This file is indexed.

/usr/share/doc/python-tables-doc/bench/sqlite-search-bench.py is in python-tables-doc 3.4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/python

from __future__ import print_function
import sqlite
import random
import time
import sys
import os
import os.path
from tables import *
import numpy as np

randomvalues = 0
standarddeviation = 10000
# Initialize the random generator always with the same integer
# in order to have reproductible results
random.seed(19)
np.random.seed((19, 20))

# defaults
psycon = 0
worst = 0


def createNewBenchFile(bfile, verbose):

    class Create(IsDescription):
        nrows = Int32Col(pos=0)
        irows = Int32Col(pos=1)
        tfill = Float64Col(pos=2)
        tidx = Float64Col(pos=3)
        tcfill = Float64Col(pos=4)
        tcidx = Float64Col(pos=5)
        rowsecf = Float64Col(pos=6)
        rowseci = Float64Col(pos=7)
        fsize = Float64Col(pos=8)
        isize = Float64Col(pos=9)
        psyco = BoolCol(pos=10)

    class Search(IsDescription):
        nrows = Int32Col(pos=0)
        rowsel = Int32Col(pos=1)
        time1 = Float64Col(pos=2)
        time2 = Float64Col(pos=3)
        tcpu1 = Float64Col(pos=4)
        tcpu2 = Float64Col(pos=5)
        rowsec1 = Float64Col(pos=6)
        rowsec2 = Float64Col(pos=7)
        psyco = BoolCol(pos=8)

    if verbose:
        print("Creating a new benchfile:", bfile)
    # Open the benchmarking file
    bf = open_file(bfile, "w")
    # Create groups
    for recsize in ["sqlite_small"]:
        group = bf.create_group("/", recsize, recsize + " Group")
        # Attach the row size of table as attribute
        if recsize == "small":
            group._v_attrs.rowsize = 16
        # Create a Table for writing bench
        bf.create_table(group, "create_indexed", Create, "indexed values")
        bf.create_table(group, "create_standard", Create, "standard values")
        # create a group for searching bench
        groupS = bf.create_group(group, "search", "Search Group")
        # Create Tables for searching
        for mode in ["indexed", "standard"]:
            group = bf.create_group(groupS, mode, mode + " Group")
            # for searching bench
            # for atom in ["string", "int", "float", "bool"]:
            for atom in ["string", "int", "float"]:
                bf.create_table(group, atom, Search, atom + " bench")
    bf.close()


def createFile(filename, nrows, filters, indexmode, heavy, noise, bfile,
               verbose):

    # Initialize some variables
    t1 = 0.
    t2 = 0.
    tcpu1 = 0.
    tcpu2 = 0.
    rowsecf = 0.
    rowseci = 0.
    size1 = 0.
    size2 = 0.

    if indexmode == "standard":
        print("Creating a new database:", dbfile)
        instd = os.popen("/usr/local/bin/sqlite " + dbfile, "w")
        CREATESTD = """
CREATE TABLE small (
-- Name         Type            -- Example
---------------------------------------
recnum  INTEGER PRIMARY KEY,  -- 345
var1            char(4),        -- Abronia villosa
var2            INTEGER,        -- 111
var3            FLOAT        --  12.32
);
"""
        CREATEIDX = """
CREATE TABLE small (
-- Name         Type            -- Example
---------------------------------------
recnum  INTEGER PRIMARY KEY,  -- 345
var1            char(4),        -- Abronia villosa
var2            INTEGER,        -- 111
var3            FLOAT        --  12.32
);
CREATE INDEX ivar1 ON small(var1);
CREATE INDEX ivar2 ON small(var2);
CREATE INDEX ivar3 ON small(var3);
"""
        # Creating the table first and indexing afterwards is a bit faster
        instd.write(CREATESTD)
        instd.close()

    conn = sqlite.connect(dbfile)
    cursor = conn.cursor()
    if indexmode == "standard":
        place_holders = ",".join(['%s'] * 3)
        # Insert rows
        SQL = "insert into small values(NULL, %s)" % place_holders
        time1 = time.time()
        cpu1 = time.clock()
        # This way of filling is to copy the PyTables benchmark
        nrowsbuf = 1000
        minimum = 0
        maximum = nrows
        for i in range(0, nrows, nrowsbuf):
            if i + nrowsbuf > nrows:
                j = nrows
            else:
                j = i + nrowsbuf
            if randomvalues:
                var3 = np.random.uniform(minimum, maximum, shape=[j - i])
            else:
                var3 = np.arange(i, j, type=np.Float64)
                if noise:
                    var3 += np.random.uniform(-3, 3, shape=[j - i])
            var2 = np.array(var3, type=np.Int32)
            var1 = np.array(None, shape=[j - i], dtype='s4')
            if not heavy:
                for n in range(j - i):
                    var1[n] = str("%.4s" % var2[n])
            for n in range(j - i):
                fields = (var1[n], var2[n], var3[n])
                cursor.execute(SQL, fields)
            conn.commit()
        t1 = round(time.time() - time1, 5)
        tcpu1 = round(time.clock() - cpu1, 5)
        rowsecf = nrows / t1
        size1 = os.stat(dbfile)[6]
        print("******** Results for writing nrows = %s" % (nrows), "*********")
        print(("Insert time:", t1, ", KRows/s:",
              round((nrows / 10. ** 3) / t1, 3),))
        print(", File size:", round(size1 / (1024. * 1024.), 3), "MB")

    # Indexem
    if indexmode == "indexed":
        time1 = time.time()
        cpu1 = time.clock()
        if not heavy:
            cursor.execute("CREATE INDEX ivar1 ON small(var1)")
            conn.commit()
        cursor.execute("CREATE INDEX ivar2 ON small(var2)")
        conn.commit()
        cursor.execute("CREATE INDEX ivar3 ON small(var3)")
        conn.commit()
        t2 = round(time.time() - time1, 5)
        tcpu2 = round(time.clock() - cpu1, 5)
        rowseci = nrows / t2
        print(("Index time:", t2, ", IKRows/s:",
              round((nrows / 10. ** 3) / t2, 3),))
        size2 = os.stat(dbfile)[6] - size1
        print((", Final size with index:",
              round(size2 / (1024. * 1024), 3), "MB"))

    conn.close()

    # Collect benchmark data
    bf = open_file(bfile, "a")
    recsize = "sqlite_small"
    if indexmode == "indexed":
        table = bf.get_node("/" + recsize + "/create_indexed")
    else:
        table = bf.get_node("/" + recsize + "/create_standard")
    table.row["nrows"] = nrows
    table.row["irows"] = nrows
    table.row["tfill"] = t1
    table.row["tidx"] = t2
    table.row["tcfill"] = tcpu1
    table.row["tcidx"] = tcpu2
    table.row["psyco"] = psycon
    table.row["rowsecf"] = rowsecf
    table.row["rowseci"] = rowseci
    table.row["fsize"] = size1
    table.row["isize"] = size2
    table.row.append()
    bf.close()

    return


def readFile(dbfile, nrows, indexmode, heavy, dselect, bfile, riter):
    # Connect to the database.
    conn = sqlite.connect(db=dbfile, mode=755)
    # Obtain a cursor
    cursor = conn.cursor()

    #      select count(*), avg(var2)
    SQL1 = """
    select recnum
    from small where var1 = %s
    """
    SQL2 = """
    select recnum
    from small where var2 >= %s and var2 < %s
    """
    SQL3 = """
    select recnum
    from small where var3 >= %s and var3 < %s
    """

    # Open the benchmark database
    bf = open_file(bfile, "a")
    # default values for the case that columns are not indexed
    t2 = 0.
    tcpu2 = 0.
    # Some previous computations for the case of random values
    if randomvalues:
        # algorithm to choose a value separated from mean
# If want to select fewer values, select this
#         if nrows/2 > standarddeviation*3:
# Choose five standard deviations away from mean value
#             dev = standarddeviation*5
# dev = standarddeviation*math.log10(nrows/1000.)

        # This algorithm give place to too asymmetric result values
#         if standarddeviation*10 < nrows/2:
# Choose four standard deviations away from mean value
#             dev = standarddeviation*4
#         else:
#             dev = 100
        # Yet Another Algorithm
        if nrows / 2 > standarddeviation * 10:
            dev = standarddeviation * 4.
        elif nrows / 2 > standarddeviation:
            dev = standarddeviation * 2.
        elif nrows / 2 > standarddeviation / 10.:
            dev = standarddeviation / 10.
        else:
            dev = standarddeviation / 100.

        valmax = int(round((nrows / 2.) - dev))
        # split the selection range in regular chunks
        if riter > valmax * 2:
            riter = valmax * 2
        chunksize = (valmax * 2 / riter) * 10
        # Get a list of integers for the intervals
        randlist = range(0, valmax, chunksize)
        randlist.extend(range(nrows - valmax, nrows, chunksize))
        # expand the list ten times so as to use the cache
        randlist = randlist * 10
        # shuffle the list
        random.shuffle(randlist)
        # reset the value of chunksize
        chunksize = chunksize / 10
        # print "chunksize-->", chunksize
        # randlist.sort();print "randlist-->", randlist
    else:
        chunksize = 3
    if heavy:
        searchmodelist = ["int", "float"]
    else:
        searchmodelist = ["string", "int", "float"]

    # Execute queries
    for atom in searchmodelist:
        time2 = 0
        cpu2 = 0
        rowsel = 0
        for i in range(riter):
            rnd = random.randrange(nrows)
            time1 = time.time()
            cpu1 = time.clock()
            if atom == "string":
                #cursor.execute(SQL1, "1111")
                cursor.execute(SQL1, str(rnd)[-4:])
            elif atom == "int":
                #cursor.execute(SQL2 % (rnd, rnd+3))
                cursor.execute(SQL2 % (rnd, rnd + dselect))
            elif atom == "float":
                #cursor.execute(SQL3 % (float(rnd), float(rnd+3)))
                cursor.execute(SQL3 % (float(rnd), float(rnd + dselect)))
            else:
                raise ValueError(
                    "atom must take a value in ['string','int','float']")
            if i == 0:
                t1 = time.time() - time1
                tcpu1 = time.clock() - cpu1
            else:
                if indexmode == "indexed":
                    # if indexed, wait until the 5th iteration to take
                    # times (so as to insure that the index is
                    # effectively cached)
                    if i >= 5:
                        time2 += time.time() - time1
                        cpu2 += time.clock() - cpu1
                else:
                    time2 += time.time() - time1
                    time2 += time.clock() - cpu1
        if riter > 1:
            if indexmode == "indexed" and riter >= 5:
                correction = 5
            else:
                correction = 1
            t2 = time2 / (riter - correction)
            tcpu2 = cpu2 / (riter - correction)

        print(("*** Query results for atom = %s, nrows = %s, "
              "indexmode = %s ***" % (atom, nrows, indexmode)))
        print("Query time:", round(t1, 5), ", cached time:", round(t2, 5))
        print("MRows/s:", round((nrows / 10. ** 6) / t1, 3), end=' ')
        if t2 > 0:
            print(", cached MRows/s:", round((nrows / 10. ** 6) / t2, 3))
        else:
            print()

        # Collect benchmark data
        recsize = "sqlite_small"
        tablepath = "/" + recsize + "/search/" + indexmode + "/" + atom
        table = bf.get_node(tablepath)
        table.row["nrows"] = nrows
        table.row["rowsel"] = rowsel
        table.row["time1"] = t1
        table.row["time2"] = t2
        table.row["tcpu1"] = tcpu1
        table.row["tcpu2"] = tcpu2
        table.row["psyco"] = psycon
        table.row["rowsec1"] = nrows / t1
        if t2 > 0:
            table.row["rowsec2"] = nrows / t2
        table.row.append()
        table.flush()  # Flush the data

    # Close the database
    conn.close()
    bf.close()  # the bench database

    return

if __name__ == "__main__":
    import getopt
    try:
        import psyco
        psyco_imported = 1
    except:
        psyco_imported = 0

    usage = """usage: %s [-v] [-p] [-R] [-h] [-t] [-r] [-w] [-n nrows] [-b file] [-k riter] [-m indexmode] [-N range] datafile
            -v verbose
            -p use "psyco" if available
            -R use Random values for filling
            -h heavy mode (exclude strings from timings)
            -t worsT searching case (to emulate PyTables worst cases)
            -r only read test
            -w only write test
            -n the number of rows (in krows)
            -b bench filename
            -N introduce (uniform) noise within range into the values
            -d the interval for look values (int, float) at. Default is 3.
            -k number of iterations for reading\n""" % sys.argv[0]

    try:
        opts, pargs = getopt.getopt(sys.argv[1:], 'vpRhtrwn:b:k:m:N:d:')
    except:
        sys.stderr.write(usage)
        sys.exit(0)

    # if we pass too much parameters, abort
    if len(pargs) != 1:
        sys.stderr.write(usage)
        sys.exit(0)

    # default options
    dselect = 3.
    noise = 0.
    verbose = 0
    heavy = 0
    testread = 1
    testwrite = 1
    usepsyco = 0
    nrows = 1000
    bfile = "sqlite-bench.h5"
    supported_imodes = ["indexed", "standard"]
    indexmode = "indexed"
    riter = 2

    # Get the options
    for option in opts:
        if option[0] == '-v':
            verbose = 1
        if option[0] == '-p':
            usepsyco = 1
        elif option[0] == '-R':
            randomvalues = 1
        elif option[0] == '-h':
            heavy = 1
        elif option[0] == '-t':
            worst = 1
        elif option[0] == '-r':
            testwrite = 0
        elif option[0] == '-w':
            testread = 0
        elif option[0] == '-b':
            bfile = option[1]
        elif option[0] == '-N':
            noise = float(option[1])
        elif option[0] == '-m':
            indexmode = option[1]
            if indexmode not in supported_imodes:
                raise ValueError(
                    "Indexmode should be any of '%s' and you passed '%s'" %
                    (supported_imodes, indexmode))
        elif option[0] == '-n':
            nrows = int(float(option[1]) * 1000)
        elif option[0] == '-d':
            dselect = float(option[1])
        elif option[0] == '-k':
            riter = int(option[1])

    # remaining parameters
    dbfile = pargs[0]

    if worst:
        nrows -= 1  # the worst case

    # Create the benchfile (if needed)
    if not os.path.exists(bfile):
        createNewBenchFile(bfile, verbose)

    if testwrite:
        if psyco_imported and usepsyco:
            psyco.bind(createFile)
            psycon = 1
        createFile(dbfile, nrows, None, indexmode, heavy, noise, bfile,
                   verbose)

    if testread:
        if psyco_imported and usepsyco:
            psyco.bind(readFile)
            psycon = 1
        readFile(dbfile, nrows, indexmode, heavy, dselect, bfile, riter)