/usr/bin/tegaki-eval is in python-tegakitools 0.3.1-1.1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | #!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (C) 2009 The Tegaki project contributors
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
# Contributors to this file:
# - Mathieu Blondel
import sys
import os
import time
from optparse import OptionParser
from tegaki.charcol import CharacterCollection
from tegaki.recognizer import Recognizer, RecognizerError
from tegakitools.charcol import *
VERSION = '0.3.1'
def harmonic_mean(x1, x2):
if x1 == 0.0 and x2 == 0.0:
return 0.0
else:
return 2 * float(x1 * x2) / float(x1 + x2)
class TegakiEvalError(Exception):
pass
class TegakiEval(object):
MATCH_RESULTS = (1, 5, 10)
def __init__(self, options, args):
self._verbosity_level = options.verbosity_level
self._directories = options.directories
self._databases = options.databases
self._charcols = options.charcols
self._tomoe = options.tomoe
self._kuchibue = options.kuchibue
self._list = options.list
self._include = options.include
self._exclude = options.exclude
self._max_samples = options.max_samples
if not self._list:
self._recognizer = args[0]
self._model = args[1]
def run(self):
if self._list:
self._list_recognizers()
else:
self._recognize()
def _list_recognizers(self):
avail_recognizers = Recognizer.get_all_available_models()
print "\n".join(["- %s (%s)" % (model, recog) for recog, model, meta \
in avail_recognizers])
def _recognize(self):
charcol = get_aggregated_charcol(
((TYPE_CHARCOL, self._charcols),
(TYPE_CHARCOL_DB, self._databases),
(TYPE_DIRECTORY, self._directories),
(TYPE_TOMOE, self._tomoe),
(TYPE_KUCHIBUE, self._kuchibue)))
charcol.include_characters_from_files(self._include)
charcol.exclude_characters_from_files(self._exclude)
# max samples
if self._max_samples:
charcol.remove_samples(keep_at_most=self._max_samples)
# FIXME: don't load all characters in memory
all_chars = charcol.get_all_characters()
if len(all_chars) == 0:
raise TegakiEvalError, "No character samples to evaluate!"
recognizer_class = self._get_recognizer_class()
recognizer = self._get_recognizer(recognizer_class)
self._eval(recognizer, all_chars)
def _get_recognizer_class(self):
avail_recognizers = Recognizer.get_available_recognizers()
if not self._recognizer in avail_recognizers:
err = "Not an available recognizer!\n"
err += "Available ones include: %s" % \
", ".join(avail_recognizers.keys())
raise TegakiEvalError, err
return avail_recognizers[self._recognizer]
def _get_recognizer(self, recognizer_class):
recognizer = recognizer_class()
if os.path.exists(self._model):
# the path exists so we consider the parameter to be a model path
method = recognizer.open
# try to find a .meta file
meta_file = self._model.replace(".model", ".meta")
if os.path.exists(meta_file) and meta_file.endswith(".meta"):
try:
meta = Recognizer.read_meta_file(meta_file)
except RecognizerError, e:
raise TegakiEvalError, str(e)
else:
meta = {}
else:
# otherwise we consider the parameter to be a model name
avail_models = recognizer_class.get_available_models()
if not self._model in avail_models:
err = "Not an available model!\n"
err += "Available ones include: %s" % \
", ".join(["\"%s\"" % k for k in avail_models.keys()])
raise TegakiEvalError, err
meta = avail_models[self._model]
method = recognizer.set_model
try:
method(self._model)
recognizer.set_options(meta)
except RecognizerError, e:
raise TegakiEvalError, str(e)
return recognizer
def _eval(self, recognizer, all_chars):
# number of samples present per character
n_samples = {}
# number of correctly predicted samples per character
n_corr_pred = {}
# number of times a character was predicted (correctly or not)
n_pred = {}
for n in self.MATCH_RESULTS:
n_corr_pred[n] = {}
n_pred[n] = {}
# calculate our statistics for each character
canddict = {} # store ALL the candidate results for verbosity >= 2
start_time = time.time()
for char in all_chars:
utf8 = char.get_utf8()
if not utf8:
continue
n_samples[utf8] = n_samples.get(utf8, 0) + 1
cand = recognizer.recognize(char.get_writing(),
n=max(self.MATCH_RESULTS))
cand = [char for char, prob in cand] # we don't need the probability
if self._verbosity_level >= 2:
if utf8 not in canddict: canddict[utf8] = []
canddict[utf8].append(cand)
for n in self.MATCH_RESULTS:
if utf8 in cand[0:n]:
n_corr_pred[n][utf8] = n_corr_pred[n].get(utf8, 0) + 1
for c in cand[0:n]:
n_pred[n][c] = n_pred[n].get(c, 0) + 1
end_time = time.time()
# Calculate accuracy/recall and precision for each character
# Print the overall results
print "Overall results"
print "\tRecognizer: %s" % self._recognizer
print "\tNumber of characters evaluated: %d\n" % len(all_chars)
total_time = end_time - start_time
print "\tTotal time: %0.2f sec" % float(total_time)
print "\tAverage time per character: %0.2f sec" % \
(float(total_time) / len(all_chars))
print "\tRecognition speed: %0.2f char/sec\n" % \
(len(all_chars) / float(total_time))
total_samples = sum(n_samples.values())
recall = {}
precision = {}
for n in self.MATCH_RESULTS:
recall[n] = {}
precision[n] = {}
for n in self.MATCH_RESULTS:
total_corr_pred = sum(n_corr_pred[n].values())
#total_pred = sum(n_pred[n].values())
recall_sum = 0
precision_sum = 0
for k in n_samples.keys():
# recall accounts for the recognizer "completeness"
# i.e. number of correct predictions / number of samples
recall[n][k] = float(n_corr_pred[n].get(k, 0)) / \
float(n_samples[k])
recall_sum += recall[n][k]
# i.e. number of correct predictions / number of predictions
try:
precision[n][k] = float(n_corr_pred[n].get(k, 0)) / \
float(n_pred[n][k])
except KeyError:
precision[n][k] = 0
precision_sum += precision[n][k]
recall_sum *= 100 / float(len(n_samples))
precision_sum *= 100 / float(len(n_samples))
print "\tmatch%d" % n
print "\t\tAccuracy/Recall: %0.2f" % recall_sum
if n == 1:
# Precision doesn't make sense for n > 1
print "\t\tPrecision: %0.2f" % precision_sum
print "\t\tF1 score: %0.2f" % harmonic_mean(recall_sum,
precision_sum)
print ""
# verbosity level 1
if self._verbosity_level < 1:
return
print "Result details"
for k in n_samples.keys():
print "\tCharacter: %s" %k
print "\tNumber of samples: %d\n" % n_samples[k]
for n in self.MATCH_RESULTS:
print "\t\tmatch%d" % n
print "\t\tAccuracy/Recall: %0.2f" % (recall[n][k] * 100)
if n == 1:
# Precision doesn't make sense for n > 1
print "\t\tPrecision: %0.2f" % (precision[n][k] * 100)
f1s = harmonic_mean(recall[n][k], precision[n][k]) * 100
print "\t\tF1 score: %0.2f" % f1s
print ""
if self._verbosity_level < 2:
continue
# verbosity level 2
print "\tCandidates:"
i = 0
for cand in canddict[k]:
print "\tsample%d: %s" % (i, ", ".join(cand))
i += 1
print ""
usage = """usage: %prog [options] recognizer model
recognizer a recognizer available on the system
model a model name available for that recognizer on the system OR
the direct file path to the model
"""
parser = OptionParser(usage=usage, version="%prog " + VERSION)
parser.add_option("-v", "--verbosity-level",
type="int", dest="verbosity_level", default=0,
help="verbosity level between 0 and 2")
parser.add_option("-d", "--directory",
action="append", type="string", dest="directories",
default=[],
help="directory containing individual XML character files")
parser.add_option("-c", "--charcol",
action="append", type="string", dest="charcols",
default=[],
help="character collection XML files")
parser.add_option("-b", "--db",
action="append", type="string", dest="databases",
default=[],
help="character collection XML files")
parser.add_option("-t", "--tomoe-dict",
action="append", type="string", dest="tomoe",
default=[],
help="Tomoe XML dictionary files")
parser.add_option("-k", "--kuchibue",
action="append", type="string", dest="kuchibue",
default=[],
help="Kuchibue unipen database")
parser.add_option("-l", "--list",
action="store_true",dest="list", default=False,
help="List available recognizers and models")
parser.add_option("-i", "--include",
action="append", type="string", dest="include",
default=[],
help="File containing characters to include")
parser.add_option("-e", "--exclude",
action="append", type="string", dest="exclude",
default=[],
help="File containing characters to exclude")
parser.add_option("-m", "--max-samples",
type="int", dest="max_samples",
help="Maximum number of samples per character")
(options, args) = parser.parse_args()
try:
if not options.list and len(args) < 2:
raise TegakiEvalError, "Needs a recognizer and a model!"
TegakiEval(options, args).run()
except TegakiEvalError, e:
sys.stderr.write(str(e) + "\n\n")
parser.print_help()
sys.exit(1)
|