ham 2014
#
# Modified by Martin Alnaes 2014
# Modified by Lizao Li 2015
# Modified by Thomas Gibson 2017
from ufl.utils.py23 import as_native_str
from functools import total_ordering
@total_ordering
class SobolevSpace(object):
"""Symbolic representation of a Sobolev space. This implements a
subset of the methods of a Python set so that finite elements and
other Sobolev spaces can be tested for inclusion.
"""
def __init__(self, name, parents=None):
"""Instantiate a SobolevSpace object.
:param name: The name of this space,
:param parents: A set of Sobolev spaces of which this
space is a subspace."""
self.name = name
p = frozenset(parents or [])
# Ensure that the inclusion operations are transitive.
self.parents = p.union(*[p_.parents for p_ in p])
self._order = {"L2": 0,
"H1": 1,
"H2": 2,
# Order for the elements below is taken from
# its parent Sobolev space
"HDiv": 0,
"HCurl": 0,
"HEin": 0,
"HDivDiv": 0,
"DirectionalH": 0}[self.name]
def __unicode__(self):
# Only in python 2
return str(self).decode("utf-8")
def __str__(self):
return self.name
def __repr__(self):
r = "SobolevSpace(%s, %s)" % (repr(self.name), repr(list(self.parents)))
return as_native_str(r)
def _repr_latex_(self):
if len(self.name) == 2:
return "$%s^%s$" % tuple(self.name)
else:
return "$%s(%s)$" % (self.name[0], self.name[1:].lower())
def __eq__(self, other):
return isinstance(other, SobolevSpace) and self.name == other.name
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(("SobolevSpace", self.name))
def __getitem__(self, spatial_index):
"""Returns the Sobolev space associated with a particular
spatial coordinate.
"""
return self
def __contains__(self, other):
"""Implement `fe in s` where `fe` is a
:class:`~finiteelement.FiniteElement` and `s` is a
:class:`SobolevSpace`"""
if isinstance(other, SobolevSpace):
raise TypeError("Unable to test for inclusion of a " +
"SobolevSpace in another SobolevSpace. " +
"Did you mean to use <= instead?")
return (other.sobolev_space() == self or
self in other.sobolev_space().parents)
def __lt__(self, other):
"""In common with intrinsic Python sets, < indicates "is a proper
subset of"."""
return other in self.parents
def __call__(self, element):
"""Syntax shortcut to create a HDivElement or HCurlElement."""
if self.name == "HDiv":
from ufl.finiteelement import HDivElement
return HDivElement(element)
elif self.name == "HCurl":
from ufl.finiteelement import HCurlElement
return HCurlElement(element)
raise NotImplementedError("SobolevSpace has no call operator (only the specific HDiv and HCurl instances).")
@total_ordering
class DirectionalSobolevSpace(SobolevSpace):
"""Symbolic representation of a Sobolev space with varying smoothness
in differerent spatial directions.
"""
def __init__(self, orders):
"""Instantiate a DirectionalSobolevSpace object.
:arg orders: an iterable of orders of weak derivatives, where
the position denotes in what spatial variable the
smoothness requirement is enforced.
"""
assert all(isinstance(x, int) for x in orders), (
"Order must be an integer."
)
assert all(x < 3 for x in orders), (
"Not implemented for orders greater than 2"
)
name = "DirectionalH"
parents = [L2]
super(DirectionalSobolevSpace, self).__init__(name, parents)
self._orders = tuple(orders)
self._spatial_indices = range(len(self._orders))
def __getitem__(self, spatial_index):
"""Returns the Sobolev space associated with a particular
spatial coordinate.
"""
if spatial_index not in range(len(self._orders)):
raise IndexError("Spatial index out of range.")
spaces = {0: L2,
1: H1,
2: H2}
return spaces[self._orders[spatial_index]]
def __contains__(self, other):
"""Implement `fe in s` where `fe` is a
:class:`~finiteelement.FiniteElement` and `s` is a
:class:`DirectionalSobolevSpace`"""
if isinstance(other, SobolevSpace):
raise TypeError("Unable to test for inclusion of a " +
"SobolevSpace in another SobolevSpace. " +
"Did you mean to use <= instead?")
return (other.sobolev_space() == self or
all(self[i] in other.sobolev_space().parents
for i in self._spatial_indices))
def __eq__(self, other):
if isinstance(other, DirectionalSobolevSpace):
return self._orders == other._orders
return all(self[i] == other for i in self._spatial_indices)
def __lt__(self, other):
"""In common with intrinsic Python sets, < indicates "is a proper
subset of."""
if isinstance(other, DirectionalSobolevSpace):
if self._spatial_indices != other._spatial_indices:
return False
return any(self._orders[i] > other._orders[i]
for i in self._spatial_indices)
if other in [HDiv, HCurl]:
return all(self._orders[i] >= 1 for i in self._spatial_indices)
elif other.name in ["HDivDiv", "HEin"]:
# Don't know how these spaces compare
return NotImplementedError(
"Don't know how to compare with %s" % other.name
)
else:
return any(self._orders[i] > other._order
for i in self._spatial_indices)
def __str__(self):
return self.name + "(%s)" % ", ".join(map(str, self._orders))
def _repr_latex_(self):
return "H(%s)" % ", ".join(map(str, self._orders))
L2 = SobolevSpace("L2")
HDiv = SobolevSpace("HDiv", [L2])
HCurl = SobolevSpace("HCurl", [L2])
H1 = SobolevSpace("H1", [HDiv, HCurl, L2])
H2 = SobolevSpace("H2", [H1, HDiv, HCurl, L2])
HEin = SobolevSpace("HEin", [L2])
HDivDiv = SobolevSpace("HDivDiv", [L2])
|