/usr/lib/python2.7/dist-packages/statsmodels-0.8.0.egg-info/PKG-INFO is in python-statsmodels 0.8.0-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | Metadata-Version: 1.1
Name: statsmodels
Version: 0.8.0
Summary: Statistical computations and models for Python
Home-page: http://www.statsmodels.org/
Author: Skipper Seabold, Josef Perktold
Author-email: pystatsmodels@googlegroups.com
License: BSD License
Description-Content-Type: UNKNOWN
Description: |Travis Build Status| |Appveyor Build Status| |Coveralls Coverage|
About Statsmodels
=================
Statsmodels is a Python package that provides a complement to scipy for
statistical computations including descriptive statistics and estimation
and inference for statistical models.
Documentation
=============
The documentation for the latest release is at
http://www.statsmodels.org/stable/
The documentation for the development version is at
http://www.statsmodels.org/dev/
Recent improvements are highlighted in the release notes
http://www.statsmodels.org/stable/release/version0.8.html
Backups of documentation are available at http://statsmodels.github.io/stable/
and http://statsmodels.github.io/dev/.
Main Features
=============
* Linear regression models:
- Ordinary least squares
- Generalized least squares
- Weighted least squares
- Least squares with autoregressive errors
- Quantile regression
* Mixed Linear Model with mixed effects and variance components
* GLM: Generalized linear models with support for all of the one-parameter
exponential family distributions
* GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
* Discrete models:
- Logit and Probit
- Multinomial logit (MNLogit)
- Poisson regression
- Negative Binomial regression
* RLM: Robust linear models with support for several M-estimators.
* Time Series Analysis: models for time series analysis
- Complete StateSpace modeling framework
- Seasonal ARIMA and ARIMAX models
- VARMA and VARMAX models
- Dynamic Factor models
- Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
- Univariate time series analysis: AR, ARIMA
- Vector autoregressive models, VAR and structural VAR
- Hypothesis tests for time series: unit root, cointegration and others
- Descriptive statistics and process models for time series analysis
* Survival analysis:
- Proportional hazards regression (Cox models)
- Survivor function estimation (Kaplan-Meier)
- Cumulative incidence function estimation
* Nonparametric statistics: (Univariate) kernel density estimators
* Datasets: Datasets used for examples and in testing
* Statistics: a wide range of statistical tests
- diagnostics and specification tests
- goodness-of-fit and normality tests
- functions for multiple testing
- various additional statistical tests
* Imputation with MICE and regression on order statistic
* Mediation analysis
* Principal Component Analysis with missing data
* I/O
- Tools for reading Stata .dta files into numpy arrays.
- Table output to ASCII, LaTeX, and HTML
* Miscellaneous models
* Sandbox: statsmodels contains a sandbox folder with code in various stages of
development and testing which is not considered "production ready". This covers
among others
- Generalized method of moments (GMM) estimators
- Kernel regression
- Various extensions to scipy.stats.distributions
- Panel data models
- Information theoretic measures
How to get it
=============
The master branch on GitHub is the most up to date code
https://www.github.com/statsmodels/statsmodels
Source download of release tags are available on GitHub
https://github.com/statsmodels/statsmodels/tags
Binaries and source distributions are available from PyPi
http://pypi.python.org/pypi/statsmodels/
Binaries can be installed in Anaconda
conda install statsmodels
Development snapshots are also available in Anaconda (infrequently updated)
conda install -c https://conda.binstar.org/statsmodels statsmodels
Installing from sources
=======================
See INSTALL.txt for requirements or see the documentation
http://statsmodels.github.io/dev/install.html
License
=======
Modified BSD (3-clause)
Discussion and Development
==========================
Discussions take place on our mailing list.
http://groups.google.com/group/pystatsmodels
We are very interested in feedback about usability and suggestions for
improvements.
Bug Reports
===========
Bug reports can be submitted to the issue tracker at
https://github.com/statsmodels/statsmodels/issues
.. |Travis Build Status| image:: https://travis-ci.org/statsmodels/statsmodels.svg?branch=master
:target: https://travis-ci.org/statsmodels/statsmodels
.. |Appveyor Build Status| image:: https://ci.appveyor.com/api/projects/status/gx18sd2wc63mfcuc/branch/master?svg=true
:target: https://ci.appveyor.com/project/josef-pkt/statsmodels/branch/master
.. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=master
:target: https://coveralls.io/github/statsmodels/statsmodels?branch=master
Platform: any
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Natural Language :: English
Classifier: License :: OSI Approved :: BSD License
Classifier: Topic :: Scientific/Engineering
|