This file is indexed.

/usr/lib/python2.7/dist-packages/statsmodels-0.8.0.egg-info/PKG-INFO is in python-statsmodels 0.8.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
Metadata-Version: 1.1
Name: statsmodels
Version: 0.8.0
Summary: Statistical computations and models for Python
Home-page: http://www.statsmodels.org/
Author: Skipper Seabold, Josef Perktold
Author-email: pystatsmodels@googlegroups.com
License: BSD License
Description-Content-Type: UNKNOWN
Description: |Travis Build Status| |Appveyor Build Status| |Coveralls Coverage|
        
        About Statsmodels
        =================
        
        Statsmodels is a Python package that provides a complement to scipy for
        statistical computations including descriptive statistics and estimation
        and inference for statistical models.
        
        
        Documentation
        =============
        
        The documentation for the latest release is at
        
           http://www.statsmodels.org/stable/
        
        The documentation for the development version is at
        
           http://www.statsmodels.org/dev/
        
        Recent improvements are highlighted in the release notes
        
           http://www.statsmodels.org/stable/release/version0.8.html
        
        Backups of documentation are available at http://statsmodels.github.io/stable/
        and http://statsmodels.github.io/dev/.
        
        
        
        Main Features
        =============
        
        * Linear regression models:
        
          - Ordinary least squares
          - Generalized least squares
          - Weighted least squares
          - Least squares with autoregressive errors
          - Quantile regression
        
        * Mixed Linear Model with mixed effects and variance components
        * GLM: Generalized linear models with support for all of the one-parameter
          exponential family distributions
        * GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
        * Discrete models:
        
          - Logit and Probit
          - Multinomial logit (MNLogit)
          - Poisson regression
          - Negative Binomial regression
        
        * RLM: Robust linear models with support for several M-estimators.
        * Time Series Analysis: models for time series analysis
        
          - Complete StateSpace modeling framework
        
            - Seasonal ARIMA and ARIMAX models
            - VARMA and VARMAX models
            - Dynamic Factor models
        
          - Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
          - Univariate time series analysis: AR, ARIMA
          - Vector autoregressive models, VAR and structural VAR
          - Hypothesis tests for time series: unit root, cointegration and others
          - Descriptive statistics and process models for time series analysis
        
        * Survival analysis:
        
          - Proportional hazards regression (Cox models)
          - Survivor function estimation (Kaplan-Meier)
          - Cumulative incidence function estimation
        
        * Nonparametric statistics: (Univariate) kernel density estimators
        * Datasets: Datasets used for examples and in testing
        * Statistics: a wide range of statistical tests
        
          - diagnostics and specification tests
          - goodness-of-fit and normality tests
          - functions for multiple testing
          - various additional statistical tests
        
        * Imputation with MICE and regression on order statistic
        * Mediation analysis
        * Principal Component Analysis with missing data
        * I/O
        
          - Tools for reading Stata .dta files into numpy arrays.
          - Table output to ASCII, LaTeX, and HTML
        
        * Miscellaneous models
        * Sandbox: statsmodels contains a sandbox folder with code in various stages of
          development and testing which is not considered "production ready".   This covers
          among others
        
          - Generalized method of moments (GMM) estimators
          - Kernel regression
          - Various extensions to scipy.stats.distributions
          - Panel data models
          - Information theoretic measures
        
        How to get it
        =============
        The master branch on GitHub is the most up to date code
        
            https://www.github.com/statsmodels/statsmodels
        
        Source download of release tags are available on GitHub
        
            https://github.com/statsmodels/statsmodels/tags
        
        Binaries and source distributions are available from PyPi
        
            http://pypi.python.org/pypi/statsmodels/
        
        Binaries can be installed in Anaconda
        
            conda install statsmodels
        
        Development snapshots are also available in Anaconda (infrequently updated)
        
            conda install -c https://conda.binstar.org/statsmodels statsmodels
        
        Installing from sources
        =======================
        
        See INSTALL.txt for requirements or see the documentation
        
            http://statsmodels.github.io/dev/install.html
        
        License
        =======
        
        Modified BSD (3-clause)
        
        Discussion and Development
        ==========================
        
        Discussions take place on our mailing list.
        
            http://groups.google.com/group/pystatsmodels
        
        We are very interested in feedback about usability and suggestions for
        improvements.
        
        Bug Reports
        ===========
        
        Bug reports can be submitted to the issue tracker at
        
            https://github.com/statsmodels/statsmodels/issues
        
        .. |Travis Build Status| image:: https://travis-ci.org/statsmodels/statsmodels.svg?branch=master
           :target: https://travis-ci.org/statsmodels/statsmodels
        .. |Appveyor Build Status| image:: https://ci.appveyor.com/api/projects/status/gx18sd2wc63mfcuc/branch/master?svg=true
           :target: https://ci.appveyor.com/project/josef-pkt/statsmodels/branch/master
        .. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=master
           :target: https://coveralls.io/github/statsmodels/statsmodels?branch=master
        
Platform: any
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Natural Language :: English
Classifier: License :: OSI Approved :: BSD License
Classifier: Topic :: Scientific/Engineering